Big river channel formation and deformation in the intermountain basin (case study of the Yana River within the Kular mountain massif)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The incised pebble-boulder channels of large mountain rivers (including the Yana in its mountainous area), their morphology and history of formation are well studied. However, local conditions within the intermountain depressions lead to the emergence of specific features of the channel development and its morphology — in this case, the formation of finger-shaped meander. The paper analyzes the historical and modern features of the formation of the Yana riverbed in the “Porogi” section located in the depression inside Kular range, and describes the negative impact of channel processes on navigation. Using this case study, we consider the characteristic features of the channel development of a large river under the influence of a complex of factors — the regional geological conditions (which caused active incision of the channel), discharge, and channel sediment composition. Characteristics of lateral migration and curvature development of meander controlled by bedrock and narrowing of the valley are presented. The discharge conditions under which the displacement of riffles is possible are calculated. The forecast of the further channel development and recommendations for sustainable navigation are given.

Full Text

Restricted Access

About the authors

D. I. Shkolnyi

Lomonosov Moscow State University, Faculty of Geography

Email: danila.hydro@yandex.ru

Faculty of Geography

Russian Federation, Moscow

R. S. Chalov

Lomonosov Moscow State University

Author for correspondence.
Email: rschalov@mail.ru

Faculty of Geography

Russian Federation, Moscow

References

  1. Baranova Ju.P., Biske S.F., Goncharov V.F. et al. (1968). Cenozoic of the North-East of the USSR. Trudy IGiG. V. 38. 136 p. (in Russ.)
  2. Berkovich K.M., Zaitsev A.A., Lodina R.V. et al. (1985). Channel processes on large rivers of Eastern Siberia with pebble-boulder alluvium and features of their regulation. Vestn. Mosk. Un-ta. Ser. 5. Geografiya. № 3. P. 35–41. (in Russ.)
  3. Borsuk O.A., Dolzhenko Yu.A., Zaitsev A.A. et al. (1995). Channel processes on the upper Aldan and their consideration in the transport development of the river. In: Eroziya pochv i ruslovye protsessy. V. 10. Moscow: MGU (Publ.). P. 157–188. (in Russ.)
  4. Borsuk O.A., Zaitsev A.A., Kirik O.M. et al. (2001). Channel processes in the middle reaches of Lena River (from Vitim to Pokrovsk). In: Eroziya pochv i ruslovye protsessy. V. 13. Moscow: MGU (Publ.). P. 203–228. (in Russ.)
  5. Borsuk O.A., Chalov R.S. (1973). About the incision of the Lena riverbed. Izvestiya RGO. V. 105. № 5. P. 452–456. (in Russ.)
  6. Chalov R.S. (1979). Geograficheskie issledovaniya ruslovyh protsessov (Geographical studies of channel processes). Moscow: MGU (Publ.). 232 p. (in Russ.)
  7. Chalov R.S. (2002). Mountain rivers and rivers in the mountains: longitudinal profile, morphology, and channel dynamics. Geomorfologiya. № 3. P. 26–40. (in Russ.)
  8. Chalov R.S. (2008). Ruslovedenie: teoriya, geografiya, praktika. Tom 1: Ruslovye protsessy: faktory, mekhanizmy, formy proyavleniya i usloviya formirovaniya rechnikh rusel (River channel science: theory, geography, practice. V. 1: Riverbed processes, mechanism, forms of manifestations and conditions of formations of riverbeds). Moscow: LKI (Publ.). 608 p. (in Russ.)
  9. Chalov R.S. (2011). Ruslovedenie: teoriya, geografiya, praktika. Tom 2: Morfodinamika rechnykh rusel (River channel science: theory, geography, practice. V. 2: Morphodynamics of river channels). Moscow: KRASAND (Publ.). 960 p. (in Russ.)
  10. Chalov R.S., Liu Shuguang, Alekseevskii N.I. (2000). Stok nanosov i ruslovye protsessy na bol’shikh rekakh Rossii i Kitaya (Sediment Runoff and Channel Processes on Large Rivers of Russia and China). Moscow: MGU (Publ.). 216 p. (in Russ.)
  11. Chalov R.S., Liu Shuguang, Chernov A.V. et al. (2020). Comparative analysis of channel processes on large rivers of Russia (Asian part), Mongolia and China. In: Eroziya pochv i ruslovye protsessy. V. 7. Moscow: MGU (Publ.). P. 307–398. (in Russ.)
  12. Dury G.N. (1965). Theoretical implications of underfit streams. U.S. Geol. Survey. Prof. Paper 452-c. 43 p.
  13. Gusev M.N. (2002). Morphodynamics of the bottom of the upper Amur valley. Vladivostok: Dal’nauka (Publ.). 220 p. (in Russ.)
  14. Gurin A.D., Lodina R.V. (1994). Channel processes and morphology of the lower Vitim channel. Geomorfologiya. № 1. P. 87–93. (in Russ.)
  15. Epov O.G., Zolotilina G.D., Bogdanovich O.R. et al. (1985). Otchet o rezul’tatakh progrozno-metallogenicheskikh rabot v Kularskom antiklinorii v 1979–1985 gg. (Report on the results of predictive-metallogenic work in the Kular anticlinorium in 1979–1985). Batagay: YanGRE (Publ.). 274 p. (in Russ.)
  16. Khmyznikov P.K. (1934). Gidrologiya basseina reki Yany (Hydrology of the Yana River Basin). Leningrad: AN SSSR (Publ.). 252 p. (in Russ.)
  17. Korotaev V.N. (Ed.). (1998). Nizhnyaya Yana: ust’evye i ruslovye protsessy (Lower Yana: estuarine and channel processes). Moscow: GEOS (Publ.). 212 p. (in Russ.)
  18. Korotaev V.N., Matveev B.V., Panin A.V. et al. (1990). Development of the Yana River valley and channel in the Kular Range zone in the Pleistocene and Holocene. In: Chetvertichnyi period: metody issledovaniya, stratigrafiya i ekologiya. Tallin: AN Estonii (Publ.). P. 79–80. (in Russ.)
  19. Makkaveev N.I. (1955). River bed and erosion in its basin. Moscow: AN SSSR (Publ.). 347 p. (in Russ.)
  20. Matveev B.V., Panin A.V. (1988). Origin and dynamics of macrobends (on the example of the Yana River). In: Ekzogennye protsessy i okruzhayushchaya sreda. Kazan: Kazanskii universitet (Publ.). P. 94–95. (in Russ.)
  21. Matveev B.V., Panin A.V., Sidorchuk A.Yu. (1992). Development of the antecedent valley of the Yana River at the intersection of the Kular Ridge. Geografiya i prirodnye resursy. № 1. P. 102–107. (in Russ.)
  22. Mikhailov V.M. (2018). Bedrock lithology and natural complexes of river valleys (a case study of the North-east of Russia). Geografiya i prirodnye resursy. № 3. P. 116–123. (in Russ.)
  23. Panin A.V. (1990). Geological and geomorphic factor influence on channel morphology of East Siberian large rivers (with special reference to the Yana River). Geomorfologiya. № 1. P. 73–80. (in Russ.)
  24. Panin A.V. (1991). Morfologiya i dinamika vrezannykh galechno-valunnykh rusel (Morphology and dynamics of incised pebble-boulder channels). PhD thesis. Moscow: MSU. 24 p. (in Russ.)
  25. Popov I.V. (1955). The process of river channels meandering and its study using aerial photography. Trudy GGI. V. 49. P. 5–33. (in Russ.)
  26. Rosgen D.L. (1994). A classification of natural rivers. Catena. V. 22. P. 169–199. https://doi.org/10.1016/0341-8162(94)90001-9
  27. Rusanov B.S., Borodenkova Z.F., Goncharov O.F. et al. (1967). Geomorfologiya Vostochnoi Yakutii (Geomorphology of Eastern Yakutia). Yakutsk: Yakutsk. knizhn. izd-vo (Publ.). 376 p. (in Russ.)
  28. Rzhanitsyn N. A. (1985). Rusloformiruyushchie protsessy rek (Channel-forming processes of rivers). Leningrad: Gidrometeoizdat (Publ.). 264 p. (in Russ.)
  29. Shkolnyi D.I., Chalov R.S., Semakov V.A. et al. (2023). “Porogi” rift section in the Lower Yana: current state, predictive estimates, methods of correction. River transport (XXI century). № 1. P. 18–22. (in Russ.)
  30. Solov’ev M.N, Fedyanin A.N, Sorokina K.M. (2003). Otchet o geologicheskom doizuchenii, peresostavlenii i podgotovke k izdaniyu Gosudarstvennoi Geologicheskoi Karty Rossiiskoi Federatsii masshtaba 1:200 000 (novaya seriya) listov R-53-IX, X, XV, XVI v 1992–2003 gg. (Report on additional geological study, recompilation and preparation for publication of the State Geological Map of the Russian Federation at 1:200,000 scale (new series), sheets R-53-IX, X, XV, XVI in 1992–2003). Batagay: GUGGP “Yangeologiya” (Publ.). 432 p. (in Russ.)
  31. Zaitsev A.A. (1989). Behavior of levels and slopes on boulder-pebble rifts and rock ledges in the channels of large rivers. Russian meteorology and hydrology. № 12. P. 103–106. (in Russ.)
  32. Zaitsev A.A., Kirik O.M., Lodina R.V. et al. (1998). Hydromorphological characteristics and regulation of the lower Vitim channel in connection with its transport use. In: Eroziya pochv i ruslovye protsessy. V. 12. Moscow: MGU (Publ.). P. 189–214. (in Russ.)
  33. Zaitsev A.A., Savtsova T.M. (1994). Sculptural and alluvial landforms of incised channels in East Siberia: special features of the relief formation. Geomorfologiya. № 4. P. 58–83.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The Yana River in the intermountain basin (Chercha-Boskhong depression) — the “Porogi” site: (а) — Sentinel image, June 18, 2022, with fairway and kilometres along it and UAV camera location; (б) — UAV view of the site from 200 meters above the water.

Download (302KB)
3. Fig. 2. (а) — Geomorphological scheme of the “Porogi” site within the intermountain basin. 1 — 4th Middle Pleistocene high-basement terrace and its ledge to the river; 2 — 3rd and 2nd Late Pleistocene basement terraces; 3а — 1st terrace (“floodplain–terrace”), 3б — high floodplain; 4 — regularly flooded young floodplain (а — medium, б — low); 5а — near-channel shoals, 5б — rock outcrops in the channel; 6а — meander scars, 6б — floodplain gullies; 7 — contours of former islands in the floodplain relief. (б) — Reconstruction of the sequential channel positions (along the flow axis) during the floodplain formation on the “Porogi” site (the color changes from burgundy to green with floodplain age decreasing).

Download (878KB)
4. Fig. 3. The shape of the Yana River bottom within the intermountain basin, its macroforms and longitudinal profiles of the water surface at different water discharges: 1 — at lowest navigable water level (920 m3/s), 2 — during field study (4340 m3/s), 3 — bankfull (Q = 12 000 m3/s).

Download (222KB)
5. Fig. 4. Prediction of channel deformations: 1 — rock outcrops in the stream; 2 — development of the concavity of the eroded bank, which has a guiding effect on the flow; 3 — change in the position of the flow dynamic axis; 4 — sediment accumulation zones; 5 — hydraulically optimal position of the flow axis (straightening the bend) and the recommended channel through the bend spur.

Download (377KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies