Method of Reversible Compression of Frames of Measurement Data Based on Parquet Partition
- Autores: Bogachev I.V.1, Levenets A.V.1, Chye E.U.1
- 
							Afiliações: 
							- Pacific National University
 
- Edição: Volume 54, Nº 3 (2018)
- Páginas: 256-261
- Seção: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/212449
- DOI: https://doi.org/10.3103/S875669901803007X
- ID: 212449
Citar
Resumo
Bit space representation of measurement data is considered. A method and its associated algorithm for reversible geometric compression of measurement data frames are proposed. The algorithm is based on the conversion of a data frame into bit form with subsequent mapping onto a plane and partition into strictly homogeneous regions. Experimental results are presented showing that the proposed algorithm provides high overall compression efficiency..
Palavras-chave
Sobre autores
I. Bogachev
Pacific National University
							Autor responsável pela correspondência
							Email: ilya.bogachev.pnu@mail.ru
				                					                																			                												                	Rússia, 							ul. Tikhookeanskaya 136, Khabarovsk, 680035						
A. Levenets
Pacific National University
														Email: ilya.bogachev.pnu@mail.ru
				                					                																			                												                	Rússia, 							ul. Tikhookeanskaya 136, Khabarovsk, 680035						
E. Chye
Pacific National University
														Email: ilya.bogachev.pnu@mail.ru
				                					                																			                												                	Rússia, 							ul. Tikhookeanskaya 136, Khabarovsk, 680035						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					