DIXON序列在磁共振成像中用于脂肪分数定量评估的潜力:一项体模研究

封面图片

如何引用文章

全文:

详细

论证。磁共振成像获得的定量指标的准确性具有重要的科学和实际意义。对扫描参数的控制以及脂肪分数评估通用方法的标准化,是当前影像诊断工作中的关键任务之一。

目的: 通过体模建模实验,评估采用标准DIXON脉冲序列进行脂肪分数定量测量的可行性。

方法。开展一项多中心、横断面、非盲实验研究。为模拟不同脂肪浓度的物质,选择了 “油包水”型直接乳液。将乳液装入试管后置于专用圆柱形体模中。乳液由植物油混合物制成,脂肪分数范围为10–60%。在多家医疗机构使用不同厂商和磁场强度的磁共振成像设备(Optima MR450w 1.5T、MAGNETOM Skyra 3T、Ingenia 1.5T和Ingenia Achieva dStream 3.0T)进行扫描。依据通用计算公式,通过信号强度计算脂肪分数。对测得的脂肪分数浓度与设定值之间的线性关系进行了回归分析,同时采用F检验评估测量结果的变异性。

结果。利用体模建模,在不同型号的磁共振成像设备上,对DIXON脉冲序列按相关公式进行脂肪分数定量测量的性能进行了验证。对脂肪分数定量测量准确性的评估结果显示,其测得值与设定浓度之间仅存在较弱的线性关系。此外,在部分磁共振成像设备中发现了具有统计学显著性的偏倚,幅度超过5%。测量重现性评估显示,不同型号磁共振成像设备之间以及同一型号设备内部的脂肪分数变异性存在差异。

结论。研究结果证实,只有在进行体模扫描验证之后,方可依据相关公式使用DIXON脉冲序列进行脂肪分数的定量计算。体模的应用可实现对磁共振成像设备的质量控制与校准,从而使脂肪的定量测量更加可靠且具备更广泛的适用性。

作者简介

Olga Yu. Panina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Moscow City Hospital named after S.S. Yudin

编辑信件的主要联系方式.
Email: olgayurpanina@gmail.com
ORCID iD: 0000-0002-8684-775X
SPIN 代码: 5504-8136

MD

俄罗斯联邦, 24 Petrovka st, bldg 1, Moscow, 127051; Moscow

Alexander I. Gromov

Russian University of Medicine; National Medical Research Radiological Center

Email: gai8@mail.ru
ORCID iD: 0000-0002-9014-9022
SPIN 代码: 6842-8684

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow; Moscow

Ekaterina S. Ahkmad

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: akhmades@zdrav.mos.ru
ORCID iD: 0000-0002-8235-9361
SPIN 代码: 5891-4384
俄罗斯联邦, 24 Petrovka st, bldg 1, Moscow, 127051

Dmitry S. Semenov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: semenovds4@zdrav.mos.ru
ORCID iD: 0000-0002-4293-2514
SPIN 代码: 2278-7290

Cand. Sci. (Engineering)

俄罗斯联邦, 24 Petrovka st, bldg 1, Moscow, 127051

Stanislav A. Kivasev

Central Clinical Hospital “RZD-Medicine”

Email: Kivasev@yahoo.com
ORCID iD: 0000-0003-1160-5905
SPIN 代码: 9883-3406

MD

俄罗斯联邦, Moscow

Alexey V. Petraikin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: PetryajkinAV@zdrav.mos.ru
ORCID iD: 0000-0003-1694-4682
SPIN 代码: 6193-1656

MD, Dr. Sci. (Medicine)

俄罗斯联邦, 24 Petrovka st, bldg 1, Moscow, 127051

Valentin A. Nechaev

Moscow City Hospital named after S.S. Yudin

Email: NechaevVA1@zdrav.mos.ru
ORCID iD: 0000-0002-6716-5593
SPIN 代码: 2527-0130

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

参考

  1. Outwater EK, Blasbalg R, Siegelman ES, Vala M. Detection of lipid in abdominal tissues with opposed-phase gradient-echo images at 1.5 T: techniques and diagnostic importance. RadioGraphics. 1998;18(6):1465–1480. doi: 10.1148/radiographics.18.6.9821195
  2. Panina OYu, Gromov AI, Akhmad ES, et al. Accuracy of fat fraction estimation using DIXON: experimental phantom study. Medical Visualization. 2022;26(4):147–158. doi: 10.24835/1607-0763-1160 EDN: JDIWXI
  3. Bray TJP, Chouhan MD, Punwani S, et al. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. The British Journal of Radiology. 2017;91(1089):20170344. doi: 10.1259/bjr.20170344
  4. Bhat V, Velandai S, Belliappa V, et al. Quantification of liver fat with mDIXON magnetic resonance imaging, comparison with the computed tomography and the biopsy. Journal of Clinical and Diagnostic Research. 2017;11(7):TC06–TC10. doi: 10.7860/JCDR/2017/26317.10234
  5. Bainbridge A, Bray TJP, Sengupta R, Hall-Craggs MA. Practical approaches to bone marrow fat fraction quantification across magnetic resonance imaging platforms. Journal of Magnetic Resonance Imaging. 2020;52(1):298–306. doi: 10.1002/jmri.27039 EDN: WCMNIG
  6. Gulani V, Seiberlich N. Quantitative MRI: rationale and challenges. Advances in Magnetic Resonance Technology and Applications. 2020;1:xxxvii–li. doi: 10.1016/B978-0-12-817057-1.00001-9
  7. Vasilev YuA, Semenov DS, Akhmad ES, et al. A method for assessing the effect of metal artifact reduction algorithms on quantitative characteristics of CT images. Biomedical Engineering. 2020;54(4):285–288. doi: 10.1007/s10527-020-10023-5 EDN: YEHJTT
  8. Morozov S, Sergunova K, Petraikin A, et al. Diffusion processes modeling in magnetic resonance imaging. Insights into Imaging. 2020;11(1):60. doi: 10.1186/s13244-020-00863-w EDN: QEFDVK
  9. Sergunova KA. Using siloxane-based inverse emulsions to control the measured diffusion coefficient in magnetic resonance imaging. Biomedical Engineering. 2019;(5):22–25. (In Russ.) EDN: HUPRTQ
  10. Petraikin AV, Ivanova DV, Akhmad ES, et al. Phantom modeling for selection of optimum reconstruction filters in the quantitative computer tomography. Meditsinskaya fizika. 2020;(2):34–44. EDN: TLLBVQ
  11. Vasilev YuA, Cherkasskaya MV, Akhmad ES, et al. Phantom modelling in magnetic resonance imaging: an overview of materials for simulating tissue relaxation time (review). Polymer materials and technologies. 2023;9(4):6–20. doi: 10.32864/polymmattech-2023-9-4-6-20 EDN: TCSKRR
  12. van Vucht N, Santiago R, Lottmann B, et al. The Dixon technique for MRI of the bone marrow. Skeletal Radiology. 2019;48(12):1861–1874. doi: 10.1007/s00256-019-03271-4
  13. Gromov AI, Gorinov AV, Galljamov EA. Mesenteric chillous lymphangioma. Visualization features on opposed-phase MR images. Medical Visualization. 2019;23(4):86–92. doi: 10.24835/1607-0763-2019-4-86-92 EDN: UCRGCC
  14. Zhao Y, Huang M, Ding J, et al. Prediction of abnormal bone density and osteoporosis from lumbar spine MR using modified dixon quant in 257 subjects with quantitative computed tomography as reference. Journal of Magnetic Resonance Imaging. 2018;49(2):390–399. doi: 10.1002/jmri.26233
  15. Maeder Y, Dunet V, Richard R, et al. Bone marrow metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images. Radiology. 2018;286(3):948–959. doi: 10.1148/radiol.2017170325
  16. Chow LTC, Ng AWH, Wong SKC. Focal nodular and diffuse haematopoietic marrow hyperplasia in patients with underlying malignancies: a radiological mimic of malignancy in need of recognition. Clinical Radiology. 2017;72(3):265.e7–265.e23. doi: 10.1016/j.crad.2016.10.015
  17. Omoumi P. Update on Advances in Musculoskeletal Magnetic Resonance Imaging. Seminars in Musculoskeletal Radiology. 2015;19(04):319–320. doi: 10.1055/s-0035-1565876
  18. Pezeshk P, Alian A, Chhabra A. Role of chemical shift and Dixon based techniques in musculoskeletal MR imaging. European Journal of Radiology. 2017;94:93–100. doi: 10.1016/j.ejrad.2017.06.011
  19. Fukuzawa K, Hayashi T, Takahashi J, et al. Evaluation of six-point modified dixon and magnetic resonance spectroscopy for fat quantification: a fat–water–iron phantom study. Radiological Physics and Technology. 2017;10(3):349–358. doi: 10.1007/s12194-017-0410-9

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phantom: a — external appearance of the phantom; b — external appearance of a set of test tubes with prepared emulsions.

下载 (156KB)
3. Fig. 2. Installation of the phantom and conducting the experiment.

下载 (95KB)
4. Fig. 3. Magnetic resonance images of the phantom: a — axial scan of the phantom in Fat mode demonstrating the installation of a circular region of interest; b — coronal scan of the phantom with levels at which signal intensity measurements were made. ROI — region of interest; D — diameter; S — area.

下载 (125KB)
5. Fig. 4. Results of determining the concentration of fat on various magnetic resonance tomographs using Dixon sequences and calculations according to the formulas: a — the calculation is performed using in-phase and antiphase images (1); b — the calculation was performed using water- and fat-weighted images (2). GE Optima — Optima® MR450w 1.5 T (General Electric Healthcare, United States of America); Philips Achieva — Ingenia® Achieva 3.0 T (Philips Healthcare, Netherlands); Philips Ingenia — Ingenia® 3 T (Philips Healthcare, Netherlands); Siemens Skyra — MAGNETOM® Skyra 3 T (Siemens Healthcare, Germany).

下载 (319KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».