Analyzing the Efficiency of Segment Boundary Detection Using Neural Networks


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

—This paper describes the architecture of a neural network for edge detection. Different filters for first-layer neurons are compared. Neural network learning based on a cosine measure algorithm shows much worse results than an error backpropagation algorithm. Optimal parameters for the first-layer neuron operation are given. The proposed architecture fulfills the stated tasks on edge selection.

作者简介

A. Kugaevskikh

Novosibirsk State Technical University; Novosibirsk State University; Institute of Automation and Electrometry, Siberian Branch

编辑信件的主要联系方式.
Email: a-kugaevskikh@yandex.ru
俄罗斯联邦, pr. Karla Marksa 20, Novosibirsk, 630073; ul. Pirogova 1, Novosibirsk, 630090; pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. Sogreshilin

Novosibirsk State University

Email: a-kugaevskikh@yandex.ru
俄罗斯联邦, ul. Pirogova 1, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019