Genetic regulation of cytokine inflammation in oncohematological diseases

Cover Page

Cite item

Full Text

Abstract

Objective. To analyze the correlations of the polymorphous variants of the genes – the modifiers of immune response (IL1-β/+3953, IL1RN*VNTR, TNFA*G-308A) with the development of oncohematological diseases (OHD) and the production of pro-and anti-inflammatory cytokines (IL-1β, IL-1Ra, TNF-α, INF-γ, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18).

Materials and methods. The examination included 100 children (57 (57 %) boys и 43 (43 %) girls, with the mean age 7.50 (2.5–12.60 years) suffering from malignant blood diseases. The cytokine content (IL-1β, IL-4, IL-6, IL-8, IL-18, IL-1Ra и IL-10) was determined using IFA, the genetic typing of the genetic variants of the genes of cytokines IL1-β/+3953, IL1RN*VNTR, TNFA*G-308A – PCR and RFLP methods.

Results. In case of lethal outcome, 14% of cases, the TNF-α IL-6, IL-8, IL-18 INF-γ and IL-10 levels were reliably higher, compared with the survived patients. Renal function disorder detected among 13% of children was accompanied by an increase in IL-1β, IL-6, IL-8, IL-18, IL-1Ra and INF-γ compared to the patients without nephropathy and the control group (p<0.05). Eighteen OHD children with high concentration of IL-1β, IL-1Ra, IL-6, IL-8, IL-18 and INF-γ had fractures (р<0,05). Against the background of OHD, the carriage of the genotype А2А2 of the polymorphic variant VNTR IL1RN gene was observed 13 times more often, the carriage of the allele A2 – 2.16 times more often. The carriers of the genotype A2A2 of the genetic variant VNTR IL1RN gene had an increased risk of nephropathy by 20.89 times, the carriers of the allele A2 – 3.05 times more often. Children with OHD complicated by bacterial infection by 10.77 times more often had the genotype A2A2 and by 2.45 times more often – the allele A2 of the genetic variant VNTR IL1RN gene.

Conclusions. The carriers of the minor genotype A2A2 of the gene IL1RN*VNTR had a reliably higher production of the antiinflammatory IL-1β, IL-6, IL-8, IL-18 и IL-1Ra. The carriers of the genotype GA of the gene TNFA*G-308A had a significantly higher values of IL-1β, IL-18, IL-6, IL-8, TNF-α.

About the authors

E. V. Loshkova

Scientific Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region

Author for correspondence.
Email: loshkova@rambler.ru
ORCID iD: 0000-0002-3043-8674

Candidate of Medical Sciences, senior researcher of Department of Congenital and Metabolic Diseases

Russian Federation, Moscow

Yu. B. Ponomarenko

Children's Regional Clinical Hospital

Email: loshkova@rambler.ru
ORCID iD: 0000-0002-9326-4085

pediatrician

Russian Federation, Krasnodar

E. I. Kondratieva

Scientific Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region

Email: loshkova@rambler.ru

MD, PhD, Professor, Head of the Scientific and Clinical Department of Cystic Fibrosis

Russian Federation, Moscow

V. V. Lebedev

Children's Regional Clinical Hospital

Email: loshkova@rambler.ru

Head of Unit of Oncology and Hematology with Chemotherapy

Russian Federation, Krasnodar

E. I. Kleschenko

Children's Regional Clinical Hospital; Kuban State Medical University

Email: loshkova@rambler.ru
ORCID iD: 0000-0003-0322-4715

Chief Physician, Head of Department of Pediatrics with Course of Neonatology

Russian Federation, Krasnodar; Krasnodar

References

  1. Lee J.W, Cho B. Prognostic factors and treatment of pediatric acute lymphoblastic leukemia. Korean J Pediatr 2017; 60 (5): 129-137.
  2. Inaba H., Greaves M., Mullighan C.G. Acute lymphoblastic leukaemia. Lancet 2013; 381 (9881): 1943-1955.
  3. Demidowicz E., Pogorzała M., Łęcka M., Żołnowska H., Marjańska A., Kubicka M., Kuryło-Rafińska B., Czyżewski K., Dębski R., Kołtan A., Richert-Przygońska M., Styczyński J. Outcome of Pediatric Acute Lymphoblastic Leukemia: Sixty Years of Progress. Anticancer Res 2019; 39 (9): 5203-5207.
  4. Sklar C.A., Antal Z., Chemaitilly W., Cohen L.E., Follin C., Meacham L.R., Murad M.H. Hypothalamic-Pituitary and Growth Disorders in Survivors of Childhood Cancer: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2018; 103 (8): 2761-2784.
  5. Howard S.C., Pui C.H. Endocrine complications in pediatric patients with acute lymphoblastic leukemia. Blood Rev 2002; 16 (4): 225-243.
  6. Mostoufi-Moab S., Ward L.M. Skeletal Morbidity in Children and Adolescents during and following Cancer Therapy. Horm Res Paediatr 2019; 91 (2): 137-151.
  7. Kızılocak H., Okcu F. Late Effects of Therapy in Childhood Acute Lymphoblastic Leukemia Survivors. Turk J Haematol 2019; 36 (1): 1-11.
  8. Simm P.J., Biggin A., Zacharin M.R., Rodda C.P., Tham E., Siafarikas A., Jefferies C., Hofman P.L., Jensen D.E., Woodhead H., Brown J., Wheeler B.J., Brookes D., Lafferty A., Munns C.F., APEG Bone Mineral Working Group. Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health 2018; 54 (3): 223-233.
  9. Mostoufi-Moab S., Halton J. Bone morbidity in childhood leukemia: epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep 2014; 12 (3): 300-312.
  10. Warner J.T, Evans W.D, Webb D.K., Bell W., Gregory J.W. Relative osteopenia after treatment for acute lymphoblastic leukemia. Pediatr Res 1999; 45 (4 Pt 1): 544-551.
  11. Davies J.H., Evans B.A., Jenney M.E., Gregory J.W. Skeletal morbidity in childhood acute lymphoblastic leukaemia. Clin Endocrinol (Oxf) 2005; 63 (1): 1-9.
  12. Shimo T., Sasaki A. Mechanism of cancer-induced bone destruction: an association of connective tissue growth factor (CTGF/CCN2) in the bone metastasis. Japanese Dental Science Review 2011; 47: 13-22.
  13. Mattia C., Coluzzi F., Celidonio L., Vellucci R. Bone pain mechanism in osteoporosis: a narrative review. Clin Cases Miner Bone Metab 2016; 13 (2): 97-100.
  14. Angsubhakorn N., Suvannasankha A. Acute lymphoblastic leukaemia with osteolytic bone lesions: diagnostic dilemma. BMJ Case Rep 2018; Aug 11.
  15. Patel R., Lim D.S., Reddy D. Nagueh S.F., Lutucuta S., Sole M.J., Zoghbi W.A., Quiñones M.A., Roberts R., Marian A.J. Variants of trophic factors and expression of cardiac hypertrophy in patients with hypertrophic cardiomyopathy. J Mol Cell Cardiol 2000; 32 (12): 2369-2377.
  16. Tarlow J.K., Blakemore I.F., Lennard A. Solari R., Hughes H.N., Steinkasserer A., Duff G.W. Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable number of an 86-bp tandem repeat. Hum Genet 1993; 91: 403-404.
  17. Wilkinson R.J., Patel P., Llewelyn M., Hirsch C.S., Pasvol G., Snounou G., Davidson R.N., Toossi Z. Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL1- on tuberculosis. J Exp Med 1999; 189 (12): 1863-1873.
  18. Dinarello C.A. Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 2010; 29 (2): 317-329.
  19. Briukhovetska D., Dörr J., Endres S., Libby P., Dinarello C.A., Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21 (8): 481-499.
  20. Uzan B., Poglio S., Gerby B., Wu C.L., Gross J., Armstrong F., Calvo J., Cahu X., Deswarte C., Dumont F., Passaro D., Besnard-Guérin C., Leblanc T., Baruchel A., Landman-Parker J., Ballerini P., Baud V., Ghysdael J., Baleydier F., Porteu F., Pflumio F. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Mol Med 2014; 6 (6): 821-834.
  21. Yasuda K., Nakanishi K., Tsutsui H. Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20 (3): 649.
  22. Zubowska M., Wyka K., Fendler W., Młynarski W., Zalewska-Szewczyk B. Interleukin 18 as a marker of chronic nephropathy in children after anticancer treatment. Dis Markers 2013; 35 (6): 811-818.
  23. Musolino C., Di Cesare E., Alonci A., Allegra A., Orlando A., Grosso P., Squadrito G. Serum levels of CD8 antigen and soluble interleukin 2 receptors in patients with B cell chronic lymphocytic leukemia. Acta Haematol 1991; 85: 57-61.
  24. Huang R.W., Tsuda H., Takatsuki K. Interleukin-2 prevents programmed cell death in chronic lymphocytic leukaemia cells. Int J Hematol 1993; 58: 83-92.
  25. Allegra A., Musolino C., Tonacci A., Pioggia G., Casciaro M., Gangemi S. Clinico-Biological Implications of Modified Levels of Cytokines in Chronic Lymphocytic Leukemia: A Possible Therapeutic Role. Cancers (Basel) 2020; 12 (2): 524.
  26. Steele A.J., Prentice A.G., Cwynarski K., Hoffbrand A.V., Hart S.M., Lowdell M.W., Samuel E.R., Wickremasinghe R.G. The JAK3-selective inhibitor PF-956980 reverses the resistance to cytotoxic agents induced by interleukin-4 treatment of chronic lymphocytic leukemia cells: Potential for reversal of cytoprotection by the microenvironment. Blood 2010; 116: 4569-4577.
  27. Panayiotidis P., Ganeshaguru K., Jabbar S.A.B., Hoffbrand A.V. Interleukin 4 inhibits apoptotic cell death and loss of bcl-2 protein in B-cell chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1993; 85: 39-45.
  28. Frankfurt O.S., Byrnes J.J., Villa L. Protection from apoptotic cell death by interleukin-4 is increased in previously treated chronic lymphocytic leukemia patients. Leuk Res 1997; 21: 9-16.
  29. Weinkove R., Brooks C.R., Carter J.M., Hermans I.F., Ronchese F. Functional invariant natural killer T-cell and CD1d axis in chronic lymphocytic leukemia: Implications for immunotherapy. Haematologica 2013; 98: 376-384.
  30. Wang H.-Q., Jia L., Yu-Ting Li Y.-T., Farren T., Agrawal S.G., Feng-Ting Liu F.-T. Increased autocrine interleukin-6 production is significantly associated with worse clinical out come in patients with chronic lymphocytic leukemia. J Cell Physiol 2019; 234: 13994-14006.
  31. Grivennikov S., Karin E., Terzic J., Mucida D., Yu G.Y., Vallabhapurapu S., Scheller J., Rose-John S., Cheroutre H., Eckmann L., Karin M. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15 (2): 103-13.
  32. Lesina M., Kurkowski M.U., Ludes K., Rose-John S., Treiber M., Klöppel G., Yoshimura A., Reindl W., Sipos B., Akira S., Schmid R.M., Algül H. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011; 19 (4): 456-469.
  33. Rozovski U., Harris D.M., Li P., Liu Z., Jain P., Veletic I., Ferrajoli A., Burger J., Thompson P., Jain N., Wierda W., Keating M.J., Estrov Z. Activation of the B-cell receptor successively activates NF-κB and STAT3 in chronic lymphocytic leukemia cells. Int J Cancer 2017; 141 (10): 2076-2081.
  34. Chang Q., Bournazou E., Sansone P., Berishaj M., Gao S.P., Daly L., Wels J., Theilen T., Granitto S., Zhang X., Cotari J., Alpaugh M.L., de Stanchina E., Manova K., Li M., Bonafe M., Ceccarelli C., Taffurelli M., Santini D., Altan-Bonnet G., Kaplan R., Norton L., Nishimoto N., Huszar D., Lyden D., Bromberg J. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 2013; 15 (7): 848-862.
  35. Fayad L., Keating M.J., Reuben J.M., O'Brien S., Lee B.N., Lerner S., Kurzrock R. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 2001; 97 (1): 256-263.
  36. Di Celle P.F., Mariani S., Riera L., Stacchini A., Reato G., Foa R. Interleukin-8 induces the accumulation of B-cell chronic lymphocytic leukemia cells by prolonging survival in an autocrine fashion. Blood 1996; 87: 4382-4389.
  37. Brat D.J., Bellail A.C., van Meir E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 2005; 7: 122-133.
  38. Podaza E., Sabbione F., Risnik D., Borge M., Almejún M.B., Colado A., Fernández-Grecco H., Cabrejo M., Bezares R.F., Trevani A., Gamberale R., Giordano M. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother 2017; 66 (1): 77-89.
  39. Levidou G., Sachanas S., Pangalis G.A., Kalpadakis C., Yiakoumis X., Moschogiannis M., Sepsa A., Lakiotaki E., Milionis V., Kyrtsonis M.C., Vassilakopoulos T.P., Tsirkinidis P., Kontopidou F., Kokoris S., Siakantaris M., Angelopoulou M., Papadaki H., Kavantzas N., Panayiotidis P., Patsouris E., Korkolopoulou P. Immunohistochemical analysis of IL-6, IL-8/CXCR2 axis, Tyr p-STAT-3, and SOCS-3 in lymph nodes from patients with chronic lymphocytic leukemia: correlation between microvascular characteristics and prognostic significance. Biomed Res Int 2014; 251479.
  40. Steel J.C., Waldmann T.A., Morris J.C. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012; 33: 35-41.
  41. Laprevotte E., Voisin G., Ysebaert L., Klein C., Daugrois C., Laurent G., Fournie J.J., Quillet-Mary A. Recombinant Human IL-15 Trans-Presentation by B Leukemic Cells from Chronic Lymphocytic Leukemia Induces Autologous NK Cell Proliferation Leading to Improved Anti-CD20 Immunotherapy. J Immunol 2013; 191: 3634-3640.
  42. Widemann B.C., Balis F.M., Kim A., Boron M., Jayaprakash N., Shalabi A., O'Brien M., Eby M., Cole D.E., Murphy R.F., Fox E., Ivy P., Adamson P.C. Glucarpidase, leucovorin, and thymidine for high-dose methotrexate-induced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol 2010; 28 (25): 3979-3986.
  43. Darmon M., Guichard I., Vincent F., Schlemmer B., Azoulay E. Prognostic significance of acute renal injury in acute tumor lysis syndrome. Leuk Lymphoma 2010; 51 (2): 221-227.
  44. Janeway K.A., Grier H.E. Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol 2010; 11 (7): 670-678.
  45. Liang X.L., Liu S.X., Chen Y.H., Yan L.J., Li H., Xuan H.J., Liang Y.Z., Shi W. Combination of urinary kidney injury molecule-1 and interleukin-18 as early biomarker for the diagnosis and progressive assessment of acute kidney injury following cardiopulmonary bypass surgery: a prospective nested case-control study. Biomarkers 2010; 15 (4): 332-339.
  46. Washburn K.K., Zappitelli M., Arikan A.A., Loftis L., Yalavarthy R., Parikh C.R., Edelstein C.L., Goldstein S.L. Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 2008; 23 (2): 566-572.
  47. Siew E.D., Ikizler T.A., Gebretsadik T., Shintani A., Wickersham N., Bossert F., Peterson J.F., Parikh C.R., May A.K., Ware L.B. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol 2010; 5 (8): 1497-1505.
  48. Wu H., Craft M.L., Wang P., Wyburn K.R., Chen G., Ma J., Hambly B., Chadban S.J. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol 2008; 19 (12): 2331-2341.
  49. Edelstein C.L. Biomarkers of acute kidney injury. Adv Chronic Kidney Dis 2008; 15 (3): 222-234.
  50. Griffin B.R., Faubel S., Edelstein C.L. Biomarkers of Drug-Induced Kidney Toxicity. Ther Drug Monit 2019; 41 (2): 213-226.
  51. D'Amore C., Nuzzo S., Briguori C. Biomarkers of Contrast-Induced Nephropathy:: Which Ones are Clinically Important? Interv Cardiol Clin 2020; 9 (3): 335-344.
  52. Sterling M., Al-Ismaili Z., McMahon K.R., Piccioni M., Pizzi M., Mottes T., Lands L.C., Abish S., Fleming A.J., Bennett M.R., Palijan A., Devarajan P., Goldstein S.L., O'Brien M.M., Zappitelli M. Urine biomarkers of acute kidney injury in noncritically ill, hospitalized children treated with chemotherapy. Pediatr Blood Cancer 2017; 64 (10).
  53. Sarani H., Molashahi B., Taheri M., Bahari G., Hashemi S.M., Hashemi M., Ghavami S. Association between the Interleukin-1 Receptor Antagonist (IL1RN) Variable Number of Tandem Repeats (VNTR) Polymorphism and Lymphoma. Int J Hematol Oncol Stem Cell Res 2021; 15 (2): 90-95.
  54. Wang T., Feng Y., Zhao Z., Wang H., Zhang Y., Zhang Y., Liu H., Jin T., Liu Q. IL1RN Polymorphisms Are Associated with a Decreased Risk of Esophageal Cancer Susceptibility in a Chinese Population. Chemotherapy 2019; 64 (1): 28-35.
  55. Jin T., Cao W., Zuo X., Li M., Yang Y., Liang T., Yang H., Zhao X., Yang D. IL-1RN gene polymorphisms are associated with breast cancer risk in a Chinese Han population. J Gene Med 2017; 19 (12).
  56. Wu S., Hu G., Chen J., Xie G. Interleukin 1 and interleukin 1 receptor antagonist gene polymorphisms and cervical cancer: a meta-analysis. Int J Gynecol Cancer 2014; 24 (6): 984-990.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (260KB)
3. Fig. 2

Download (316KB)

Copyright (c) 2022 Loshkova E.V., Ponomarenko Y.B., Kondratieva E.I., Lebedev V.V., Kleschenko E.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies