Role of oxidative stress in female reproductive system: literature review
- Authors: Berezina D.A.1, Kudryavtseva E.V.1, Gavrilov I.V.1
-
Affiliations:
- Ural State Medical University
- Issue: Vol 40, No 4 (2023)
- Pages: 62-72
- Section: Review of literature
- URL: https://journals.rcsi.science/PMJ/article/view/144148
- DOI: https://doi.org/10.17816/pmj40462-72
- ID: 144148
Cite item
Full Text
Abstract
In this review, the literature data regarding the influence of oxidative stress (OS) on the female reproductive system and fertility are analyzed. Oxidative stress occurs as a result of balance disturbance in the system of the formation of free radicals and mechanisms of antioxidant defense. During the last decade, there have been conducted many studies, demonstrating interaction between the oxidative stress and the development of various pathological processes. The influence of the oxidative stresses on the state of female reproductive system and fertility is of special interest. When analyzing the available for today data regarding OS and its effect on the body, it is becomes evident that this process is very important in physiology and reproductive pathology, development of gynecological and obstetric pathologies and fertility. The significance of OS in the pathogenesis of reproductive disturbances should be taken into account when developing new therapeutic methods. This issue needs further discussion and studying.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Dinara A. Berezina
Ural State Medical University
Email: dinara-berezina@mail.ru
ORCID iD: 0000-0003-4685-6771
SPIN-code: 8696-2674
Postgraduate Student, Department of Obstetrics and Gynecology
Russian Federation, YekaterinburgElena V. Kudryavtseva
Ural State Medical University
Email: elenavladpopova@yandex.ru
ORCID iD: 0000-0003-2797-1926
SPIN-code: 7232-3743
MD, PhD, Associate Professor, Head of the Central Scientific Research Laboratory
Russian Federation, EkaterinburgIlia V. Gavrilov
Ural State Medical University
Author for correspondence.
Email: iliagavrilov18@yandex.ru
ORCID iD: 0000-0003-0806-1177
SPIN-code: 6123-5380
Candidate of Biological Sciences, Associate Professor of the Department of Biological Chemistry, Senior Researcher of CSRL
Russian Federation, YekaterinburgReferences
- Conti F.F., Brito J. de O., Bernardes N., Dias D. da S., Malfitano C., Morris M., et al. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations. Am J Physiol Regul Integr Comp Physiol. 2015; 309 (12): R1532-9. doi: 10.1152/ajpregu.00076.2015.
- Hauck A.K., Huang Y., Hertzel A.V., Bernlohr D.A. Adipose oxidative stress and protein carbonylation. J Biol Chem. 2019; 294 (4): 1083–8. doi: 10.1074/jbc.R118.003214.
- Conti F.F., Brito J. de O., Bernardes N., Dias D. da S., Sanches I.C., Malfitano C., et al. Cardiovascular autonomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hypertension and menopause. BMC Cardiovasc Disord. 2014; 14: 185. doi: 10.1186/1471-2261-14-185.
- Muñoz A., Costa M. Nutritionally mediated oxidative stress and inflammation. Ox-id Med Cell Longev. 2013; 2013: 610950. doi: 10.1155/2013/610950.
- Akhter N., Madhoun A., Arefanian H., Wilson A., Kochumon S., Thomas R., et al. Oxidative Stress Induces Expression of the Toll-Like Receptors (TLRs) 2 and 4 in the Human Peripheral Blood Mononuclear Cells: Implications for Metabolic Inflammation. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2019; 53 (1): 1–18. doi: 10.33594/000000117.
- Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., et al. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018; 45 (2): 572–90. doi: 10.1159/000487034.
- Solov'eva A.G., Kuznetsova V.L., Peretyagin S.P., Didenko N.V., Dudar' A.I. Role of nitric oxide in processes of free radical oxidation. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2016; 1 (53): 228–33 (in Russian).
- Tenkorang M.A., Snyder B., Cunningham R.L. Sex-related differences in oxidative stress and neurodegeneration. Steroids. 2018; 133: 21–7. doi: 10.1016/j.steroids.2017.12.010.
- Tsvirkun D.V., Marei M.V., Vishnyakova P.A., Pyataeva S.V., Volodina M.A., Tarasova N.V. et al. Methods For The Study Of Oxidative Stress And Mitochondrial Dysfunction In Obstetric And Gynecological Pathology. Medica Mente Lechim s Umom. 2017; 3 (2): 12–8 (in Russian).
- Lysenko V.I. Oxidative Stress As A Non-Specific Factor Of Organ Damage Pathogenesis (Review Of Literature And Own Data). Meditsina Neotlozhnykh Sostoyanii. 2020; 16 (1): 24–5. doi: 10.22141/2224-0586.16.1.2020.196926 (in Russian).
- Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018; 39 (7): 1120–32. doi: 10.1038/aps.2018.25.
- Scutiero G., Iannone P., Bernardi G., Bonaccorsi G., Spadaro S., Volta C.A., et al. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid Med Cell Longev. 2017; 2017: 7265238. doi: 10.1155/2017/7265238.
- Vitale S.G., Capriglione S., Peterlunger I., La Rosa V.L., Vitagliano A., Noventa M., et al. The Role of Oxidative Stress and Membrane Transport Systems during Endometriosis: A Fresh Look at a Busy Corner. Oxid Med Cell Longev. 2018; 2018: 7924021. doi: 10.1155/2018/7924021.
- Murakami K., Kotani Y., Nakai H., Matsumura N. Endometriosis-Associated Ovarian Cancer: The Origin and Targeted Therapy. Cancers (Basel). 2020; 12 (6). doi: 10.3390/cancers12061676.
- Chernyak B.V., Popova E.N., Prikhod'ko A.S., Grebenchikov A.S., Zinovkina L.A., Zinovkin R.A. COVID-19 and oxidative stress. Biokhimiya. 2020; 85 (12): 1816–28. doi: 10.31857/S032097252012006.
- Agarwal A., Sengupta P., Durairajanayagam D. Role of L-carnitine in female infertility. Reprod Biol Endocrinol 2018; 16: 5. doi: 10.1186/s12958-018-0323-4.
- Harlev A., Gupta S., Agarwal A. Targeting oxidative stress to treat endometriosis. Expert Opin Ther Targets. 2015; 19 (11): 1447–64. doi: 10.1517/14728222.2015.1077226.
- Sugino N., Karube-Harada A., Kashida S., Takiguchi S., Kato H. Reactive oxygen species stimulate prostaglandin F2 alpha production in human endometrial stromal cells in vitro. Hum Reprod. 2001; 16 (9): 1797–801. doi: 10.1093/humrep/16.9.1797.
- Melford S.E., Taylor A.H., Konje J.C. Nitric oxide positively affects endometrial receptivity via FAAH and NAPE-PLD in vitro. Reprod Fertil. 2021; 2 (2): 107–16. doi: 10.1530/RAF-20-0035.
- Khan F.A., Chenier T.S., Foster R.A., Hewson J., Scholtz E.L. Endometrial nitric oxide synthase activity in mares susceptible or resistant to persistent breeding-induced endometritis and the effect of a specific iNOS inhibitor in vitro. Reprod Domest Anim. 2018; 53 (3): 718–24. doi: 10.1111/rda.13162.
- Modzelewska B., Jóźwik M., Jóźwik M., Tylicka M., Kleszczewski T. The effects of extended nitric oxide release on responses of the human non-pregnant myometrium to endothelin-1 or vasopressin. Pharmacol Rep. 2019; 71 (5): 892–8. doi: 10.1016/j.pharep.2019.05.003
- Abdelnaby E.A., Abo El-Maaty A.M. Effect of the side of ovulation on the uterine morphometry, blood flow, progesterone, oestradiol and nitric oxide during spontaneous and induced oestrus in lactating dairy cows. Reprod Domest Anim. 2020; 55 (7): 851–60. doi: 10.1111/rda.13693.
- Li W., Young J.F., Sun J. NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc Natl Acad Sci U S A. 2018; 115 (30): 7765–7770. doi: 10.1073/pnas.1800115115.
- Das A., Roychoudhury S. Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles. Adv Exp Med Biol. 2022; 1358: 9–40. doi: 10.1007/978-3-030-89340-8_2.
- Wang L., Tang J., Wang L., Tan F., Song H., Zhou J. et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. 2021; 236 (12): 7966–83. doi: 10.1002/jcp.30468.
- Vasconcelos E.M., Costa F.C., Azevedo A.V.N., Barroso P.A.A., de Assis E.I.T., Paulino L.R.F.M. et al. Eugenol influences the expression of messenger RNAs for superoxide dismutase and glutathione peroxidase 1 in bovine secondary follicles cultured in vitro. Zygote 2021; 29 (4): 301–306. doi: 10.1017/S0967199420000908.
- Rattanawong K., Koiso N., Toda E., Kinoshita A., Tanaka M., Tsuji H. et al. Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. Plant J. 2021; 108 (4): 1097–115. doi: 10.1111/tpj.15497.
- Soria-Tiedemann M., Michel G., Urban I., Aldrovandi M., O’Donnell V.B., Stehling S. et al. Unbalanced Expression of Glutathi-one Peroxidase 4 and Arachidonate 15-Lipoxygenase Affects Acrosome Reaction and In Vitro Fertilization. Int J Mol Sci. 2022; 23 (17). doi: 10.3390/ijms23179907.
- Guo Y.-X., Zhang G.-M., Yao X.-L., Tong R., Cheng C.-Y., Zhang T.-T., et al. Effects of nitric oxide on steroidogenesis and apoptosis in goat luteinized granulosa cells. Theriogenology 2019; 126: 55–62. doi: 10.1016/j.theriogenology.2018.12.007.
- Sugino N., Takiguchi S., Ono M., Tamura H., Shimamura K., Nakamura Y. et al. Nitric oxide concentrations in the follicular fluid and apoptosis of granulosa cells in human follicles. Hum Reprod. 1996; 11 (11): 2484–7. doi: 10.1093/oxfordjournals.humrep.a019144.
- Zhou J., Peng X., Mei S. Autophagy in Ovarian Follicular Development and Atresia. Int J Biol Sci.2019; 15 (4): 726–37. doi: 10.7150/ijbs.30369.
- Li J., Zhang W., Zhu S., Shi F. Nitric Oxide Synthase Is Involved in Follicular Development via the PI3K/AKT/FoxO3a Pathway in Neonatal and Immature Rats. Anim an Open Access J from MDPI. 2020; 10. doi: 10.3390/ani10020248.
- Wu S., Hu S., Fan W., Zhang X., Wang H., Li C. et al. Nitrite exposure may induce infertility in mice. J Toxicol Pathol. 2022; 35 (1): 75–82. doi: 10.1293/tox.2021-0002.
- Homer H.A. The Role of Oocyte Quality in Explaining “Unexplained” Infertility. Semin Reprod Med. 2020; 38 (1): 21–8. doi: 10.1055/s-0040-1721377.
- Chaudhary G.R., Yadav P.K., Yadav A.K., Tiwari M., Gupta A., Sharma A. et al. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J Cell Physiol. 2019; 234 (6): 8019–27. doi: 10.1002/jcp.27562.
- Liu Y.-X., Zhang Y., Li Y.-Y., Liu X.-M., Wang X.-X., Zhang C.-L., et al. Regulation of follicular development and differentiation by intra-ovarian factors and endocrine hormones. Front Biosci (Landmark Ed). 2019; 24 (5):
- –93. doi: 10.2741/4763.
- Kong Q.-Q., Wang J., Xiao B., Lin F.-H., Zhu J., Sun G.-Y., et al. Cumulus cell-released tumor necrosis factor (TNF) -α promotes post-ovulatory aging of mouse oocytes. Aging (Albany NY). 2018; 10 (7): 1745–57. doi: 10.18632/aging.101507.
- Lliberos C., Liew S.H., Zareie P., La Gruta N.L., Mansell A., Hutt K. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep, 2021; 11 (1): 278. doi: 10.1038/s41598-020-79488-4.
- Ekerhovd E., Norström A. Involvement of a nitric oxide-cyclic guanosine mono-phosphate pathway in control of fallopian tube contractility. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2004; 19 (5): 239–46. doi: 10.1080/09513590400019296.
- Ivanov D., Mazzoccoli G., Anderson G., Linkova N., Dyatlova A., Mironova E. et al. Melatonin, Its Beneficial Effects on Embryogenesis from Mitigating Oxidative Stress to Regulating Gene Expression. Int J Mol Sci. 2021; 22 (11). doi: 10.3390/ijms22115885.
- Divyashree S., Yajurvedi H.N. Chronic stress effects and their reversibility on the Fallopian tubes and uterus in rats. Reprod Fertil Dev. 2018; 30 (2): 380–90. doi: 10.1071/RD17082.
- Kudryavtseva E.V., Oboskalova T.A., Vorontsova A.V., Chizhova A.V. Endometriosis: Issues Of Pathogenesis. Vestnik Ural'skoi Meditsinskoi Akademicheskoi Nauki. 2021; 18 (3b): 239–52. doi: 10.22138/2500-0918-2021-18-3-239-252.
- Agarwal A., Gupta S., Sharma R.K. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005; 3: 28. doi: 10.1186/1477-7827-3-28.
- Ng K.Y.B., Mingels R., Morgan H., Mack-lon N., Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update. 2018; 24 (1): 15–34. doi: 10.1093/humupd/dmx028.
- Dallemagne M., Ghys E., De Schrevel C., Mwema A., De Troy D., Rasse C. et al. Oxidative stress differentially impacts male and female bovine embryos depending on the culture medium and the stress condition. Theriogenology. 2018; 117: 49–56. doi: 10.1016/j.theriogenology.2018.05.020.
Supplementary files
