Использование рекомбинантных белков в современной пищевой биотехнологии: обзор предметного поля

Обложка

Цитировать

Полный текст

Аннотация

Введение: С 1994 года динамичное развитие биотехнологии и широкое применение рекомбинантных ферментов привели к новым технологическим решениям в пищевом производстве. Современные технологии позволяют производить сахар, хлеб, пиво, сыр, колбасы и другие продукты с использованием биотехнологических процессов и промышленных пищевых ферментов. Биопродукция рекомбинантных белков заменила природные ферменты, предоставляя ферменты с улучшенными каталитическими функциями, стабильностью и расширенным диапазоном условий функционирования. Использование этих  ферментов оказались экономически выгоднее по сравнению с природными и ранее использовавшимися рекомбинантными ферментами.Цель: Выявить границы предметного поля по исследованию рекомбинантных белков и их роли в современном пищевом производстве за период с 1973 по 2024 гг.Материалы и методы: Поиск источников осуществляли в базах данных PubMed, РИНЦ и Google Scholar. Методология обзора опиралась на протокол PRISMA-ScR. Хронологические рамки обзора: с 1973 по 2024 г.Результаты: Первоначальный поиск по ключевым словам позволил выявить 121 источник: 101 в базах данных и 20 из других источников. После удаления дубликатов осталось 113 источников. Оценено 111 полнотекстовых публикаций на приемлемость, в качестве неприемлемых исключены две публикации. Согласно основному массиву исследований, заметна тенденция к использованию модифицированных по физико-химическим и каталитическим свойствам рекомбинантных ферментов. Наблюдается тенденция к увеличению частотности использования рекомбинантных белков, продуцированных методами прецизионной ферментации. Приведены общие сведения о применении рекомбинантных белков в пищевой промышленности. Показана роль рекомбинантных белков в современной пищевой промышленности.Выводы: Развитие молекулярной биотехнологии позволило создать новые ферменты и белки для нужд пищевой промышленности, расширив их использование в сыроделии, кондитерском производстве и хлебопечении. Существуют вызовы в разработке новых ферментов, экспрессионных систем для биопродукции и биопроцессов с принципиально новыми характеристиками, что приводит к большей экономической целесообразности. Анализ выявил вызовы, связанные с необходимостью соответствия нормативно-правовых актов текущим возможностям и тенденциям в области биопродукции рекомбинантных белков для пищевой промышленности. Полученные результаты могут быть использованы для улучшения каталитических особенностей рекомбинантных ферментов и повышения стабильности ферментных препаратов. Эти результаты полезны для направленной разработки систем продукции рекомбинантных белков и ферментов, увеличения их продуктивности за счет лучшего понимания основных направлений современной индустрии рекомбинантных ферментов для пищевого производства.

Об авторах

Сергей Юрьевич Филькин

Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук

Автор, ответственный за переписку.
Email: s.filkin@fbras.ru
ORCID iD: 0000-0002-4710-6051

Алексей Валерьевич Липкин

Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук

Email: lipus57@yahoo.com
ORCID iD: 0000-0001-7624-8529

Алексей Николаевич Федоров

Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук

Email: a.fedorov@fbras.ru
ORCID iD: 0000-0002-7642-2360

Список литературы

  1. Алексеенко, А. В., & Предыбайло, А. В. (2008). Переэтерификация масел и жиров. Молочная промышленность, 11, 24–24.
  2. Алешков, А. В., & Каленик, Т. К. (2017). Техническое регулирование инновационной пищевой продукции. Известия Дальневосточного федерального университета. Экономика и управление, 1(81), 102–112.
  3. Багрянцева, О. В. (2020). Обоснование необходимости разработки мероприятий по управлению рисками, связанными с использованием пищевой продукции, производимой при помощи микробного синтеза. Вопросы питания, 89(2), 64–76. https://doi.org/10.24411/0042-8833-2020-10017
  4. Багрянцева, О. В., Гмошинский, И. В., Шипелин, В. А., Цурикова, Н. В., Шевелева, С. А., Шумакова, А. А., Мусаева, А. Д., Трушина, Э. Н., Мустафина, О. К., Сото, С. Х., Минаева, Л. П., Седова, И. Б., Селифанов, А. В., Соколов, И. Е., Колобанов, А. И., & Хотимченко, С. А. (2021). Оценка рисков для здоровья ферментного препарата - комплекса глюкоамилазы и ксиланазы из Aspergillus awamori XYL T-15. Вопросы питания, 90(3), 28–39. https://doi.org/10.33029/0042-8833-2022-91-3-42-52
  5. Багрянцева, О. В., Хотимченко, С. А., Шевелева, С. А., Минаева, Л. П., & Семенова, П. А. (2021). Об использовании фермента трансглютаминазы в пищевой промышленности. Пищевая промышленность, 10, 78–81.
  6. Багрянцева, О. В., Шатров, Г. Н., & Арнаутов, О. В. (2016). Вопросы безопасного использования ферментных препаратов, пищевых добавок и ароматизаторов, полученных методом биотехнологии. Пищевая промышленность, 6, 69–73.
  7. Берестова, А. В., Зинюхин, Г. Б., & Межуева, Л. В. (2014). Особенности технологии пищевых масложировых эмульсий функционального назначения. Вестник Оренбургского государственного университета, 1(162), 150–155.
  8. Кулев, Д. Х. (2014). Техническое регулирование пищевых ингредиентов на едином экономическом пространстве. Контроль качества продукции, 9, 27–34.
  9. Махова, А. А., Минаев, М. Ю., Куликовский, А. В., & Вострикова, Н. Л. (2019). Изучение ферментативной активности рекомбинантной металлопептидазы, предназначенной для применения в мясной промышленности. Вопросы питания, 88(4), 95–104. https://doi.org/10.24411/0042-8833-2019-10047
  10. Пушкарев, В. А., Мусина, О. Н., Беленькая, С. В., Щербаков, Д. Н., Коваль, А. Д., Белов, А. Н., & Ельчанинов, В. В. (2023). Термостабильность и параметры кинетики Михаэлиса-Ментен инженерного варианта рекомбинантного химозина северного оленя (Rangifer tarandus). Сыроделие и маслоделие, 3, 42–44. https://doi.org/10.31515/2073-4018-2023-3-42-44
  11. Хасанова, Д. А., & Тешаев, Ш. Ж. (2020). Воздействие генно-модифицированных продуктов на человеческий организм. Биология и интегративная медицина, 5(45), 5–19.
  12. Abril, B., Bou, R., García-Pérez, J. V., & Benedito, J. (2023). Role of enzymatic reactions in meat processing and use of emerging technologies for process intensification. Foods, 12(10). https://doi.org/10.3390/foods12101940
  13. Aider, M. (2021). Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Communications, 2(5), 233–237. https://doi.org/10.3168/jdsc.2020-0073
  14. Amorim, M. L., Soares, J., Coimbra, J. S. D. R., Leite, M. de O., Albino, L. F. T., & Martins, M. A. (2021). Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 61(12), 1976–2002. https://doi.org/10.1080/10408398.2020.1768046
  15. Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., Bafna, K., Norn, C., Kang, A., Bera, A. K., DiMaio, F., Carter, L., Chow, C. M., Montelione, G. T., & Baker, D. (2021). De novo protein design by deep network hallucination. Nature, 600(7889), 547–552. https://doi.org/10.1038/s41586-021-04184-w
  16. Antuma, L. J., Braitmaier, S. H., Garamus, V. M., Hinrichs, J., Boom, R. M., & Keppler, J. K. (2024). Engineering artificial casein micelles for future food: Preparation rate and coagulation properties. Journal of Food Engineering, 366, 111868. https://doi.org/10.1016/j.jfoodeng.2023.111868
  17. Ardö, Y. (2021). Enzymes in Cheese Ripening. In A. L. Kelly & L. B. Larsen (Eds.), Agents of Change: Enzymes in milk and dairy products (pp. 363–395). Springer International Publishing. https://doi.org/10.1007/978-3-030-55482-8_15
  18. Arshad, Z. I. M., Amid, A., Yusof, F., Jaswir, I., Ahmad, K., & Loke, S. P. (2014). Bromelain: An overview of industrial application and purification strategies. Applied Microbiology and Bio-technology, 98(17), 7283–7297. https://doi.org/10.1007/s00253-014-5889-y
  19. Ashok, P. P., Dasgupta, D., Ray, A., & Suman, S. K. (2023). Challenges and prospects of micro-bial α-amylases for industrial application: a review. World Journal of Microbiology & Biotechnol-ogy, 40(2), 44. https://doi.org/10.1007/s11274-023-03821-y
  20. Augustin, M. A., Hartley, C. J., Maloney, G., & Tyndall, S. (2023). Innovation in precision fer-mentation for food ingredients. Critical Reviews in Food Science and Nutrition, 1–21. https://doi.org/10.1080/10408398.2023.2166014
  21. Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M. M., Ramadan, H. A. I., Saini, K. S., Baeshen, N. A., & Redwan, E. M. (2015). Production of Biopharmaceuticals in E. coli: Current scenario and future perspectives. Journal of Microbiology and Biotechnology, 25(7), 953–962. https://doi.org/10.4014/jmb.1412.12079
  22. Ballinger, R. A. (1978). A history of sugar marketing through 1974. Department of Agri-culture, Economics, Statistics, and Cooperatives Service. https://doi.org/10.22004/ag.econ.307665
  23. Bankefa, O. E., Samuel-Osamoka, F. C., & Oladeji, S. J. (2022). Improved enzyme production on corncob hydrolysate by a xylose-evolved Pichia pastoris cell factory. Journal of Food Science and Technology, 59(4), 1280–1287. https://doi.org/10.1007/s13197-021-05135-z
  24. Bayless, T. M., Brown, E., & Paige, D. M. (2017). Lactase Non-persistence and Lactose Intoler-ance. Current Gastroenterology Reports, 19(5), 23. https://doi.org/10.1007/s11894-017-0558-9
  25. Behm, K., Nappa, M., Aro, N., Welman, A., Ledgard, S., Suomalainen, M., & Hill, J. (2022). Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry. The International Journal of Life Cycle Assessment, 27(8), 1017–1034. https://doi.org/10.1007/s11367-022-02087-0
  26. Bessler, C., Schmitt, J., Maurer, K.-H., & Schmid, R. D. (2003). Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Science: A Publication of the Protein Society, 12(10), 2141–2149. https://doi.org/10.1110/ps.0384403
  27. Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and industrial aspects of glu-cose isomerase. Microbiological Reviews, 60(2), 280–300. https://doi.org/10.1128/mr.60.2.280-300.1996
  28. Bilal, M., Ji, L., Xu, S., Zhang, Y., Iqbal, H. M. N., & Cheng, H. (2022). Bioprospecting and bio-technological insights into sweet-tasting proteins by microbial hosts-a review. Bioengineered, 13(4), 9815–9828. https://doi.org/10.1080/21655979.2022.2061147
  29. Bodie, E. A., Armstrong, G. L., & Dunn-Coleman, N. S. (1994). Strain improvement of chymo-sin-producing strains of Aspergillus niger var. awamori using parasexual recombination. Enzyme and Microbial Technology, 16(5), 376–382. https://doi.org/10.1016/0141-0229(94)90151-1
  30. Borrelli, G., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as bio-catalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774–20840. https://doi.org/10.3390/ijms160920774
  31. Boukid, F., Ganeshan, S., Wang, Y., Tülbek, M. Ç., & Nickerson, M. T. (2023). Bioengineered Enzymes and Precision Fermentation in the Food Industry. International Journal of Molecular Sciences, 24(12). https://doi.org/10.3390/ijms241210156
  32. Bray, G. A., Nielsen, S. J., & Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. The American Journal of Clinical Nutrition, 79(4), 537–543. https://doi.org/10.1093/ajcn/79.4.537
  33. Cairns, T. C., Nai, C., & Meyer, V. (2018). How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biology and Biotechnology, 5, 13. https://doi.org/10.1186/s40694-018-0054-5
  34. Casado, V., Martín, D., Torres, C., & Reglero, G. (2012). Phospholipases in food industry: a re-view. In Lipases and phospholipases (pp. 495–523). Springer. https://doi.org/10.1007/978-1-61779-600-5_29
  35. Casey, J. P. (1976). High fructose corn syrup – A case history of innovation. Research Manage-ment, 19(5), 27–32. JSTOR. https://doi.org/https://doi.org/10.1002/star.19770290605
  36. Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016-021-00225-9
  37. Crowell, L. E., Goodwine, C., Holt, C. S., Rocha, L., Vega, C., Rodriguez, S. A., Dalvie, N. C., Tracey, M. K., Puntel, M., Wigdorovitz, A., Parreño, V., Love, K. R., Cramer, S. M., & Love, J. C. (2021). Development of a platform process for the production and purification of single-domain antibodies. Biotechnology and Bioengineering, 118(9), 3348–3358. https://doi.org/10.1002/bit.27724
  38. Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnolog-ical potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290–306. https://doi.org/10.1016/j.procbio.2020.09.002
  39. De Maria, L., Vind, J., Oxenbøll, K. M., Svendsen, A., & Patkar, S. (2007). Phospholipases and their industrial applications. Applied Microbiology and Biotechnology, 74(2), 290–300. https://doi.org/10.1007/s00253-006-0775-x
  40. Deckers, M., Deforce, D., Fraiture, M.-A., & Roosens, N. H. C. (2020). Genetically modified mi-cro-organisms for industrial food enzyme production: An overview. Foods, 9(3). https://doi.org/10.3390/foods9030326
  41. Farag, M. A., Rezk, M. M., Hamdi Elashal, M., El-Araby, M., Khalifa, S. A. M., & El-Seedi, H. R. (2022). An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety. Food Research International, 162(Pt A), 111853. https://doi.org/10.1016/j.foodres.2022.111853
  42. Farooq, M. A., Ali, S., Hassan, A., Tahir, H. M., Mumtaz, S., & Mumtaz, S. (2021). Biosynthesis and industrial applications of α-amylase: a review. Archives of Microbiology, 203(4), 1281–1292. https://doi.org/10.1007/s00203-020-02128-y
  43. Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnol-ogy uses. Current Opinion in Biotechnology, 69, 68–76. https://doi.org/10.1016/j.copbio.2020.12.002
  44. Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Research, 2010.
  45. Fernández-Lucas, J., Castañeda, D., & Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technolo-gy, 68, 91–101.
  46. https://doi.org/10.1016/j.tifs.2017.08.017
  47. Filkin, S. Y., Lipkin, A. V., & Fedorov, A. N. (2020). Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. Biochemistry. Biokhimiia, 85(Suppl 1), S177–S195. https://doi.org/10.1134/S0006297920140096
  48. Fraatz, M. A., Rühl, M., & Zorn, H. (2014). Food and feed enzymes. Advances in Biochemical Engineering/Biotechnology, 143, 229–256. https://doi.org/10.1007/10_2013_235
  49. Fuller, R.B. (1973). Nine chains to the moon (pp. 252–259). Philadelphia: Anchor Books.
  50. Glinsmann, W. H., Irausquin, H., & Park, Y. K. (1986). Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of Sugars Task Force, 1986. The Journal of Nutri-tion, 116(11 Suppl), S1–S216. https://doi.org/10.1093/jn/116.suppl_11.S1
  51. Healey, R. D., Lebhar, H., Hornung, S., Thordarson, P., & Marquis, C. P. (2017). An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem-istry, 237, 825–832. https://doi.org/10.1016/j.foodchem.2017.06.018
  52. Herrera-Estala, A. L., Fuentes-Garibay, J. A., Guerrero-Olazarán, M., & Viader-Salvadó, J. M. (2022). Low specific growth rate and temperature in fed-batch cultures of a beta-propeller phytase producing Pichia pastoris strain under GAP promoter trigger increased KAR2 and PSA1-1 gene expression yielding enhanced extracellular productivity. Journal of Biotechnology, 352, 59–67. https://doi.org/10.1016/j.jbiotec.2022.05.010
  53. Hettinga, K., & Bijl, E. (2022). Can recombinant milk proteins replace those produced by animals? Current Opinion in Biotechnology, 75, 102690. https://doi.org/10.1016/j.copbio.2022.102690
  54. Hoppenreijs, L. J. G., Annibal, A., Vreeke, G. J. C., Boom, R. M., & Keppler, J. K. (2024). Food proteins from yeast-based precision fermentation: Simple purification of recombinant β-lactoglobulin using polyphosphate. Food Research International, 176, 113801. https://doi.org/10.1016/j.foodres.2023.113801
  55. Järviö, N., Parviainen, T., Maljanen, N.-L., Kobayashi, Y., Kujanpää, L., Ercili-Cura, D., Lan-dowski, C. P., Ryynänen, T., Nordlund, E., & Tuomisto, H. L. (2021). Ovalbumin production us-ing Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nature Food, 2(12), 1005–1013. https://doi.org/10.1038/s43016-021-00418-2
  56. Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biology, 6(8). https://doi.org/10.1098/rsob.160196
  57. Jin, L., Wan, Q., Ouyang, S., Zheng, L., Cai, X., Zhang, X., Shen, J., Jia, D., Liu, Z., & Zheng, Y. (2023). Isomerase and epimerase: overview and practical application in production of functional sugars. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2023.2260888
  58. Joseph, J. A., Akkermans, S., Nimmegeers, P., & Van Impe, J. F. M. (2019). Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Frontiers in Microbiology, 10, 695. https://doi.org/10.3389/fmicb.2019.00695
  59. Kappeler, S. R., van den Brink, H. J. M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E. B., & Johansen, E. (2006). Characterization of recombinant camel chymosin reveals superior proper-ties for the coagulation of bovine and camel milk. Biochemical and Biophysical Research Commu-nications, 342(2), 647–654. https://doi.org/10.1016/j.bbrc.2006.02.014
  60. Karray, A., Gargouri, Y., Verger, R., & Bezzine, S. (2012). Phospholipase A2 purification and characterization: A case study. In G. Sandoval (Ed.), Lipases and phospholipases: Methods and protocols (pp. 283–297). Humana Press. https://doi.org/10.1007/978-1-61779-600-5_17
  61. Kelada, K. D., Tusé, D., Gleba, Y., McDonald, K. A., & Nandi, S. (2021). Process simulation and techno-economic analysis of large-scale bioproduction of Sweet Protein Thaumatin II. Foods, 10(4). https://doi.org/10.3390/foods10040838
  62. Khamies, M., Hagar, M., Kassem, T. S. E., & Moustafa, A. H. E. (2024). Case study of chemical and enzymatic degumming processes in soybean oil production at an industrial plant. Scientific Re-ports, 14(1), 4064. https://doi.org/10.1038/s41598-024-53865-9
  63. Khootama, A., Putri, D. N., & Hermansyah, H. (2018). Techno-economic analysis of lipase en-zyme production from Aspergillus niger using agro-industrial waste by solid state fermentation. Energy Procedia, 153, 143–148. https://doi.org/10.1016/j.egypro.2018.10.054
  64. Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk coagulants: sources and biotechnological interventions. Critical Reviews in Biotechnology, 30(4), 243–258. https://doi.org/10.3109/07388551.2010.483459
  65. Lee, J.-W., Cha, J.-E., Jo, H.-J., & Kong, K.-H. (2013). Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chemistry, 138(2-3), 1370–1373. https://doi.org/10.1016/j.foodchem.2012.10.140
  66. Lerner, A., & Benzvi, C. (2021). Microbial transglutaminase is a very frequently used food addi-tive and is a potential inducer of autoimmune/neurodegenerative diseases. Toxics, 9(10). https://doi.org/10.3390/toxics9100233
  67. Li, W., Huang, C., & Chen, J. (2022). The application of CRISPR /Cas mediated gene editing in synthetic biology: Challenges and optimizations. Frontiers in Bioengineering and Biotechnology, 10, 890155. https://doi.org/10.3389/fbioe.2022.890155
  68. Li, Y., Zhang, H., Fu, Y., Zhou, Z., Yu, W., Zhou, J., Li, J., Du, G., & Liu, S. (2024). Enhancing acid resistance of aspergillus niger pectin lyase through surface charge design for improved appli-cation in juice clarification. Journal of Agricultural and Food Chemistry, 72(20), 11652–11662. https://doi.org/10.1021/acs.jafc.4c01505
  69. Lilbaek, H. M., Broe, M. L., Høier, E., Fatum, T. M., Ipsen, R., & Sørensen, N. K. (2006). Im-proving the yield of Mozzarella cheese by phospholipase treatment of milk. Journal of Dairy Sci-ence, 89(11), 4114–4125. https://doi.org/10.3168/jds.S0022-0302(06)72457-2
  70. Linder, T. (2019). Making the case for edible microorganisms as an integral part of a more sustain-able and resilient food production system. Food Security, 11(2), 265–278. https://doi.org/10.1007/s12571-019-00912-3
  71. Liu, Q., Xun, G., & Feng, Y. (2019). The state-of-the-art strategies of protein engineering for en-zyme stabilization. Biotechnology Advances, 37(4), 530–537. https://doi.org/10.1016/j.biotechadv.2018.10.011
  72. Liu, X., Lian, M., Zhao, M., & Huang, M. (2024). Advances in recombinant protease production: Current state and perspectives. World Journal of Microbiology & Biotechnology, 40(5), 144. https://doi.org/10.1007/s11274-024-03957-5
  73. Martins, I. M., Matos, M., Costa, R., Silva, F., Pascoal, A., Estevinho, L. M., & Choupina, A. B. (2014). Transglutaminases: recent achievements and new sources. Applied Microbiology and Bio-technology, 98(16), 6957–6964. https://doi.org/10.1007/s00253-014-5894-1
  74. Mayolo-Deloisa, K., González-González, M., & Rito-Palomares, M. (2020). Laccases in food in-dustry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengi-neering and Biotechnology, 8, 222. https://doi.org/10.3389/fbioe.2020.00222
  75. Meyer, V. (2008). Genetic engineering of filamentous fungi--progress, obstacles and future trends. Biotechnology Advances, 26(2), 177–185. https://doi.org/10.1016/j.biotechadv.2007.12.001
  76. Meyer, V. (2021). Metabolic engineering of Filamentous Fungi. In N.G. Stephanopoulos & S.Y. Lee (Eds), Metabolic engineering (pp. 765–801). Wiley. https://doi.org/10.1002/9783527823468.ch20
  77. Meyer, V., Fiedler, M., Nitsche, B., & King, R. (2015). The cell factory aspergillus enters the big data era: Opportunities and challenges for optimising product formation. In R. Krull & T. Bley (Eds.), Filaments in bioprocesses (pp. 91–132). Springer International Publishing. https://doi.org/10.1007/10_2014_297
  78. Motta, J., Freitas, B. C., Almeida, A., Martins, G., & Borges, S. (2023). Use of enzymes in the food industry: A review. Food Science and Technology, 43. https://doi.org/10.1590/fst.106222
  79. Peña, D. A., Gasser, B., Zanghellini, J., Steiger, M. G., & Mattanovich, D. (2018). Metabolic en-gineering of Pichia pastoris. Metabolic Engineering, 50, 2–15. https://doi.org/10.1016/j.ymben.2018.04.017
  80. Petcharat, T., & Benjakul, S. (2018). Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocolloids, 77, 746–753. https://doi.org/10.1016/j.foodhyd.2017.11.016
  81. Püllmann, P., & Weissenborn, M. J. (2021). Improving the heterologous production of Fungal Peroxygenases through an Episomal Pichia pastoris promoter and signal peptide shuffling system. ACS Synthetic Biology, 10(6), 1360–1372. https://doi.org/10.1021/acssynbio.0c00641
  82. Rathnakumar, K., Ortega-Anaya, J., Jimenez-Flores, R., & Martínez-Monteagudo, S. I. (2023). Partition of milk phospholipids during ice cream manufacturing. Journal of Dairy Science, 106(11), 7501–7514. https://doi.org/10.3168/jds.2022-23145
  83. Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491
  84. Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Bio-chemistry, 59, 1–41. https://doi.org/10.1042/bse0590001
  85. Saad, M. M., Saad, A. M., Hassan, H. M., Ibrahim, E. I., Abdelraof, M., & Ali, B. A. (2023). Op-timization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste. Bioresources and Bioprocessing, 10(1), 73. https://doi.org/10.1186/s40643-023-00686-9
  86. Salazar-Cerezo, S., de Vries, R. P., & Garrigues, S. (2023). Strategies for the development of in-dustrial fungal producing strains. Journal of Fungi, 9(8). https://doi.org/10.3390/jof9080834
  87. Siddiqui, S. A., Erol, Z., Rugji, J., Taşçı, F., Kahraman, H. A., Toppi, V., Musa, L., Di Giacinto, G., Bahmid, N. A., Mehdizadeh, M., & Castro-Muñoz, R. (2023). An overview of fermentation in the food industry - Looking back from a new perspective. Bioresources and Bioprocessing, 10(1), 85. https://doi.org/10.1186/s40643-023-00702-y
  88. Singh, R., Kim, S., Kumari, A., & Mehta, P. (2022). An overview of microbial α-amylase and re-cent biotechnological developments. Current Biotechnology, 11. https://doi.org/10.2174/2211550111666220328141044
  89. Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6(2), 174. https://doi.org/10.1007/s13205-016-0485-8
  90. Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: ubiqui-tous enzymes with innumerable uses. 3 Biotech, 11(10), 428. https://doi.org/10.1007/s13205-021-02928-z
  91. Spohner, S. C., Müller, H., Quitmann, H., & Czermak, P. (2015). Expression of enzymes for the usage in food and feed industry with Pichia pastoris. Journal of Biotechnology, 202, 118–134. https://doi.org/10.1016/j.jbiotec.2015.01.027
  92. Sun, H., Bankefa, O. E., Ijeoma, I. O., Miao, L., Zhu, T., & Li, Y. (2017). Systematic assessment of Pichia pastoris system for optimized β -galactosidase production. Synthetic and Systems Bio-technology, 2(2), 113–120. https://doi.org/10.1016/j.synbio.2017.04.001
  93. Tekaia, F., & Yeramian, E. (2006). Evolution of proteomes: Fundamental signatures and global trends in amino acid compositions. BMC Genomics, 7(1), 307. https://doi.org/10.1186/1471-2164-7-307
  94. Teng, T. S., Chin, Y. L., Chai, K. F., & Chen, W. N. (2021). Fermentation for future food sys-tems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO Reports, 22(5), e52680. https://doi.org/10.15252/embr.202152680
  95. Vojnovic, S., Aleksic, I., Ilic-Tomic, T., Stevanovic, M., & Nikodinovic-Runic, J. (2024). Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Applied Microbi-ology and Biotechnology, 108(1), 185. https://doi.org/10.1007/s00253-023-12900-x
  96. White, J. S. (2008). Straight talk about high-fructose corn syrup: What it is and what it ain’t. The American Journal of Clinical Nutrition, 88(6), 1716S – 1721S. https://doi.org/10.3945/ajcn.2008.25825B
  97. Yang, H., Song, C., Liu, C., & Wang, P. (2024). Synthetic biology tools for engineering aspergil-lus oryzae. Journal of Fungi, 10(1). https://doi.org/10.3390/jof10010034
  98. Yu, F., Zhao, X., Zhou, J., Lu, W., Li, J., Chen, J., & Du, G. (2023). Biosynthesis of high-active hemoproteins by the efficient heme-supply pichia pastoris chassis. Advanced Science, 10(30), e2302826. https://doi.org/10.1002/advs.202302826
  99. Yuan, F., Li, G., Li, Z., Li, M., Liu, X., Yang, H., & Yu, X. (2024). Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies. Current Re-search in Food Science, 8, 100756. https://doi.org/10.1016/j.crfs.2024.100756
  100. Zhang, L., Zhao, C., Zhu, D., Ohta, Y., & Wang, Y. (2004). Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression and Puri-fication, 35(2), 272–275. https://doi.org/10.1016/j.pep.2004.02.015
  101. Zhang, X., Chen, S., Lin, Y., Li, W., Wang, D., Ruan, S., Yang, Y., & Liang, S. (2023). Metabol-ic engineering of Pichia pastoris for high-level production of Lycopene. ACS Synthetic Biology, 12(10), 2961–2972. https://doi.org/10.1021/acssynbio.3c00294
  102. Zhu, M., Zhai, W., Song, R., Lin, L., Wei, W., & Wei, D. (2023). Enhanced Thermostability of Geobacillus stearothermophilus α-Amylase by rational design of disulfide bond and application in corn starch liquefaction and bread quality improvement. Journal of Agricultural and Food Chemis-try, 71(48), 18928–18942. https://doi.org/10.1021/acs.jafc.3c06761

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».