Application of Recombinant Proteins in Contemporary Food Biotechnology: A Scoping Review
- Autores: Filkin S.Y.1, Lipkin A.V.1, Fedorov A.N.1
-
Afiliações:
- Edição: Volume 2, Nº 2 (2024)
- Páginas: 48-74
- Seção: SCOPING REVIEW
- URL: https://journals.rcsi.science/2949-6497/article/view/353363
- DOI: https://doi.org/10.37442/fme.2024.2.46
- ID: 353363
Citar
Texto integral
Resumo
Introduction: Since 1994, the dynamic development of biotechnology and the widespread application of recombinant enzymes have led to new technological solutions in food production. Modern technologies enable the production of sugar, bread, beer, cheese, sausages, and other products using biotechnological processes and industrial food enzymes. The bioproduction of recombinant proteins has replaced natural enzymes, offering enzymes with enhanced catalytic functions, stability, and an extended range of operating conditions. These recombinant enzymes have proven to be economically more advantageous compared to natural and previously used recombinant enzymes.Purpose: To delineate the scope of research on recombinant proteins and their role in modern food production from 1973 to 2024.Materials and Methods: Sources were searched in the databases PubMed, RSCI, and Google Scholar. The review methodology adhered to the PRISMA-ScR protocol. The chronological scope of the review spans from 1973 to 2024.Results: The initial search with keywords identified 121 sources: 101 from databases and 20 from other sources. After removing duplicates, 113 sources remained. A total of 111 full-text publications were assessed for eligibility, with two full publications excluded as ineligible. The main body of research indicates a trend towards the use of recombinant enzymes modified for improved physicochemical and catalytic properties. There is a noticeable trend towards the more widespread use of recombinant proteins produced by precision fermentation methods. General information on the application of recombinant proteins in the food industry is provided. The role of recombinant proteins in modern food production is highlighted.Conclusions: The development of molecular biotechnology has led to the creation of new enzymes and proteins for the food industry, expanding their use in cheese making, confectionery, and baking. Challenges exist in developing new enzymes, expression systems for bioproduction, and bioprocesses with fundamentally new characteristics, leading to greater economic feasibility. The analysis revealed challenges related to the need for regulatory compliance with current capabilities and trends in the bioproduction of recombinant proteins for the food industry. The results obtained can be used to improve the catalytic properties of recombinant enzymes and enhance the stability of enzyme preparations. These findings are useful for the targeted development of recombinant protein and enzyme production systems, increasing their productivity through a better understanding of the main directions of the modern recombinant enzyme industry for food production.
Sobre autores
Sergey Filkin
Autor responsável pela correspondência
Email: s.filkin@fbras.ru
ORCID ID: 0000-0002-4710-6051
Alexey Lipkin
Email: lipus57@yahoo.com
ORCID ID: 0000-0001-7624-8529
Alexey Fedorov
Email: a.fedorov@fbras.ru
ORCID ID: 0000-0002-7642-2360
Bibliografia
Алексеенко, А. В., & Предыбайло, А. В. (2008). Переэтерификация масел и жиров. Молочная промышленность, 11, 24–24. Алешков, А. В., & Каленик, Т. К. (2017). Техническое регулирование инновационной пищевой продукции. Известия Дальневосточного федерального университета. Экономика и управление, 1(81), 102–112. Багрянцева, О. В. (2020). Обоснование необходимости разработки мероприятий по управлению рисками, связанными с использованием пищевой продукции, производимой при помощи микробного синтеза. Вопросы питания, 89(2), 64–76. https://doi.org/10.24411/0042-8833-2020-10017 Багрянцева, О. В., Гмошинский, И. В., Шипелин, В. А., Цурикова, Н. В., Шевелева, С. А., Шумакова, А. А., Мусаева, А. Д., Трушина, Э. Н., Мустафина, О. К., Сото, С. Х., Минаева, Л. П., Седова, И. Б., Селифанов, А. В., Соколов, И. Е., Колобанов, А. И., & Хотимченко, С. А. (2021). Оценка рисков для здоровья ферментного препарата - комплекса глюкоамилазы и ксиланазы из Aspergillus awamori XYL T-15. Вопросы питания, 90(3), 28–39. https://doi.org/10.33029/0042-8833-2022-91-3-42-52 Багрянцева, О. В., Хотимченко, С. А., Шевелева, С. А., Минаева, Л. П., & Семенова, П. А. (2021). Об использовании фермента трансглютаминазы в пищевой промышленности. Пищевая промышленность, 10, 78–81. Багрянцева, О. В., Шатров, Г. Н., & Арнаутов, О. В. (2016). Вопросы безопасного использования ферментных препаратов, пищевых добавок и ароматизаторов, полученных методом биотехнологии. Пищевая промышленность, 6, 69–73. Берестова, А. В., Зинюхин, Г. Б., & Межуева, Л. В. (2014). Особенности технологии пищевых масложировых эмульсий функционального назначения. Вестник Оренбургского государственного университета, 1(162), 150–155. Кулев, Д. Х. (2014). Техническое регулирование пищевых ингредиентов на едином экономическом пространстве. Контроль качества продукции, 9, 27–34. Махова, А. А., Минаев, М. Ю., Куликовский, А. В., & Вострикова, Н. Л. (2019). Изучение ферментативной активности рекомбинантной металлопептидазы, предназначенной для применения в мясной промышленности. Вопросы питания, 88(4), 95–104. https://doi.org/10.24411/0042-8833-2019-10047 Пушкарев, В. А., Мусина, О. Н., Беленькая, С. В., Щербаков, Д. Н., Коваль, А. Д., Белов, А. Н., & Ельчанинов, В. В. (2023). Термостабильность и параметры кинетики Михаэлиса-Ментен инженерного варианта рекомбинантного химозина северного оленя (Rangifer tarandus). Сыроделие и маслоделие, 3, 42–44. https://doi.org/10.31515/2073-4018-2023-3-42-44 Хасанова, Д. А., & Тешаев, Ш. Ж. (2020). Воздействие генно-модифицированных продуктов на человеческий организм. Биология и интегративная медицина, 5(45), 5–19. Abril, B., Bou, R., García-Pérez, J. V., & Benedito, J. (2023). Role of enzymatic reactions in meat processing and use of emerging technologies for process intensification. Foods, 12(10). https://doi.org/10.3390/foods12101940 Aider, M. (2021). Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Communications, 2(5), 233–237. https://doi.org/10.3168/jdsc.2020-0073 Amorim, M. L., Soares, J., Coimbra, J. S. D. R., Leite, M. de O., Albino, L. F. T., & Martins, M. A. (2021). Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 61(12), 1976–2002. https://doi.org/10.1080/10408398.2020.1768046 Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., Bafna, K., Norn, C., Kang, A., Bera, A. K., DiMaio, F., Carter, L., Chow, C. M., Montelione, G. T., & Baker, D. (2021). De novo protein design by deep network hallucination. Nature, 600(7889), 547–552. https://doi.org/10.1038/s41586-021-04184-w Antuma, L. J., Braitmaier, S. H., Garamus, V. M., Hinrichs, J., Boom, R. M., & Keppler, J. K. (2024). Engineering artificial casein micelles for future food: Preparation rate and coagulation properties. Journal of Food Engineering, 366, 111868. https://doi.org/10.1016/j.jfoodeng.2023.111868 Ardö, Y. (2021). Enzymes in Cheese Ripening. In A. L. Kelly & L. B. Larsen (Eds.), Agents of Change: Enzymes in milk and dairy products (pp. 363–395). Springer International Publishing. https://doi.org/10.1007/978-3-030-55482-8_15 Arshad, Z. I. M., Amid, A., Yusof, F., Jaswir, I., Ahmad, K., & Loke, S. P. (2014). Bromelain: An overview of industrial application and purification strategies. Applied Microbiology and Bio-technology, 98(17), 7283–7297. https://doi.org/10.1007/s00253-014-5889-y Ashok, P. P., Dasgupta, D., Ray, A., & Suman, S. K. (2023). Challenges and prospects of micro-bial α-amylases for industrial application: a review. World Journal of Microbiology & Biotechnol-ogy, 40(2), 44. https://doi.org/10.1007/s11274-023-03821-y Augustin, M. A., Hartley, C. J., Maloney, G., & Tyndall, S. (2023). Innovation in precision fer-mentation for food ingredients. Critical Reviews in Food Science and Nutrition, 1–21. https://doi.org/10.1080/10408398.2023.2166014 Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M. M., Ramadan, H. A. I., Saini, K. S., Baeshen, N. A., & Redwan, E. M. (2015). Production of Biopharmaceuticals in E. coli: Current scenario and future perspectives. Journal of Microbiology and Biotechnology, 25(7), 953–962. https://doi.org/10.4014/jmb.1412.12079 Ballinger, R. A. (1978). A history of sugar marketing through 1974. Department of Agri-culture, Economics, Statistics, and Cooperatives Service. https://doi.org/10.22004/ag.econ.307665 Bankefa, O. E., Samuel-Osamoka, F. C., & Oladeji, S. J. (2022). Improved enzyme production on corncob hydrolysate by a xylose-evolved Pichia pastoris cell factory. Journal of Food Science and Technology, 59(4), 1280–1287. https://doi.org/10.1007/s13197-021-05135-z Bayless, T. M., Brown, E., & Paige, D. M. (2017). Lactase Non-persistence and Lactose Intoler-ance. Current Gastroenterology Reports, 19(5), 23. https://doi.org/10.1007/s11894-017-0558-9 Behm, K., Nappa, M., Aro, N., Welman, A., Ledgard, S., Suomalainen, M., & Hill, J. (2022). Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry. The International Journal of Life Cycle Assessment, 27(8), 1017–1034. https://doi.org/10.1007/s11367-022-02087-0 Bessler, C., Schmitt, J., Maurer, K.-H., & Schmid, R. D. (2003). Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Science: A Publication of the Protein Society, 12(10), 2141–2149. https://doi.org/10.1110/ps.0384403 Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and industrial aspects of glu-cose isomerase. Microbiological Reviews, 60(2), 280–300. https://doi.org/10.1128/mr.60.2.280-300.1996 Bilal, M., Ji, L., Xu, S., Zhang, Y., Iqbal, H. M. N., & Cheng, H. (2022). Bioprospecting and bio-technological insights into sweet-tasting proteins by microbial hosts-a review. Bioengineered, 13(4), 9815–9828. https://doi.org/10.1080/21655979.2022.2061147 Bodie, E. A., Armstrong, G. L., & Dunn-Coleman, N. S. (1994). Strain improvement of chymo-sin-producing strains of Aspergillus niger var. awamori using parasexual recombination. Enzyme and Microbial Technology, 16(5), 376–382. https://doi.org/10.1016/0141-0229(94)90151-1 Borrelli, G., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as bio-catalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774–20840. https://doi.org/10.3390/ijms160920774 Boukid, F., Ganeshan, S., Wang, Y., Tülbek, M. Ç., & Nickerson, M. T. (2023). Bioengineered Enzymes and Precision Fermentation in the Food Industry. International Journal of Molecular Sciences, 24(12). https://doi.org/10.3390/ijms241210156 Bray, G. A., Nielsen, S. J., & Popkin, B. M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. The American Journal of Clinical Nutrition, 79(4), 537–543. https://doi.org/10.1093/ajcn/79.4.537 Cairns, T. C., Nai, C., & Meyer, V. (2018). How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biology and Biotechnology, 5, 13. https://doi.org/10.1186/s40694-018-0054-5 Casado, V., Martín, D., Torres, C., & Reglero, G. (2012). Phospholipases in food industry: a re-view. In Lipases and phospholipases (pp. 495–523). Springer. https://doi.org/10.1007/978-1-61779-600-5_29 Casey, J. P. (1976). High fructose corn syrup – A case history of innovation. Research Manage-ment, 19(5), 27–32. JSTOR. https://doi.org/https://doi.org/10.1002/star.19770290605 Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016-021-00225-9 Crowell, L. E., Goodwine, C., Holt, C. S., Rocha, L., Vega, C., Rodriguez, S. A., Dalvie, N. C., Tracey, M. K., Puntel, M., Wigdorovitz, A., Parreño, V., Love, K. R., Cramer, S. M., & Love, J. C. (2021). Development of a platform process for the production and purification of single-domain antibodies. Biotechnology and Bioengineering, 118(9), 3348–3358. https://doi.org/10.1002/bit.27724 Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnolog-ical potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290–306. https://doi.org/10.1016/j.procbio.2020.09.002 De Maria, L., Vind, J., Oxenbøll, K. M., Svendsen, A., & Patkar, S. (2007). Phospholipases and their industrial applications. Applied Microbiology and Biotechnology, 74(2), 290–300. https://doi.org/10.1007/s00253-006-0775-x Deckers, M., Deforce, D., Fraiture, M.-A., & Roosens, N. H. C. (2020). Genetically modified mi-cro-organisms for industrial food enzyme production: An overview. Foods, 9(3). https://doi.org/10.3390/foods9030326 Farag, M. A., Rezk, M. M., Hamdi Elashal, M., El-Araby, M., Khalifa, S. A. M., & El-Seedi, H. R. (2022). An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety. Food Research International, 162(Pt A), 111853. https://doi.org/10.1016/j.foodres.2022.111853 Farooq, M. A., Ali, S., Hassan, A., Tahir, H. M., Mumtaz, S., & Mumtaz, S. (2021). Biosynthesis and industrial applications of α-amylase: a review. Archives of Microbiology, 203(4), 1281–1292. https://doi.org/10.1007/s00203-020-02128-y Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnol-ogy uses. Current Opinion in Biotechnology, 69, 68–76. https://doi.org/10.1016/j.copbio.2020.12.002 Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Research, 2010. Fernández-Lucas, J., Castañeda, D., & Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technolo-gy, 68, 91–101. https://doi.org/10.1016/j.tifs.2017.08.017 Filkin, S. Y., Lipkin, A. V., & Fedorov, A. N. (2020). Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. Biochemistry. Biokhimiia, 85(Suppl 1), S177–S195. https://doi.org/10.1134/S0006297920140096 Fraatz, M. A., Rühl, M., & Zorn, H. (2014). Food and feed enzymes. Advances in Biochemical Engineering/Biotechnology, 143, 229–256. https://doi.org/10.1007/10_2013_235 Fuller, R.B. (1973). Nine chains to the moon (pp. 252–259). Philadelphia: Anchor Books. Glinsmann, W. H., Irausquin, H., & Park, Y. K. (1986). Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of Sugars Task Force, 1986. The Journal of Nutri-tion, 116(11 Suppl), S1–S216. https://doi.org/10.1093/jn/116.suppl_11.S1 Healey, R. D., Lebhar, H., Hornung, S., Thordarson, P., & Marquis, C. P. (2017). An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem-istry, 237, 825–832. https://doi.org/10.1016/j.foodchem.2017.06.018 Herrera-Estala, A. L., Fuentes-Garibay, J. A., Guerrero-Olazarán, M., & Viader-Salvadó, J. M. (2022). Low specific growth rate and temperature in fed-batch cultures of a beta-propeller phytase producing Pichia pastoris strain under GAP promoter trigger increased KAR2 and PSA1-1 gene expression yielding enhanced extracellular productivity. Journal of Biotechnology, 352, 59–67. https://doi.org/10.1016/j.jbiotec.2022.05.010 Hettinga, K., & Bijl, E. (2022). Can recombinant milk proteins replace those produced by animals? Current Opinion in Biotechnology, 75, 102690. https://doi.org/10.1016/j.copbio.2022.102690 Hoppenreijs, L. J. G., Annibal, A., Vreeke, G. J. C., Boom, R. M., & Keppler, J. K. (2024). Food proteins from yeast-based precision fermentation: Simple purification of recombinant β-lactoglobulin using polyphosphate. Food Research International, 176, 113801. https://doi.org/10.1016/j.foodres.2023.113801 Järviö, N., Parviainen, T., Maljanen, N.-L., Kobayashi, Y., Kujanpää, L., Ercili-Cura, D., Lan-dowski, C. P., Ryynänen, T., Nordlund, E., & Tuomisto, H. L. (2021). Ovalbumin production us-ing Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nature Food, 2(12), 1005–1013. https://doi.org/10.1038/s43016-021-00418-2 Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biology, 6(8). https://doi.org/10.1098/rsob.160196 Jin, L., Wan, Q., Ouyang, S., Zheng, L., Cai, X., Zhang, X., Shen, J., Jia, D., Liu, Z., & Zheng, Y. (2023). Isomerase and epimerase: overview and practical application in production of functional sugars. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2023.2260888 Joseph, J. A., Akkermans, S., Nimmegeers, P., & Van Impe, J. F. M. (2019). Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Frontiers in Microbiology, 10, 695. https://doi.org/10.3389/fmicb.2019.00695 Kappeler, S. R., van den Brink, H. J. M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E. B., & Johansen, E. (2006). Characterization of recombinant camel chymosin reveals superior proper-ties for the coagulation of bovine and camel milk. Biochemical and Biophysical Research Commu-nications, 342(2), 647–654. https://doi.org/10.1016/j.bbrc.2006.02.014 Karray, A., Gargouri, Y., Verger, R., & Bezzine, S. (2012). Phospholipase A2 purification and characterization: A case study. In G. Sandoval (Ed.), Lipases and phospholipases: Methods and protocols (pp. 283–297). Humana Press. https://doi.org/10.1007/978-1-61779-600-5_17 Kelada, K. D., Tusé, D., Gleba, Y., McDonald, K. A., & Nandi, S. (2021). Process simulation and techno-economic analysis of large-scale bioproduction of Sweet Protein Thaumatin II. Foods, 10(4). https://doi.org/10.3390/foods10040838 Khamies, M., Hagar, M., Kassem, T. S. E., & Moustafa, A. H. E. (2024). Case study of chemical and enzymatic degumming processes in soybean oil production at an industrial plant. Scientific Re-ports, 14(1), 4064. https://doi.org/10.1038/s41598-024-53865-9 Khootama, A., Putri, D. N., & Hermansyah, H. (2018). Techno-economic analysis of lipase en-zyme production from Aspergillus niger using agro-industrial waste by solid state fermentation. Energy Procedia, 153, 143–148. https://doi.org/10.1016/j.egypro.2018.10.054 Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk coagulants: sources and biotechnological interventions. Critical Reviews in Biotechnology, 30(4), 243–258. https://doi.org/10.3109/07388551.2010.483459 Lee, J.-W., Cha, J.-E., Jo, H.-J., & Kong, K.-H. (2013). Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chemistry, 138(2-3), 1370–1373. https://doi.org/10.1016/j.foodchem.2012.10.140 Lerner, A., & Benzvi, C. (2021). Microbial transglutaminase is a very frequently used food addi-tive and is a potential inducer of autoimmune/neurodegenerative diseases. Toxics, 9(10). https://doi.org/10.3390/toxics9100233 Li, W., Huang, C., & Chen, J. (2022). The application of CRISPR /Cas mediated gene editing in synthetic biology: Challenges and optimizations. Frontiers in Bioengineering and Biotechnology, 10, 890155. https://doi.org/10.3389/fbioe.2022.890155 Li, Y., Zhang, H., Fu, Y., Zhou, Z., Yu, W., Zhou, J., Li, J., Du, G., & Liu, S. (2024). Enhancing acid resistance of aspergillus niger pectin lyase through surface charge design for improved appli-cation in juice clarification. Journal of Agricultural and Food Chemistry, 72(20), 11652–11662. https://doi.org/10.1021/acs.jafc.4c01505 Lilbaek, H. M., Broe, M. L., Høier, E., Fatum, T. M., Ipsen, R., & Sørensen, N. K. (2006). Im-proving the yield of Mozzarella cheese by phospholipase treatment of milk. Journal of Dairy Sci-ence, 89(11), 4114–4125. https://doi.org/10.3168/jds.S0022-0302(06)72457-2 Linder, T. (2019). Making the case for edible microorganisms as an integral part of a more sustain-able and resilient food production system. Food Security, 11(2), 265–278. https://doi.org/10.1007/s12571-019-00912-3 Liu, Q., Xun, G., & Feng, Y. (2019). The state-of-the-art strategies of protein engineering for en-zyme stabilization. Biotechnology Advances, 37(4), 530–537. https://doi.org/10.1016/j.biotechadv.2018.10.011 Liu, X., Lian, M., Zhao, M., & Huang, M. (2024). Advances in recombinant protease production: Current state and perspectives. World Journal of Microbiology & Biotechnology, 40(5), 144. https://doi.org/10.1007/s11274-024-03957-5 Martins, I. M., Matos, M., Costa, R., Silva, F., Pascoal, A., Estevinho, L. M., & Choupina, A. B. (2014). Transglutaminases: recent achievements and new sources. Applied Microbiology and Bio-technology, 98(16), 6957–6964. https://doi.org/10.1007/s00253-014-5894-1 Mayolo-Deloisa, K., González-González, M., & Rito-Palomares, M. (2020). Laccases in food in-dustry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengi-neering and Biotechnology, 8, 222. https://doi.org/10.3389/fbioe.2020.00222 Meyer, V. (2008). Genetic engineering of filamentous fungi--progress, obstacles and future trends. Biotechnology Advances, 26(2), 177–185. https://doi.org/10.1016/j.biotechadv.2007.12.001 Meyer, V. (2021). Metabolic engineering of Filamentous Fungi. In N.G. Stephanopoulos & S.Y. Lee (Eds), Metabolic engineering (pp. 765–801). Wiley. https://doi.org/10.1002/9783527823468.ch20 Meyer, V., Fiedler, M., Nitsche, B., & King, R. (2015). The cell factory aspergillus enters the big data era: Opportunities and challenges for optimising product formation. In R. Krull & T. Bley (Eds.), Filaments in bioprocesses (pp. 91–132). Springer International Publishing. https://doi.org/10.1007/10_2014_297 Motta, J., Freitas, B. C., Almeida, A., Martins, G., & Borges, S. (2023). Use of enzymes in the food industry: A review. Food Science and Technology, 43. https://doi.org/10.1590/fst.106222 Peña, D. A., Gasser, B., Zanghellini, J., Steiger, M. G., & Mattanovich, D. (2018). Metabolic en-gineering of Pichia pastoris. Metabolic Engineering, 50, 2–15. https://doi.org/10.1016/j.ymben.2018.04.017 Petcharat, T., & Benjakul, S. (2018). Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocolloids, 77, 746–753. https://doi.org/10.1016/j.foodhyd.2017.11.016 Püllmann, P., & Weissenborn, M. J. (2021). Improving the heterologous production of Fungal Peroxygenases through an Episomal Pichia pastoris promoter and signal peptide shuffling system. ACS Synthetic Biology, 10(6), 1360–1372. https://doi.org/10.1021/acssynbio.0c00641 Rathnakumar, K., Ortega-Anaya, J., Jimenez-Flores, R., & Martínez-Monteagudo, S. I. (2023). Partition of milk phospholipids during ice cream manufacturing. Journal of Dairy Science, 106(11), 7501–7514. https://doi.org/10.3168/jds.2022-23145 Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491 Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Bio-chemistry, 59, 1–41. https://doi.org/10.1042/bse0590001 Saad, M. M., Saad, A. M., Hassan, H. M., Ibrahim, E. I., Abdelraof, M., & Ali, B. A. (2023). Op-timization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste. Bioresources and Bioprocessing, 10(1), 73. https://doi.org/10.1186/s40643-023-00686-9 Salazar-Cerezo, S., de Vries, R. P., & Garrigues, S. (2023). Strategies for the development of in-dustrial fungal producing strains. Journal of Fungi, 9(8). https://doi.org/10.3390/jof9080834 Siddiqui, S. A., Erol, Z., Rugji, J., Taşçı, F., Kahraman, H. A., Toppi, V., Musa, L., Di Giacinto, G., Bahmid, N. A., Mehdizadeh, M., & Castro-Muñoz, R. (2023). An overview of fermentation in the food industry - Looking back from a new perspective. Bioresources and Bioprocessing, 10(1), 85. https://doi.org/10.1186/s40643-023-00702-y Singh, R., Kim, S., Kumari, A., & Mehta, P. (2022). An overview of microbial α-amylase and re-cent biotechnological developments. Current Biotechnology, 11. https://doi.org/10.2174/2211550111666220328141044 Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6(2), 174. https://doi.org/10.1007/s13205-016-0485-8 Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: ubiqui-tous enzymes with innumerable uses. 3 Biotech, 11(10), 428. https://doi.org/10.1007/s13205-021-02928-z Spohner, S. C., Müller, H., Quitmann, H., & Czermak, P. (2015). Expression of enzymes for the usage in food and feed industry with Pichia pastoris. Journal of Biotechnology, 202, 118–134. https://doi.org/10.1016/j.jbiotec.2015.01.027 Sun, H., Bankefa, O. E., Ijeoma, I. O., Miao, L., Zhu, T., & Li, Y. (2017). Systematic assessment of Pichia pastoris system for optimized β -galactosidase production. Synthetic and Systems Bio-technology, 2(2), 113–120. https://doi.org/10.1016/j.synbio.2017.04.001 Tekaia, F., & Yeramian, E. (2006). Evolution of proteomes: Fundamental signatures and global trends in amino acid compositions. BMC Genomics, 7(1), 307. https://doi.org/10.1186/1471-2164-7-307 Teng, T. S., Chin, Y. L., Chai, K. F., & Chen, W. N. (2021). Fermentation for future food sys-tems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO Reports, 22(5), e52680. https://doi.org/10.15252/embr.202152680 Vojnovic, S., Aleksic, I., Ilic-Tomic, T., Stevanovic, M., & Nikodinovic-Runic, J. (2024). Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Applied Microbi-ology and Biotechnology, 108(1), 185. https://doi.org/10.1007/s00253-023-12900-x White, J. S. (2008). Straight talk about high-fructose corn syrup: What it is and what it ain’t. The American Journal of Clinical Nutrition, 88(6), 1716S – 1721S. https://doi.org/10.3945/ajcn.2008.25825B Yang, H., Song, C., Liu, C., & Wang, P. (2024). Synthetic biology tools for engineering aspergil-lus oryzae. Journal of Fungi, 10(1). https://doi.org/10.3390/jof10010034 Yu, F., Zhao, X., Zhou, J., Lu, W., Li, J., Chen, J., & Du, G. (2023). Biosynthesis of high-active hemoproteins by the efficient heme-supply pichia pastoris chassis. Advanced Science, 10(30), e2302826. https://doi.org/10.1002/advs.202302826 Yuan, F., Li, G., Li, Z., Li, M., Liu, X., Yang, H., & Yu, X. (2024). Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies. Current Re-search in Food Science, 8, 100756. https://doi.org/10.1016/j.crfs.2024.100756 Zhang, L., Zhao, C., Zhu, D., Ohta, Y., & Wang, Y. (2004). Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression and Puri-fication, 35(2), 272–275. https://doi.org/10.1016/j.pep.2004.02.015 Zhang, X., Chen, S., Lin, Y., Li, W., Wang, D., Ruan, S., Yang, Y., & Liang, S. (2023). Metabol-ic engineering of Pichia pastoris for high-level production of Lycopene. ACS Synthetic Biology, 12(10), 2961–2972. https://doi.org/10.1021/acssynbio.3c00294 Zhu, M., Zhai, W., Song, R., Lin, L., Wei, W., & Wei, D. (2023). Enhanced Thermostability of Geobacillus stearothermophilus α-Amylase by rational design of disulfide bond and application in corn starch liquefaction and bread quality improvement. Journal of Agricultural and Food Chemis-try, 71(48), 18928–18942. https://doi.org/10.1021/acs.jafc.3c06761
Arquivos suplementares

