Analyzing the Efficiency of Segment Boundary Detection Using Neural Networks
- 作者: Kugaevskikh A.V.1,2,3, Sogreshilin A.A.2
-
隶属关系:
- Novosibirsk State Technical University
- Novosibirsk State University
- Institute of Automation and Electrometry, Siberian Branch
- 期: 卷 55, 编号 4 (2019)
- 页面: 414-422
- 栏目: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/212827
- DOI: https://doi.org/10.3103/S8756699019040137
- ID: 212827
如何引用文章
详细
—This paper describes the architecture of a neural network for edge detection. Different filters for first-layer neurons are compared. Neural network learning based on a cosine measure algorithm shows much worse results than an error backpropagation algorithm. Optimal parameters for the first-layer neuron operation are given. The proposed architecture fulfills the stated tasks on edge selection.
作者简介
A. Kugaevskikh
Novosibirsk State Technical University; Novosibirsk State University; Institute of Automation and Electrometry, Siberian Branch
编辑信件的主要联系方式.
Email: a-kugaevskikh@yandex.ru
俄罗斯联邦, pr. Karla Marksa 20, Novosibirsk, 630073; ul. Pirogova 1, Novosibirsk, 630090; pr. Akademika Koptyuga 1, Novosibirsk, 630090
A. Sogreshilin
Novosibirsk State University
Email: a-kugaevskikh@yandex.ru
俄罗斯联邦, ul. Pirogova 1, Novosibirsk, 630090
补充文件
