Neural network classification of hyperspectral images on the basis of the Hilbert–Huang transform


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The method of image classification with its preliminary transformation to principal components and with the use of the Hilbert–Huang transform is studied by an example of neural network classification of a hyperspectral image. The efficiency of the method is demonstrated through comparisons with traditional methods of neural network classification with the use of spectral components and principal components without involving spatial information as features. Radial-basis and complex neural networks are used for classification.

Sobre autores

E. Nezhevenko

Institute of Automation and Electrometry, Siberian Branch

Autor responsável pela correspondência
Email: nejevenko@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

A. Feoktistov

Institute of Automation and Electrometry, Siberian Branch

Email: nejevenko@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

O. Dashevskii

Institute of Automation and Electrometry, Siberian Branch

Email: nejevenko@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017