Solid runoff assessment of Moscow territory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Over half of the existing river valleys and gullies on the territory of Moscow (within the Moscow Ring Road) for the XVIII–XX centuries were buried because of land development. Along with this, a network of storm-water drains (underground pipes) was built with an average density of 6.9 km/km2. Now the impermeable surfaces (roofs of buildings, sidewalks, roads etc.) cover 50% of total Moscow territory. Surface runoff, including soil, suspended and dissolve loads now enters remaining streams and ponds through storm-water network. It has been estimated, that on average the annual solid runoff from the surface area of 880 km2 is about 160–250 m3/km2 (or 2.6–4 ton/ha per year). About 100 m3/km2 of sediment per year is being washed off from flat surfaces (e.g. fluvial terraces) with amplitudes of less than 6–7 m. The reason of increase sedimentation and dissolved substances in runoff is a poor maintained storm-water network, extensive urban development, and intensification of aeolian transit from construction sites. The total quantity of particulate matter (suspended or bedload) coming from the storm-water drains lead to an explosive increase in sediment runoff exceeding the transporting capacity of the preserved rivers. The potential of the Moskva River to remove the increased runoff of sediments and pollutants has now been completely exhausted.

全文:

受限制的访问

作者简介

V. Nekhodtsev

Lomonosov Moscow State University; Weizmann Institute of Science

编辑信件的主要联系方式.
Email: nekhodtsev.v@gmail.com

Faculty of Geography

俄罗斯联邦, Moscow; Rehovot, Israel

G. Emdin

ITMO University

Email: nekhodtsev.v@gmail.com
俄罗斯联邦, Saint Petersburg

参考

  1. Bogomolova T.G., Kurochkina V. A. (2010). Pollution of urbanized rivers and engineering conception for reclamation and improvement of river ecology. Vestnik MGSU. № 4–2. P. 399–404. (in Russ.)
  2. Eremina I.D. (2019). Chemical composition of atmospheric precipitation in Moscow and the trends of its long-term changes. Vestnik Mosk. Un-ta. Ser. 5. Geografiya. № 3. P. 3–10. (in Russ.)
  3. Geologicheskii atlas Moskvy m-ba 1 : 10 000 (v 10 tomakh s poyasnitel'noi zapiskoi) (Geological Atlas of Moscow scale 1:10 000 (1–10 Vol. with explanatory note). (2010). Moscow: SOE Mosgorgeotrest (Publ.). (in Russ.)
  4. Ivlev A.P. (1954). Pod ulitsami goroda (Under the City’s Streets). Moscow: Public utilities government of RSFSR (Publ.). 48 p. (in Russ.)
  5. Koronkevich N.I., Bibikova T.S., Dolgov S.V. et al. (2017). Hydrological effects of industry in catchment area. In: Vodnye resursy: novye vyzovy i puti resheniya. Novocherkassk: Lik (Publ.). P. 78–84. (in Russ.)
  6. Koronkevich N.I., Melnik K.S. (2015). Runoff transformation under the effect of landscape changes in the Moskva R. Basin and in the territory of Moscow City. Water Resources. Vol. 42. P. 159–169. (in Russ.) https://doi.org/10.1134/S0097807815020062
  7. Koronkevich N.I., Melnik K.S. (2017). Changes in Moskva R. runoff under anthropogenic impacts. Water Resources. Vol. 44. P. 1–11. (in Russ.) https://doi.org/10.7868/S0321059617010072.
  8. Kul’bachevskii A.O. (Ed.). (2009). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2009 godu (Report about situation of the Moscow environment in 2009). Moscow: Formula Tsveta (Publ.). 209 p. (in Russ.)
  9. Kul’bachevskii A.O. (Ed.). (2010). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2010 godu (Report about situation of the Moscow environment in 2010). Moscow. 135 p. [Electronic data]. Access way: https://www.mos.ru/eco/documents/doklady/view/63261220/ (access date: 22.06.2022) (in Russ.).
  10. Kul’bachevskii A.O. (Ed.). (2012). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2011 godu (Report about situation of the Moscow environment in 2011) Moscow: Spetskniga (Publ.). 150 p. (in Russ.)
  11. Kul’bachevskii A.O. (Ed.). (2013). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2012 godu (Report about situation of the Moscow environment in 2012). Moscow: Spetskniga (Publ.). 178 p. (in Russ.)
  12. Kul’bachevskii A.O. (Ed.). (2014). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2013 godu (Report about situation of the Moscow environment in 2013). Moscow: LARK LTD (Publ.). 222 p. (in Russ.)
  13. Kul’bachevskii A.O. (Ed.). (2015). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2014 godu (Report about situation of the Moscow environment in 2014) Moscow: DPiOOS, NIA-Priroda (Publ.). 384 p. (in Russ.)
  14. Kul’bachevskii A.O. (Ed.). (2017). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2016 godu (Report about situation of the Moscow environment in 2016) Moscow: DPiOOS, NIiPI IGSP (Publ.). 363 p. (in Russ.)
  15. Kul’bachevskii A.O. (Ed.). (2018). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2017 godu (Report about situation of the Moscow environment in 2017). Moscow: DPiOOS (Publ.). 358 p. (in Russ.)
  16. Kul’bachevskii A.O. (Ed.). (2019). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2018 godu (Report about situation of the Moscow environment in 2018). Moscow: DPiOOS, NIiPI IGSP: Studio Arrou (Publ.). 247 p. (in Russ.)
  17. Kul’bachevskii A.O. (Ed.). (2020). Doklad o sostoyanii okruzhayushchei sredy v gorode Moskve v 2019 godu (Report about situation of the Moscow environment in 2019). Moscow: DPiOOS (Publ.). 222 p. (in Russ.)
  18. Likhacheva E.A. (Ed.). (2017). Geomorfologiya gorodskikh territorii: konstruktivnye idei (Urban Geomorphology: Constructive Ideas). Moscow: Media-Press (Publ.). 176 p. (in Russ.)
  19. L’vovich M.I. (1986). Voda i zhizn’: vodnye resursy, ikh preobrazovanie i okhrana (Water and life: Water resources, their transformation and protection). Moscow: Mysl’ (Publ.). 254 p. (in Russ.)
  20. Nasimovich Yu.A. (1996). Annotirovannyi spisok nazvanii rek, ruch’ev i ovragov Moskvy (Annotated List of Moscow’s Rivers, Streams and Ravines Names). Moscow: VINITI RAN (Publ.). 114 p. (in Russ.)
  21. Nekhodtsev V. A. (2021). Consequences of Man-Made Burial of Rivers in Cities (Case of Moscow). Izvestiya RAN. Seriya geograficheskaya. № 2. P. 238–247. (in Russ.). https://doi.org/10.31857/S2587556621020126
  22. Nekhodtsev V. A. (2012). The erosion and channel processes and subrelief of the underground water courses. In: Speleologiya i spelestologiya: sbornik materialov konferentsii. № 3. P. 231–236. (in Russ.)
  23. Shchegolkova N.M., Venitsianov E.V., Rybka K.Yu. et al. (2016). Long-term dynamics of self-cleaning processes as an integral indicator for the selection of control actions (in case of the Moscow River). Vodnoe khozyaistvo Rossii. № 4. P. 103–117. (in Russ.)
  24. Turalina T.S. (2010). Development of a system for processing sandy-silty soil formed in the SUE “Mosvodostok”, with the production of commercial sand fractions. Vodoochistka. Vodopodgotovka. Vodosnabzhenie. № 11 (35). P. 20–24. (in Russ.)
  25. Voronov Yu.V., Yakovlev S.V. (2006). Vodootvedenie i ochistka stochnykh vod (Wastewater disposal and treatment). Moscow: Assotsiatsii stroitelnykh vuzov (Publ.). 704 p. (in Russ.)
  26. Weather schedule. [Electronic data]. Access way: https://rp5.ru/ (access date: 24.05.2022)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Sand and clay on the roadway during light rain is an indicator of active solid runoff from the urban area. Photo by V. A. Nekhodtsev.

下载 (312KB)
3. Fig. 2. Techno-alluvial deposits in the Kalitnikovskii Creek drain in 2011: dismantling of the concrete dam (a); techno- alluvial deposits 265 m above the dam at the point of narrowing of the collector (б); after dam dismantling the stream began to rapidly cut into sediments (в, г). Photos by S. A. Kornev and V. A. Nekhodtsev.

下载 (3MB)
4. Fig. 3. Scheme for calculating the volume of techno-alluvial deposits in the collector of Kalitnikovskii Creek: a cross section of a partially filled pipe (a); a subhorizontal section of the pipe with 2.13 m diameter (б); a section of a slightly inclined pipe with 1.5 m diameter (в). Compiled by the authors.

下载 (114KB)
5. Fig. 4. The scheme of the catchment of the fragment of the Kalitnikovskii Creek. 1 — the main pipe with 1.5–2.4 m diameter; 2 — a section of the pipe with accumulated techno-alluvial deposits; 3 — small storm drains tributaries; 4 — the boundary of the drainage basin; 5 — a fragment of the original scheme of the storm drains network SUE “Mosvodostok” indicating the distances between the hatches and the drainage gratings (above; in meters) and the diameter of the pipes (bottom; in millimeters). Compiled by V.A. Nekhodtsev.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##