Analyzing the Efficiency of Segment Boundary Detection Using Neural Networks


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

—This paper describes the architecture of a neural network for edge detection. Different filters for first-layer neurons are compared. Neural network learning based on a cosine measure algorithm shows much worse results than an error backpropagation algorithm. Optimal parameters for the first-layer neuron operation are given. The proposed architecture fulfills the stated tasks on edge selection.

Sobre autores

A. Kugaevskikh

Novosibirsk State Technical University; Novosibirsk State University; Institute of Automation and Electrometry, Siberian Branch

Autor responsável pela correspondência
Email: a-kugaevskikh@yandex.ru
Rússia, pr. Karla Marksa 20, Novosibirsk, 630073; ul. Pirogova 1, Novosibirsk, 630090; pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. Sogreshilin

Novosibirsk State University

Email: a-kugaevskikh@yandex.ru
Rússia, ul. Pirogova 1, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019