胸部低剂量计算机断层扫描在COVID-19诊断中的应用:系统综述

封面图片

如何引用文章

详细

论证。在COVID-19大流行期间,计算机断层扫描检查数量的增加使减少病人的辐射量的任务成为现实,因为暴露于辐射与增加癌症风险有着可靠的联系。国际放射防护委员会提出的在最高诊断质量下的最小辐射剂量原则——ALARA(as low as reasonably achievable),在辐射诊断部门的工作中应该得到遵守,即使在大流行的情况下。

目的是整理关于通过计算机断层扫描诊断COVID-19肺部病变时减少辐射暴露的潜力的数据。

材料和方法。对PubMed和eLIBRARY科学图书馆中2020年至2022年期间发表的的国内外相关文献进行了分析,搜索查询包括“low dose computed tomography COVID-19”和“низкодозная компьютерная томография COVID-19”(低剂量计算机断层扫描COVID-19)。通过分析标题和摘要评估其与综述主题的相关性后,将出版物纳入综述。还对参考文献列表进行了分析,以确定搜索中遗漏的符合纳入标准的文章。

结果。对已发表的研究进行了,研究已发表的科学著作允许总结关于目前COVID-19肺部病变的辐射诊断和计算机断层扫描的使用的数据,并确定减少辐射剂量的可能方法。

结论。介绍了在胸部计算机断层扫描过程中减少辐射量并保留高质量诊断图像的方法,这些图像可能足以可靠地检测COVID-19征候。减少辐射剂量是获得现实诊断信息的一种有道理的方法,保留将先进计算机化分析技术引入临床实践的可能性。

作者简介

Ivan A. Blokhin

Moscow Center for Diagnostics and Telemedicine

编辑信件的主要联系方式.
Email: BlokhinIA@zdrav.mos.ru
俄罗斯联邦, Moscow

Denis А. Rumyantsev

Moscow Center for Diagnostics and Telemedicine

Email: x.radiology@mail.ru
ORCID iD: 0000-0001-7670-7385
SPIN 代码: 8734-2085
俄罗斯联邦, Moscow

Maria M. Suchilova

Moscow Center for Diagnostics and Telemedicine

Email: SuchilovaMM@zdrav.mos.ru
ORCID iD: 0000-0003-1117-0294
SPIN 代码: 4922-1894
俄罗斯联邦, Moscow

Anna P. Gonchar

Moscow Center for Diagnostics and Telemedicine

Email: GoncharAP@zdrav.mos.ru
ORCID iD: 0000-0001-5161-6540
SPIN 代码: 3513-9531
俄罗斯联邦, Moscow

Olga V. Omelyanskaya

Moscow Center for Diagnostics and Telemedicine

Email: OmelyanskayaOV@zdrav.mos.ru
ORCID iD: 0000-0002-0245-4431
SPIN 代码: 8948-6152
俄罗斯联邦, Moscow

参考

  1. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv. 2020. doi: 10.1101/2020.02.11.20021493
  2. Rubin GD, Ryerson CJ, Haramati LB, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the fleischner society. Radiology. 2020;296(1):172–180. doi: 10.1148/radiol.2020201365
  3. Temporary methodological recommendations prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 12 (09/21/2021). Moscow; 2021. 232 p.
  4. Ng M, Lee EY, Yang J, et al. Imaging profile of the COVID-19 infection: Radiologic findings and literature review. Radiology: Cardiothoracic Imaging. 2020;2(1):e200034. doi: 10.1148/ryct.2020200034
  5. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology. 2020;296(2):E32–E40. doi: 10.1148/radiol.2020200642
  6. Kang Z, Li X, Zhou S. Recommendation of low-dose CT in the detection and management of COVID-2019. Eur Radiolohy. 2020;30(8):4356–4357. doi: 10.1007/s00330-020-06809-6
  7. Morozov SP, Kuzmina ES, Ledekhova NV, et al. Mobilization of the scientific and practical potential of the radiation diagnostics service of Moscow in the COVID-19 pandemic. Digital Diagnostics. 2020;1(1):5–12. (In Russ). doi: 10.17816/DD51043
  8. Pan F, Ye T, Sun P, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295(3):715–721. doi: 10.1148/radiol.2020200370
  9. Lei DP, Fan B, Mao J, et al. The progression of computed tomographic (CT) images in patients with coronavirus disease (COVID-19) pneumonia: Running title: the CT progression of COVID-19 pneumonia. J Infect. 2020;80(6):e30–e31. doi: 10.1016/j.jinf.2020.03.020
  10. Power SP, Moloney F, Twomey M, et al. Computed tomography and patient risk: Facts, perceptions and uncertainties. World J Radiol. 2016;8(12):902–915. doi: 10.4329/wjr.v8.i12.902
  11. Yeung AW. The “As low as reasonably achievable” (ALARA) principle: A brief historical overview and a bibliometric analysis of the most cited publications. Radioprotection. 2019;54(2):103–109. doi: 10.1051/radiopro/2019016
  12. Kalra MK, Homayounieh F, Arru C, et al. Chest CT practice and protocols for COVID-19 from radiation dose management perspective. Eur Radiol. 2020;30(12):6554–6560. doi: 10.1007/s00330-020-07034-x
  13. Krasnov AS, Kabanov DO, Tereshchenko GV. Fundamentals of dosimetry and dose load optimization during multispiral computed tomography. Issues Hematology Oncology Immunopathology Pediatrics. 2018;17(3):127–132. (In Russ).
  14. Singh S, Kalra MK, Thrall JH, Mahesh M. CT radiation dose reduction by modifying primary factors. J Am Coll Radiol. 2011;8(5):369–372. doi: 10.1016/j.jacr.2011.02.001
  15. Zarb F, Rainford L, McEntee MF. Developing optimized CT scan protocols: Phantom measurements of image quality. Radiography. 2011;17(2):109–114. doi: 10.1016/j.radi.2010.10.004
  16. Hilts M, Duzenli C. Image noise in X-ray CT polymer gel dosimetry. J Physics: Conference Series. 2004;3(1):252. doi: 10.1088/1742-6596/3/1/040
  17. Lira D, Padole A, Kalra MK, Singh S. Tube potential and CT radiation dose optimization. Am J Roentgenol. 2015;204(1):W4–W10. doi: 10.2214/AJR.14.13281
  18. Reid J, Gamberoni J, Dong F, Davros W. Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: Is it best to base parameter selection on object circumference? AJR Am J Roentgenol. 2010;195(4):1015–1020. doi: 10.2214/AJR.09.3862
  19. Khoramian D, Sistani S, Firouzjah RA. Assessment and comparison of radiation dose and image quality in multi-detector CT scanners in non-contrast head and neck examinations. Paul J Radiol. 2019;84:61–67. doi: 10.5114/pjr.2019.82743
  20. Mahesh M, Scatarige JC, Cooper J, Fishman EK. Dose and pitch relationship for a particular multislice CT scanner. AJR Am J Roentgenol. 20011;77(6):1273–1275. doi: 10.2214/ajr.177.6.1771273
  21. Tack D, Gevenois PA, Abada H. Radiation dose from adult and pediatric multidetector computed tomography. Springer. 2007. doi: 10.1007/978-3-540-68575-3
  22. Greffier J, Pereira F, Hamard A, et al. Effect of tin filter-based spectral shaping CT on image quality and radiation dose for routine use on ultralow-dose CT protocols: A phantom study. Diagnostic Interventional Imaging. 2020;101(6):373–381. doi: 10.1016/j.diii.2020.01.002
  23. Paul J, Krauss B, Banckwitz R, et al. Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner: Study with an anthropomorphic and water phantom // Eur J Radiology. 2012;81(5):e699–e703. doi: 10.1016/j.ejrad.2011.01.078
  24. Hashemi S, Mehrez H, Cobbold RS, Paul NS. Optimal image reconstruction for detection and characterization of small pulmonary nodules during low-dose CT. Eur Radiol. 2014;24(6):1239–1250. doi: 10.1007/s00330-014-3142-9
  25. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Physica Medica. 2012;28(2):94–108. doi: 10.1016/j.ejmp.2012.01.003
  26. Shiri I, Akhavanallaf A, Sanaat A, et al. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network. Eur Radiology. 2021;31(3):1420–1431. doi: 10.1007/s00330-020-07225-6
  27. Shan H, Padole A, Homayounieh F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Machine Intelligence. 2019;1(6):269–276. doi: 10.1038/s42256-019-0057-9
  28. Blokhin I, Gombolevskiy V, Chernina V, et al. Inter-observer agreement between low-dose and standard-dose CT with soft and sharp convolution kernels in COVID-19 pneumonia. J Clin Med. 2022;11:669. doi: 10.3390/jcm11030669
  29. Filatova DA, Sinitsyn VE, Mershina EA. The possibilities of reducing radiation exposure during computed tomography to assess changes in the lungs characteristic of COVID-19: The use of adaptive statistical iterative reconstruction. Digital Diagnostics. 2021;2(2):94–104. (In Russ). doi: 10.17816/DD62477
  30. Afshar P, Rafiee MJ, Naderkhani F, et al. Human-level COVID-19 diagnosis from low-dose CT scans using a two-stage time-distributed capsule network. Sci Rep. 2022;12(1):4827. doi: 10.1038/s41598-022-08796-8
  31. Fukumoto W, Nakamura Y, Yoshimura K, et al. Triaging of COVID-19 patients using low dose chest CT: Incidence and factor analysis of lung involvement on CT images. J Infect Chemother. 2022;28(6):797–801. doi: 10.1016/j.jiac.2022.02.025
  32. Bieba CM, Desmet JN, Dubbeldam A, et al. Radiological findings in low-dose CT for COVID-19 pneumonia in 182 patients: Correlation of signs and severity with patient outcome. Medicine (Baltimore). 2022;101(9):e28950. doi: 10.1097/MD.0000000000028950
  33. Piqueras BM, Casajús EA, Iriarte UC, et al. Low-dose chest CT for preoperative screening for SARS-CoV-2 infection. Radiologia (Engl Ed). 2022;64(4):317–323. doi: 10.1016/j.rxeng.2021.11.004
  34. Thieß HM, Bressem KK, Adams L, et al. Do submillisievert-chest CT protocols impact diagnostic quality in suspected COVID-19 patients? Acta Radiol Open. 2022;11(1):20584601211073864. doi: 10.1177/20584601211073864
  35. Greffier J, Hoballah A, Sadate A, et al. Ultra-low-dose chest CT performance for the detection of viral pneumonia patterns during the COVID-19 outbreak period: A monocentric experience. Quant Imaging Med Surg. 2021;11(7):3190–3199. doi: 10.21037/qims-20-1176
  36. Karakaş HM, Yıldırım G, Çiçek ED. The reliability of low-dose chest CT for the initial imaging of COVID-19: Comparison of structured findings, categorical diagnoses and dose levels. Diagn Interv Radiol. 2021;27(5):607–614. doi: 10.5152/dir.2021.20802
  37. Finance J, Zieleskewicz L, Habert P, et al. Low dose chest CT and lung ultrasound for the diagnosis and management of COVID-19. J Clinic Med. 2021;10(10):2196. doi: 10.3390/jcm10102196
  38. Desmet J, Biebaû C, De Wever W, et al. Performance of low-dose chest CT as a triage tool for suspected COVID-19 patients. J Belgian Society Radiology. 2021;105(1):9. doi: 10.5334/jbsr.2319
  39. Aslan S, Bekçi T, Çakır İM, et al. Diagnostic performance of low-dose chest CT to detect COVID-19: A Turkish population study. Diagn Interv Radiol. 2021;27(2):181–187. doi: 10.5152/dir.2020.20350
  40. Stoleriu MG, Gerckens M, Obereisenbuchner F, et al. Automated quantitative thin slice volumetric low dose CT analysis predicts disease severity in COVID-19 patients. Clin Imaging. 2021;79:96–101. doi: 10.1016/j.clinimag.2021.04.008
  41. Bai L, Zhou J, Shen C, et al. Assessment of radiation doses and image quality of multiple low-dose CT exams in COVID-19 clinical management. Chin J Acad Radiol. 2021;4(4):257–261. doi: 10.1007/s42058-021-00083-1
  42. Agostini A, Borgheresi A, Carotti M, et al. Third-generation iterative reconstruction on a dual-source, high-pitch, low-dose chest CT protocol with tin filter for spectral shaping at 100 kV: A study on a small series of COVID-19 patients. Radiol Med. 2021;126(3):388–398. doi: 10.1007/s11547-020-01298-5
  43. Zali A, Sohrabi MR, Mahdavi A, et al. Correlation between low-dose chest computed tomography and RT-PCR results for the diagnosis of COVID-19: A report of 27,824 cases in Tehran, Iran. Acad Radiol. 2021;28(12):1654–1661. doi: 10.1016/j.acra.2020.09.003
  44. Argentieri G, Bellesi L, Pagnamenta A, et al. Diagnostic yield, safety, and advantages of ultra-low dose chest CT compared to chest radiography in early stage suspected SARS-CoV-2 pneumonia: A retrospective observational study. Medicine (Baltimore). 2021;100(21):e26034. doi: 10.1097/MD.0000000000026034
  45. Leger T, Jacquier A, Barral PA, et al. Low-dose chest CT for diagnosing and assessing the extent of lung involvement of SARS-CoV-2 pneumonia using a semi quantitative score. PLoS One. 2020;15(11):e0241407. doi: 10.1371/journal.pone.0241407
  46. Hamper CM, Fleckenstein FN, Büttner L, et al. Submillisievert chest CT in patients with COVID-19: experiences of a German Level-I center. Eur J Radiol Open. 2020;7:100283. doi: 10.1016/j.ejro.2020.100283
  47. Li J, Wang X, Huang X, et al. Application of Care Dose 4D combined with Karl 3D technology in the low dose computed tomography for the follow-up of COVID-19. BMC Med Imaging. 2020;20(1):56. doi: 10.1186/s12880-020-00456-5
  48. Dangis A, Gieraerts C, De Bruecker Y, et al. Accuracy and reproducibility of low-dose submillisievert chest CT for the diagnosis of COVID-19. Radiol Cardiothorac Imaging. 2020;2(2):e200196. doi: 10.1148/ryct.2020200196
  49. Radpour A, Bahrami-Motlagh H, Taaghi MT, et al. COVID-19 evaluation by low-dose high resolution CT scans protocol. Acad Radiol. 2020;27(6):901. doi: 10.1016/j.acra.2020.04.016
  50. Tofighi S, Najafi S, Johnston SK, Gholamrezanezhad A. Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge. Emerg Radiol. 2020;27(6):601–605. doi: 10.1007/s10140-020-01784-3
  51. Tabatabaei SM, Talari H, Gholamrezanezhad A, et al. A low-dose chest CT protocol for the diagnosis of COVID-19 pneumonia: A prospective study. Emerg Radiol. 2020;27(6):607–615. doi: 10.1007/s10140-020-01838-6
  52. Schulze-Hagen M, Hübel C, Meier-Schroers M, et al. Low-dose chest CT for the diagnosis of COVID-19: A systematic, prospective comparison with PCR. Dtsch Arztebl Int. 2020;117(22-23):389–395. doi: 10.3238/arztebl.2020.0389
  53. Zhao Y, Wang Y, Duan W, et al. Low-dose chest CT presentation and dynamic changes in patients with novel coronavirus disease 2019. Radiol Infect Dis. 2020;7(4):186–194. doi: 10.1016/j.jrid.2020.08.001
  54. Castelli M, Maurin A, Bartoli A, et al. Prevalence and risk factors for lung involvement on low-dose chest CT (LDCT) in a paucisymptomatic population of 247 patients affected by COVID-19. Insights Imaging. 2020;11(1):117. doi: 10.1186/s13244-020-00939-7
  55. Morozov SP, Kuzmina ES, Vetsheva NN, et al. Moscow screening: screening of lung cancer using low-dose computed tomography. Problems Social Hygiene Healthcare History Med. 2019;27(S):630–636. (In Russ). doi: 10.32687/0869-866X-2019-27-si1-630-636
  56. Patent RUS No. 2701922 C1. Gombolevsky VA, Morozov SP, Chernina VYu, et al. A method for screening lung cancer using ultra-low-dose computed tomography in patients with a body weight of up to 69 kg. mode: Available from: https://patents.google.com/patent/RU2701922C1/ru. Accessed: 15.01.2023.
  57. Gombolevskiy V, Morozov S, Chernina V, et al. A phantom study to optimise the automatic tube current modulation for chest CT in COVID-19. Eur Radiol Exp. 2021;5(1):21. doi: 10.1186/s41747-021-00218-0
  58. Kim YK, Lee BE, Lee SJ, et al. Ultra-low-dose CT of the thorax using iterative reconstruction: Evaluation of image quality and radiation dose reduction. Am J Roentgenol. 2015;204(6):1197–1202. doi: 10.2214/AJR.14.13629
  59. Blokhin IA, Gonchar AP, Kotenko MR, et al. The influence of body mass index on the reliability of the 0–4 CT scale: Comparison of computed tomography protocols. Digital Diagnostics. 2022;3(2):108–118. (In Russ). doi: 10.17816/DD104358
  60. Gierada DS, Bierhals AJ, Choong CK, et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification. Academic Radiology. 2010;17(2):146–156. doi: 10.1016/j.acra.2009.08.007
  61. Gao Y, Hua M, Lv J, et al. Reproducibility of radiomic features of pulmonary nodules between low-dose CT and conventional-dose CT. Quant Imaging Med Surg. 2022;12(4):2368–2377. doi: 10.21037/qims-21-609
  62. Blokhin IA, Solovev AV, Vladzymyrskiy AV, et al. Automated analysis of lung lesions in COVID-19: Comparison of standard and low-dose CT. SJCEM. 2023;37(4):114–123. (In Russ). doi: 10.29001/2073-8552-2022-37-4-114-123
  63. Bak SH, Kim JH, Jin H, et al. Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison. Eur Radiol. 2020;30(12):6779–6787. doi: 10.1007/s00330-020-07020-3

补充文件

附件文件
动作
1. JATS XML
2. 图2。减少了5倍的辐射量。患者,59岁,身体质量指数为29 kg/m2。带软组织过滤器的计算机断层扫描(有效剂量为9.7 mSv),带软组织过滤器的低剂量计算机断层扫描(有效剂量为2.1 mSv)。左肺上叶有一个末梢磨玻璃样病灶。

下载 (199KB)
3. 图3。减少了1.5倍的辐射量。患者,44岁,身体质量指数为46 kg/m2。带软组织过滤器的计算机断层扫描(有效剂量为15.3 mSv),带软组织过滤器的低剂量计算机断层扫描(有效剂量为10.5 mSv)。双肺末梢磨玻璃样病灶。

下载 (191KB)
4. 图1。COVID-19专门的低剂量CT扫描协议(SD=36)与标准CT扫描和用于肺癌筛查低剂量CT扫描的比较。辐射暴露信息和肺下部和中部区域水平的轴向模型断层图。用于肺癌筛查的低剂量计算机断层扫描是根据卫生条例预防措施的辐射暴露限制开发的,并且具有最低的信噪比。为COVID-19制定的低剂量计算机断层扫描协议考虑到磨玻璃样的密度测试特性,同时大幅降低辐射暴露。

下载 (422KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##