在放射诊断中监测患者剂量负荷的软件的能力

封面图片

如何引用文章

详细

使用电离辐射的诊断程序(计算机断层扫描、介入程序、核医学的应用等)数量的增加导致辐射负载的增加,从而导致患者集体和个人辐射剂量的增加。

诊断测试的管理和剂量优化问题在国际专业界受到了广泛关注。全球实践借助用于监测患者剂量的软件解决了这一问题,以便在进行各种类型的诊断研究时自动收集、分析和计算患者剂量。该软件允许从X射线放射程序中获取患者剂量数据和有关研究的详细信息,跟踪患者的总累积剂量,进行设备、放射技师、医疗机构的统计数据,并分析收集的剂量数据,得出剂量读数和检查条件的因果关系,确保设备的效率得到监测。

本文调查了全球可用的患者剂量监测软件的基本能力。确定了实际工作所需软件功能的关键技术要求。

现代剂量监测软件具有广泛的功能,可自动收集、存储和控制放射科患者剂量负荷数据。患者剂量监测软件有助于提高所提供的医疗服务质量,确保患者安全,并优化医疗机构的工作。

作者简介

Maria P. Shatenok

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: maria.prusova@gmail.com
ORCID iD: 0000-0001-9217-7011
SPIN 代码: 5165-7113
俄罗斯联邦, Moscow

Sergey A. Ryzhov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: s.ryzhov@npcmr.ru
ORCID iD: 0000-0002-0640-7368
SPIN 代码: 6595-4011
俄罗斯联邦, Moscow; Moscow

Zoya A. Lantukh

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: z.lantukh@npcmr.ru
ORCID iD: 0000-0001-6623-9610
SPIN 代码: 5486-6496
俄罗斯联邦, Moscow

Yuliya V. Druzhinina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Russian Medical Academy of Continuous Professional Education

Email: yu.druzhinina@npcmr.ru
ORCID iD: 0000-0002-3230-3722
SPIN 代码: 1973-2848
俄罗斯联邦, Moscow; Moscow

Kirill V. Tolkachev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

编辑信件的主要联系方式.
Email: k.tolkachev@npcmr.ru
ORCID iD: 0000-0001-8871-8700
SPIN 代码: 3196-7497
俄罗斯联邦, Moscow

参考

  1. Parakh A, Kortesniemi M, Schindera ST. CT radiation dose management: a comprehensive optimization process for improving patient safety. Radiology. 2016;280(3):663–673. doi: 10.1148/radiol.2016151173
  2. Druzhinina YV, Ryzhov SA, Vodovatov AV, et al. COVID-19: changes in CT radiation burden across Moscow medical facilities. Digital Diagnostics. 2022;3(1):5–15. (In Russ). doi: 10.17816/DD87628
  3. Morozov SP, Soldatov IV, Lantukh ZA, et al. Characteristics of the dose load on patients in medical organizations in Moscow [Internet]. (In Russ). Available from: https://www.elibrary.ru/item.asp?id=42395967. Accessed: 15.03.2022.
  4. Rehani MM, Yang K, Melick ER, et al. Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol. 2020;30(4):1828–1836. doi: 10.1007/s00330-019-06523-y
  5. Brenner DJ, Hall EJ. Computed tomography an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–2284. doi: 10.1056/NEJMra072149
  6. Pasov VV, Korotkov VA. Surgical treatment of early radiation ulcer formed after endovascular intervention. Radiation Risk. 2020;29(4):158–163. (In Russ). doi: 10.21870/0131-3878-2020-29-4-158-163
  7. Ivanov VA, Belyakin SA, Permyakov SV, et al. Local radiation damage to the skin and thoracic vertebrae after endovascular angioplasty of the coronary arteries. Diagnostic Int Radiol. 2010;29(4):73–76. (In Russ).
  8. Ryzhov SA. Radiation accidents and errors in medicine. Terms and definitions. Med Physics. 2019;81(1):73–90. (In Russ).
  9. European Commission. Council Directive 2013/59/EURATOM of December 5, 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJ of the EU. 2014;13(57):1–80. Available from: http://eur-lex.europa.eu/eli/dir/2013/59/oj. Accessed: 15.03.2022.
  10. Loose RW, Vano E, Mildenberger P, et al. Radiation dose management systems-requirements and recommendations for users from the ESR EuroSafe Imaging initiative. Eur Radiol. 2021;31(4):2106–2114. doi: 10.1007/s00330-020-07290-x
  11. Lantukh ZA, Druzhinina YuV, Vodovatov AV, et al. The use of reference diagnostic levels for adult patients in radiation diagnostics. Ed. by S.P. Morozov. Vol. 86. Moscow: Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; 2020. 36 p. (Series: Best practices of radiation and Instrumental diagnostics) (In Russ).
  12. Vañó E, Miller DL, Martin CJ, et al. ICRP Publication 135: diagnostic reference levels in medical imaging. Ann ICRP. 201746(1):1–144. doi: 10.1177/0146645317717209
  13. Anonymous, Size-specific Dose Estimates (SSDE) in Pediatric and Adult Body CT examinations. In: American Association of Physicists in Medicine, TG-204. MD: AAPM; 2011.
  14. Habibzadeh MA, Ay MR, Asl AR, et al. Impact of miscentering on patient dose and image noise in x-ray CT imaging: phantom and clinical studies. Phys Med. 2012;28(3):191–199. doi: 10.1016/j.ejmp.2011.06.002
  15. Barreto I, Lamoureux R, Olguin C, et al. Impact of patient centering in CT on organ dose and the effect of using a positioning compensation system: Evidence from OSLD measurements in postmortem subjects. J Appl Clin Med Phys. 2019;20(6):141–151. doi: 10.1002/acm2.12594
  16. Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014;59(18):R233–R302. doi: 10.1088/0031-9155/59/18/R233
  17. Iriuchijima A, Fukushima Y, Ogura A. Comparison of organ dose calculation using monte carlo simulation and in-phantom dosimetry in CT examination. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(2):166–171. doi: 10.6009/jjrt.2018_JSRT_74.2.166
  18. Fitousi N. Patient dose monitoring systems: a new way of managing patient dose and quality in the radiology department. Phys Med. 2017;44:212–221. doi: 10.1016/j.ejmp.2017.06.013
  19. Tsalafoutas IA, Hassan Kharita M, Al-Naemi H, Kalra MK. Radiation dose monitoring in computed tomography: status, options and limitations. Phys Med. 2020;79:1–15. doi: 10.1016/j.ejmp.2020.08.020
  20. Heilmaier C, Zuber N, Bruijns B, et al. Implementation of dose monitoring software in the clinical routine: first experiences. Rofo. 2016;188(1):82–88. doi: 10.1055/s-0041-106071
  21. Nicol RM, Wayte SC, Bridges AJ, Koller CJ. Experiences of using a commercial dose management system (GE DoseWatch) for CT examinations. Br J Radiol. 2016;89(1057):20150617. doi: 10.1259/bjr.20150617

补充文件

附件文件
动作
1. JATS XML
2. 图1。Dose Report和RDSR示例。

下载 (150KB)
3. 图2。患者剂量监测软件的典型连接示例。 注:MIS——医疗信息系统;RIS——代表放射信息系统。

下载 (314KB)
4. 图3。数据表示、DoseTrack、Sectra的表格视图。

下载 (317KB)
5. 图4。患者剂量监测软件的参考诊断水平图,Radimetrics,Bayer。

下载 (273KB)
6. 图7。通过DLP值级别形成信号警报,DoseWise Portal,Philips。

下载 (230KB)
7. 图8。CT参数、Radimetrics、Bayer的颜色指示。

下载 (268KB)
8. 图9。患者剂量历史,DoseWise Portal,飞利浦。

下载 (166KB)
9. 图10。设置本地参考诊断水平、DoseTrack、Sectra。

下载 (137KB)
10. 图11。按DLP范围和CT扫描仪型号分布的检查数量,每台扫描仪的检查总数,DoseWatch,GE。

下载 (427KB)
11. 图12。包含十个最大剂量研究的示例表,DoseWatch,GE。

下载 (419KB)
12. 图13。计算机断层扫描患者中心评估,DoseWatch,GE

下载 (183KB)
13. 图14。介入手术中皮肤峰值剂量的监测和优化,Radimetrics, Bayer。

下载 (214KB)
14. 图15。患者有效器官剂量分析,DoseWatch,GE。

下载 (205KB)
15. 图5。通过参数DLP、Teamplay、Siemens Healthineers对剂量分布进行统计分析。

下载 (153KB)
16. 图6。以分钟为单位的患者间隔直方图,Teamplay,Siemens Healthineers。

下载 (168KB)

版权所有 © Eco-Vector, 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##