Global cooling events of the Late Holocene preserved in the coastal sediments in the southern Far East of Russia

Cover Image

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Multy-proxy studies of the lagoon terrace in the head of the Amur Bay made it possible to identify sharp short-term cooling events during ~4450, 2870–2510, 1740–1200, and 680–380 yr BP, and compared them with cold events in other regions around the world. The reconstructions are based on results of diatom, botanical, and palynological analyzes. The Becon age model is based on radiocarbon dating and tephrostratigraphy. Tephra B-Tm from the caldera-forming Baitoushan volcano eruption was found in the section of the peat mire. The section selected to serve as a natural archive has its own specifics. In contrast to the mountainous areas and river basins, where the climate became dry 3320–3050 years ago due to a sharp decrease in the intensity of the summer monsoon, coastal lacustrine-swamp sequences had been developing in constantly waterlogged conditions. This made it possible to identify short-term dry events that well correlate with the global climatic rhythm caused by decrease in solar radiation. The decrease in moisture was closely related to the influence of the ocean: the intensity of tropical cyclogenesis, which is controlled by the activity of El Niño. The shallowing of the lagoon during the decline of low-amplitude transgression, intensified by the weakening of the summer monsoon, led to a change in terrigenous sedimentation to organogenic at about 3460 years ago. The cooling during 2870–2510 years ago had the most complex structure with sharp changes in moisture. Change in the course of swamp-forming processes around 1740 years ago associated with the activation of floods, which caused periodic flooding of the peat mire in the vast wetland near the Razdolnaya River mouth, led to the disappearance of the trees and the development of a grass swamp. In general, regional conditions were dry until the Medieval Warm Period. The landscapes responded to cooling by decreasing the role of broad-leaved trees in the forest vegetation of the low mountains, and increase of plants prefering less water-saturated habitats in the coastal plant communities. Of the cold events, the exception is the Little Ice Age, which was wet and characterized by frequent floods. The meridional transfer of moist air masses from the ocean to the continent became more active during that time.

Full Text

Restricted Access

About the authors

N. G. Razjigaeva

Pacific Geographical Institute FEB RAS

Author for correspondence.
Email: nadyar@tigdvo.ru
Russian Federation, Vladivostok

L. A. Ganzey

Pacific Geographical Institute FEB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Vladivostok

T. A. Grebennikova

Pacific Geographical Institute FEB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Vladivostok

L. M. Mokhova

Pacific Geographical Institute FEB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Vladivostok

V. V. Chakov

Institute of Water and Environmental Problems FEB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Khabarovsk

T. A. Kopoteva

Institute of Water and Environmental Problems FEB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Khabarovsk

M. A. Klimin

Institute of Water and Environmental Problems FEB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Khabarovsk

G. V. Simonova

Institute of Monitoring of Climatic and Ecological Systems SB RAS

Email: nadyar@tigdvo.ru
Russian Federation, Tomsk

References

  1. Akulichev V.A., Astakhov A.S., Aksentov K.I., Mar’yash A.A., Alatortsev A.V., Malakhov M.I., and Karabtsov A.A. The first discovery of cryptotephra of the catastrophic eruptions of the Baitoushan volcano in the tenth century A.D. in the shelf deposits of the Sea of Japan. Doklady Earth Sciences. 2016. Vol. 469. No 2. P. 887–891. https://doi.org/10.1134/S1028334X16080201
  2. Astakhov A.S., Aksentov K.I., Dar’in A.V., and Kalugin I.A. Rconstructing the frequency of catastrophic floods on the western coast of the Sea of Japan based on sedimentary proxy. Russian Meteorology and Hydrology. 2019. Vol. 44. No. 1. P. 62–70. https://doi.org/10.3103/S1068373919010072
  3. Belyanin P.S., Anderson P.M., Belyanina N.I., Lozhkin A.V., Arslanov Kh.A., Maximov F.E., and Gornov D.A. Vegetation changes in the south of the Russian Far East in the middle and late Holocene. Izvestia RAS. Geographical Series. 2019. No. 2. P. 69–84. (in Russ.) https://doi.org/10.31857/S2587-55662019269-84
  4. Blaauw M., and Christen J.A. Flexible paleoclimate age-depth models using an 601 autoregressive gamma process. Bayesian Analysis. 2011. Vol. 6. P. 457–474. https://doi.org/10.1214/11-BA618
  5. Bond G., Kromer B., Beer J., Muscheler R., Evans M.N., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I., and Bonani G. Persistent solar influence on North Atlantic climate during the Holocene. Science. 2001. Vol. 278. P. 1257–1266. https://doi.org/10.1126/science.1065680
  6. Borisova O.K. Landscape-climatic changes at Holocene. Izvestia RAS. Geographical Series. 2014. No. 2. P. 5–20 (in Russ.) https://doi.org/10.15356/0373-2444-2014-2-5-20
  7. Buczkó K., Ognjanova-Rumenova N., and Magyari E. Taxonomy, morphology and distribution of some Aulacoseira taxa in glacial lakes in the South Carpathian region. Polish Botanical J. 2010. Vol. 55. No. 1. P. 149–163.
  8. Chen F., Xu Q., Chen J., Birks H.J.B., Liu J., Zhang S., Jin L., An C., Telford R.J., and Cao X. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Repоrt. 2015. Vol. 5. P. 11186. https://doi.org/10.1038/srep11186
  9. Chen X-Y., Blockley S.P.E., Tarasov P.E., Xu Y.-G., McLean D., Tomlinson E.L., Albert P.G., Liu J.-Q., Müller S., Wagner M., and Menzies M.A. Clarifying the distal to proximal tephrochronology of the Millennium (B-Tm) eruption, Changbaishan Volcano, northeast China. Quaternary Geochronology. 2016. Vol. 33. P. 61–75. https://doi.org/10.1016/J.QUAGEO.2016.02.003
  10. Constantine M., Kim M., and Park J. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quaternary Research. 2019. Vol. 92. No. 1. P. 1–11. https://doi.org/10.1017/qua.2018.132
  11. Dykoski C.A., Edwards R.L., Cheng H., Yuan D., Cai Y., Zhang M., Lin Y., Qing J., An Z., and Revenaugh J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters. 2005. Vol. 233. P. 71–86. https://doi.org/10.1016/j.epsl.2005.01.036
  12. Elbakidze E.A. The extent of the Japan Sea Holocene ingression in Southern Primorye from the diatom analysis data. Russian Journal of Pacific Geol. 2014. Vol. 33. No. 2. P. 101–108. (in Russ.)
  13. Gao F., Jia J., Xia D., Lu C., Lu H., Wang Y., Liu H., Ma Y., and Li K. Asynchronous Holocene Climate Optimum across mid-latitude Asia. Palaeogeography, Palaeoclimatology, Palaeoecology. 2019. Vol. 518. P. 206–214. https://doi.org/10.1016/j.palaeo.2019.01.012
  14. Glezer Z.I., Jouse A.P., Makarova I.V., Proshkina-Lavrenko A.I., and Sheshukova-Poretskaya V.S. (Eds.). Diatomovye vodorosli SSSR (iskopaemye i sovremennye). Tom 1 (Diatom algae of USSR (fossil and modern). Vol. 1. Leningrad: Nauka (Publ.), 1974. 403 p. (in Russ.)
  15. Glushchenko A.M. and Kulikovskiy M.S. Taxonomy and Distribution of the Genus Eunotia Ehrenberg in Aquatic Ecosystems of Vietnam. Inland Water Biology. 2017. Vol. 10. No. 2. P. 130–139. https://doi.org/10.1134/S1995082917020055
  16. Kharitonov V.G. Konspekt flory diatomovykh vodoroslei (Bacillariophyceae) Severnogo Okhotomorʼya (Summary of diatom (Bacillariophyceae) flora of the northern coast of the Sea of Okhotsk). Magadan: NESC FEB RAS (Publ.), 2010. 189 p. (in Russ.)
  17. Kopoteva T.A. and Kuptsova V.A. Fire in waterlogged open larch forests in the Amur R. area. Vestnik NESC DVO RAN . 2011. No. 3. P. 37–41. (in Russ.)
  18. Kornyushenko T.V., Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Kudryavtseva E.P., Piskareva Y.E., and Prokopets S.D. Evidence of geosystems transformation during Medieval development of South Primorye: Steklyanukha-2 fortress. Geosistemy perekhodnykh zon (Geosystems of Transition Zones). 2022. Vol. 6. No. 1. P. 24–42. (in Russ.) https://doi.org/10.30730/gtrz.2022.6.1.024-042
  19. Korotkii A.M. Geograficheskie aspekty formirovaniya subfossilʼnykh sporovo-pylʼtsevykh kompleksov (yug Dalʼnego Vostoka) (Geographical aspects of formation of subfossil sporen-pollen complexes (South of Far East). Vladivostok: Dalnauka (Publ.), 2002. 271 p. (in Russ.)
  20. Korotky A.M., Grebennikova T.A., Pushkar V.S., Razzjigaeva N.G., Volkov V.G., Ganzey L.A., Mokhova L.M., Bazarova V.B., and Makarova T.R. Climatic changes of the territory of South Far East at Late Pleistocene-Holocene. Vestnik DVO RAN. 1997. No. 3. P. 121–143. (in Russ.)
  21. Korotky A.M. and Khudyakov G.I. Ekzogennye geomorfologicheskie sistemy morskikh poberezhii (Exogenic geopmorphological systems of marine coasts). Moscow: Nauka (Publ.), 1990. 216 p. (in Russ.)
  22. Krammer K. and Lange-Bertalot H. Bacillariophyceae. Teil 1. Naviculaceae. Jena: VEB Gustav Fischer Verlag (Publ.), 1986. 876 p.
  23. Krammer K. and Lange-Bertalot H. Bacillariophyceae. Teil 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Jena: VEB Gustav Fischer Verlag (Publ.), 1988. 536 p.
  24. Krammer K. and Lange-Bertalot H. Bacillariophyceae. Teil 3: Centrales, Fragilariaceae, Eunotiacceae. Stuttgart: Gustav Fischer Verlag (Publ.), 1991. 576 p.
  25. Kulikova G.G. Kratkoe posobie k botanicheskomu analizu torfa (Brief Manual for Botanical Analysis of Peat). Moscow: MSU (Publ.), 1974. 94 p. (in Russ.).
  26. Kurina I.V. Ecology of testate amoebae as hydrological regime indicators in oligotrophic peatlands in the southern taiga of Western Siberia. Izvestiya penzenskogo gosudarstvennogo universiteta (Bulletin of Penza State University). 2011. No. 25. P. 368–375. (in Russ.)
  27. Li C., Wu Y., and Hou X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quaternary International. 2011. Vol. 229. P. 67–73. https://doi.org/10.1016/j.quaint.2009.12.015
  28. Liu F. and Feng Z. A dramatic climatic transition at ~4000 cal. yr BP and its cultural responses in Chinese cultural domains. The Holocene. 2012. Vol. 22. No. 10. P. 1181–1197. https://doi.org/10.1177/0959683612441839 .
  29. Liu Y., Wang O., and Fu C. Taxonomy and distribution of diatoms in the genus Eunotia from the Da’erbin Lake and Surrounding Bogs in the Great Xing’an Mountains, China. Nova Hedwigia. 2011. Vol. 92. No. 1–2. P. 205–232. https://doi.org/10.1127/0029-5035/2011/0092-0205
  30. Martin-Puertas C., Matthes C., Brauer A., Muscheler R., Hansen F., Petrick C., Aldahan A., Possnert G., and van Geel B. Regional atmospheric circulation shifts induced by a grand solar minimum. Nature Geoscience. 2012. Vol. 5. P. 397. https://doi.org/10.1038/NGEO1460
  31. Mikishin Yu.A. and Gvozdeva I.G. Mid to late Holocene of Russkyi Island (southern Primorye). Fundamentalʼnye issledovaniya (Fundamental Research). 2014. No. 3. P. 516–522. (in Russ.)
  32. Mikishin Yu.A., Petrenko T.I., Gvozdeva I.G., Popov A.N., Kuzmin Ya.V., Rakov V.A., and Gorbarenko S.A. Holocene of the coast of South-Western Primorye. Nauchnoe obozrenie (Scientific Review). 2008. № 1. С. 8–27. (in Russ.)
  33. Mokhova L.M. Analysis of the modern spore-pollen rain composition and the pollen spectrum from Partizanskaya and Kievka river valleys (Southern Primorye) for paleolandscape research. Vestnik Severo-Vostochnogo nauchnogo centra DVO RAN (Bulletin of the North-East Scientific Center FEB RAS). 2020. No. 2. P. 10–21. https://doi.org/10.34078/1814-0998-2020-2-10-21 (in Russ.)
  34. Moy C.M., Seltzer G., Rodbell D.T., and Anderson D.M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature. 2002. Vol. 420. P. 162–165. https://doi.org/10.1038/nature01194
  35. Nakamura A., Yokoyama Y., Maemoku H., Yagi H., Okamura M., Matsuoka H., Miyake N., Osada T., Adhikari D.P., Dangol V., Ikehara M., Miyairi Y., and Matsuzaki H. Weak monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas. Quaternary International. 2016. Vol. 397. P. 349–359. http://dx.doi.org/10.1016/j.quaint.2015.05.053
  36. Nazarova L.B., Razjigaeva N.G., Golovatyuk L.V., Biskaborn B.C., Grebennikova T.A., Ganzey L.A., Mokhova L.M., and Diekmann B. Reconstruction of environmental conditions in the Eastern Part of Primorsky Krai (Russian Far East) in the Late Holocene. Contemporary Problems of Ecology. 2021. Vol. 14. No. 3. P. 218–230. https://doi.org/10.1134/S1995425521030094
  37. Nedoluzhko V.A., Kudryavtceva E.P., and Rubtsova T.A. New data on the distribution of some species of the Betulaceae family in the Russian Far East. Problemy izucheniya rastitelʼnogo pokrova Sibiri (Problems of study of the vegetation cover of Siberia). Tomsk: TGU (Publ.), 2000. P. 95–96. (in Russ.)
  38. Negoro K.-I. The Diatom Flora of a Pond (so-called “Form Pond”) in the Experimental Farm of the Kinki University at Yuasa, Wakayama Prefecture, Japan. Memoirs of the Faculty of agriculture of Kinki University. 1981. No. 14. P. 1–15.
  39. Pacheco C.M., Bertolli L.M., Donade L., and Torgan L.C. The genus Diploneis Ehrenberg ex Cleve (Bacillariophyceae) in marshes of southern Brazil. Iheringia, Botanical Series, Porto Alegre. 2016. Vol. 1. No. 3. P. 331–355. http://dx.doi.org/10.1016/10.11646/phytotaxa.217.3.1
  40. Park J., Han J., Jin Q., Bahk J., and Yi S. The link between ENSO-like forcing and hydroclimate variability of coastal East Asia during the Last Millennium. Scientific Reports. 2017. Vol. 7. P. 8166. https://doi.org/10.1038/s41598-017-08538-1
  41. Park J., Park J., Yi S., Kim J.C., Lee E., and Choi J. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula. Scientific Reports. 2019. Vol. 9. P. 10806. https://doi.org/10.1038/s41598-019-47264-8
  42. Park J., Park J., Yi S., Lim J., Kim J.C., Jin Q., and Choi J. Holocene hydroclimate reconstruction based on pollen, XRF, and grain-size analysis and its implications for past societies of the Korean Peninsula. The Holocene. 2021. Vol. 31. No. 9. P. 1489–1500. https://doi.org/10.1177/09596836211019115
  43. Park J., Shin Y.H., and Byrne R. Late-Holocene vegetation and climate change in Jeju Island, Korea and its implications for ENSO influences. Quaternary Science Reviews. 2016. Vol. 153. P. 40–50. https://doi.org/10.1016/j.quascirev.2016.10.011
  44. Pokrovskaya I.M. Methods of paleopollen studies. Paleopalinologiya ( Paleopolinology). Leningrad: Nedra (Publ.), 1966. Vol.1. P. 32–61. (in Russ.)
  45. Rai S.K. Preliminary Report of Diatoms from Maipokhari Lake, Ilam, Nepal. Our Nature. 2005. No. 3. P. 26–30. https://doi.org/10.3126/on.v3i1.331
  46. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Kopoteva T.A., Klimin M.A., Lyaschevskaya M.S., Panichev A.M., Arslanov Kh.A., Maksimov F.E., and Petrov A.Yu. Development of Solontsovskie Lakes as indicator of humidity within Central Sikhote-Alin in the Late Holocene. Geosistemy perekhodnykh zon (Geosystems of Transition Zones). 2021. Vol. 5. No. 3. P. 287–304. (in Russ.) https://doi.org/10.30730/gtrz.2021.5.3.287-304
  47. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu., and Sakhno V.G. B–Tm ash of a сatastrophic eruption of Baitoushan Volcano in terrestrial deposits of Primorye as an age marker of the Medieval Warm Period in the Holocene. Doklady Earth Sciences. 2020a. Vol. 494. Part 2. P. 779–786. https://doi.org/10.1134/S1028334X20100116
  48. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Kopoteva T.A., Kudryavtseva E.P., Belyanin P.S., Panichev A.M., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu., Sudin V.V., Klimin M.A., and Kornyushenko T.V. Holocene mountain landscape development and monsoon variation in the southernmost Russian Far East. Boreas. 2021. Vol. 50. No. 4. P. 1043–1058. https://doi.org/10.1111/bor.1254
  49. Razjigaeva N.G., Ganzey L.A., Lyaschevskaya M.S., Makarova T.R., Kudryavtseva E.P., Grebennikova T.A., Panichev A.M., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu., and Malkov S.S. Climatic and human impacts on landscape development of the Murav’ev Amursky Peninsula (Russian South Far East) in the Middle/Late Holocene and historical time. Quaternary International. 2019. Vol. 516. P. 127–140. https://doi.org/10.1016/j.quaint.2017.12.007
  50. Razzhigaeva N.G., Ganzey L.A., Grebennikova T.A., Kornyushenko T.V., Ganzey K.S., Kudryavtseva E.P., Gridasova I.V., Klyuev N.A., and Prokopets S.D. Interaction of natural and anthropogenic factors in landscape development of Razdolnaya River basin, Primorye. Izvestia RAS. Geographical Series. 2020b. Vol. 84. No. 2. P. 246–258. (in Russ.) https://doi.org/10.31857/S2587556620020119
  51. Reimer P. Letter from the Guest Editor. Radiocarbon. 2020. Vol. 62 No. 40. P. V–VII. https://doi.org/10.1017/RDC.2020.99
  52. Scuderi L.A., Yang X., Ascoli S. E., and Li H. The 4.2 ka BP event in northeastern China: a geospatial perspective. Climate in the Past. 2019. Vol. 15. P. 367–375. https://doi.org/10.5194/cp-15-367-2019
  53. Steinhilber F., Beer J., and Fröhlich C. Total solar irradiance during the Holocene. Geophysics Research Letters. 2009. Vol. 36. P. L19704. https://doi.org/10.1029/2009GL040142
  54. Stott L., Cannariato K., Thunell R., Haug G. H., Koutavas A., and Lund S. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature. 2004. Vol. 431. P. 56–59. https://doi.org/10.1038/nature02903
  55. Velichko A.A. (Ed.) Klimaty i landshafty Severnoi Evrazii v usloviyakh globalʼnogo potepleniya. Retrospektivnyi analiz i stsenarii (Climates and landscapes of Northern Eurasia under conditions of global warming. Retrospective analysis and scenarios). Moscow: GEOS (Publ.), 2010. 220 p. (in Russ.)
  56. Vostretsov Yu.E. Influence of environmental changes on cultural events in Manchuria and Primorye during transition from Bronze to Iron Age. The Bulletin of Tomsk University. History. 2013. Vol. 2. P. 22–25. (in Russ.)
  57. Wanner H., Solomina O., Grosjean M., Ritz S.P., and Jetel M. Structure and origin of Holocene cold events. Quaternary Science Review. 2011. Vol. 30. P. 3109–3123. https://doi.org/10.1016/J.QUASCIREV.2011.07.010
  58. Zabelina M.M., Kiselev I.A., Proshkina-Lavrenko A.I., and Sheshukova V.S. Opredelitelʼ presnovodnykh vodoroslei SSSR. Diatomovyi analiz. Vyp. 4 (The Atlas of freshwater algae of the USSR. Diatom analysis). Issue 4. Moscow: Sovetskaya Nauka (Publ.), 1951. 619 p. (in Russ.)
  59. Zhou X., Liu Z., Yan Q., Zhang X., Yi L., Yang W., Xian R., He Y., Hu B., Liu Yi, and Shen Y. Enhanced tropical cyclones intensity in the Western North Pacific during Warm Period over the Last Two Millennia. Geophysical Research Letters. 2019. Vol. 46. P. 11959–11966. https://doi.org/10.1029/2019GL083504
  60. Zhou X., Sun. L., Zhan T., Huang W., Zhou X., Hao Q., Wang Y., He X., Zhao C., Zhang J., Qiao Y., Ge J., Yan P., Yan Q., Shao D., Chu Z., Yang W., and Smol J.P. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region. Earth and Planetary Science Letters. 2016. Vol. 456. P. 39–46. https://doi.org/10.1016/j.epsl.2016.09.052

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1 . Study area. (a) – Japan Sea region; (б) – Primorye and position of study area and sections to be compared: 1 – Shufan Plateau, 2 – Starorechenskoe fortress, 3 – Boisman Bay, 4 – Cherepakha Lake, 5 – Steklyanukha River, Shkotovka River Basin, 6 – Shkotovskoe Plateau, 7 – Milogradovka River, 8 – Kit Bay, 9 – Langou I Bay, 10 – Oprichnik Bay, 11 – Solontsovskie lakes; (в, г) – position of the reference section 120.

Download (5MB)
3. Fig. 2 . Age-depth model, accumulation rates of lacustrine-swamp sediments on Amur Bay coast and volcanic glass from B-Tm tephra layer. 1 – peat, 2 – silt, 3 – peaty silt, 4 – volcanic ash.

Download (1MB)
4. Fig. 3 . Distribution of diatoms from lagoon terrace section 120 on Amur Bay coast. Habitats: 1 – planktonic and temperate-planktonic, 2 – benthic, 3 – epiphytes; salinity: 1 – halophobous, 2 – indifferent, 3 – halophilous, 4 – marine, 5 – No data; рН: 1 – acidophylous, 2 – circumneutral, 3 – alkaliphilous, 4 – No. data.

Download (356KB)
5. Fig. 4 . Botanical composition and peat characteristics, section 120, Amur Bay coast. Peat types:1 – woody, 2 – herbaceous-woody, 3 – woody-herbaceous, 4 – herbaceous, 5 – herbaceous-shrub, 6 – complex, 7 – peaty-mineral horizon, 8 – silt, 9 – volcanic ash. Botanical composition: 1 – wood, 2 – shrub, 3 – herb, 4 – sphagnum mosses, 5 – brown mosses, 6 – charcoal. Graphs on the right: the degree of decomposition and mineral content of peat.

Download (565KB)
6. Fig. 5 . Pollen diagram for peat section 120 on Amur Bay coast.

Download (377KB)
7. Fig. 6 . The dynamics of solar activity based on the measurement of 10 Be in polar ice, according to (Steinhilber et al., 2009) and changes in biotic components on Amur Bay coast in the late Holocene. Percentages on the curves correspond to fig. 3–5 . Grey bands indicate global cold events (Wanner et al., 2011). (1) – solar activity (Steinhilber et al., 2009); (2) – concentration of diatom frustules (mln/g); (3) – arctoboreal diatoms (%); (4) – soil diatoms (%); (5) – tree remains (%); (6) – pollen Abies + Picea (%); (7) – pollen of broadleaved trees (%); (8) – Cyperaceae pollen (%); (9) – Artemisia pollen (%).

Download (295KB)

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies