Neural network classification of hyperspectral images on the basis of the Hilbert–Huang transform
- Авторы: Nezhevenko E.S.1, Feoktistov A.S.1, Dashevskii O.Y.1
-
Учреждения:
- Institute of Automation and Electrometry, Siberian Branch
- Выпуск: Том 53, № 2 (2017)
- Страницы: 165-170
- Раздел: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/212104
- DOI: https://doi.org/10.3103/S8756699017020091
- ID: 212104
Цитировать
Аннотация
The method of image classification with its preliminary transformation to principal components and with the use of the Hilbert–Huang transform is studied by an example of neural network classification of a hyperspectral image. The efficiency of the method is demonstrated through comparisons with traditional methods of neural network classification with the use of spectral components and principal components without involving spatial information as features. Radial-basis and complex neural networks are used for classification.
Об авторах
E. Nezhevenko
Institute of Automation and Electrometry, Siberian Branch
Автор, ответственный за переписку.
Email: nejevenko@iae.nsk.su
Россия, pr. Akademika Koptyuga 1, Novosibirsk, 630090
A. Feoktistov
Institute of Automation and Electrometry, Siberian Branch
Email: nejevenko@iae.nsk.su
Россия, pr. Akademika Koptyuga 1, Novosibirsk, 630090
O. Dashevskii
Institute of Automation and Electrometry, Siberian Branch
Email: nejevenko@iae.nsk.su
Россия, pr. Akademika Koptyuga 1, Novosibirsk, 630090
Дополнительные файлы
