Morphometric analysis of the large en- closed depression of the Southern East European plain

Cover Image

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of morphometric analysis based on the SRTM digital elevation model of large enclosed depressions (LEDs) of controversial origin, commonly found on the loess interfluves in the Northern Black Sea region, around the Sea of Azov, at the Western flanks of Caucus Mountains and in the Lower Don basin, are presented in the paper. We have registered 312 LEDs landforms. The morphometric characteristics of landforms vary from 0.4 to 216 km2 for area, from 1 to 21 m for depth, from 0.5 to 13.3 km for width, from 0.7 to 27.5 km for length, from 1 to 4 for elongation coefficient, and from 3.3 to 103.3 m a.s.l for height. The most common depressions have the following parameters: area – 2–4 km2; depth – 2–3 m; width – 1.0–1.5 km; length – 2.5–3.0 km; elongation coefficient – 1.2–1.4; height – 15–20 m a.s.l. There is a correlation between the area and depth of the depressions. The depressions' shape is mostly elongated, e. g. teardrop-shaped, eggshaped, elliptical, triangular, and rarely round. The sharp ends of the egg-shaped depressions always tend to point to the north, and the blunt ones – to the south. We grouped the depressions into seven restricted sites where the differences in size and other morphological features of the LEDs are very small. Within all sites, there is a high consistency of orientation of the long axes of the depressions. The largest depressions around the Sea of Azov and the Western flanks of Caucus Mountains are characterized by longitudinal ridges confined to western side of LEDs. Comparison analysis of sites demonstrated a fan-shaped pattern in changing of the long axes orientation from the NW in the Northern Black Sea region; to the East in the Azov Sea region; to the N in the Western flanks of Caucus Mountains; and the NE in the Central flanks of Caucus Mountains. A radial-centripetal pattern of the erosion network is observed across the territories where LEDs are distributed. Small erosive forms flowing into the center of depressions are represented by very flat and wide gullies and hollows with intermitted channel flow. Such morphological characteristics suggest the relict origin of the erosional forms and, as a result, indicates the pre-Holocene age of the depressions themselves. Morphological and geological data suggests that wind erosion was probably the main factor in the formation of LEDs.

Full Text

Restricted Access

About the authors

E. A. Konstantinov

Institute of Geography RAS

Author for correspondence.
Email: xenia.filippova@igras.ru
Russian Federation, Moscow

A. L. Zakharov

Institute of Geography RAS

Email: xenia.filippova@igras.ru
Russian Federation, Moscow

E. V. Selezneva

Obukhov Institute of Atmospheric Physics RAS

Email: xenia.filippova@igras.ru
Russian Federation, Moscow

K. G. Filippova

Institute of Geography RAS

Email: xenia.filippova@igras.ru
Russian Federation, Moscow

References

  1. Balaev L.G. and Tsarev P.V. Lessovye porody Tsentralʼnogo i Vostochnogo Predkavkazʼya (Loess rocks of the Central and Eastern Ciscaucasia). Moscow: Nauka (Publ.), 1964. 246 p. (in Russ.)
  2. Bulavin B.P. Pluvial era relics in the Black Sea region. Relʼef and Landshafty . Moscow: MSU (Publ.), 1977. P. 172–173. (in Russ.)
  3. Denisov N.Ya. O prirode prosadochnykh yavlenii v lessovidnykh suglinkakh (On the nature of subsidence phenomena in the loess-like loam). Moscow: Sovetskaya nauka (Publ.), 1946. 176 p. (in Russ.)
  4. Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., and Alsdorf D. The shuttle radar topography mission. Reviews of geophysics. 2007. Vol. 45. RG2004. https://doi.org/10.1029/2005RG000183
  5. Haase D., Fink J., Haase G., Ruske R., Pécsi M., Richter H., Altermann M., and Jäger K.-D. Loess in Europe – Its spatial distribution based on a European Loess Map, scale 1:2500000. Quaternary Science Reviews. 2007. Vol. 26 (9–10). P. 1301–1312. https://doi.org/10.1016/j.quascirev.2007.02.003
  6. Kanonnikov A.M. Priroda Kubani i Prichernomorʼya (The nature of the Kuban and the Black Sea regions). Krasnodar: Krasnodarskoe knizhnoe izdatelʼstvo, 1977. 112 p. (in Russ.)
  7. Kaveev T.S. Loess of irrigation area of the Rostov region. Trudy Komissii po izucheniyu chetvertichnogo perioda. Vol. 13. Moscow: AN SSSR (Publ.), 1957. P. 263–270. (in Russ.)
  8. Kleschenkov A. The use of digital elevation model for study of the paleogeography of the Azov sea region. Abstracts of 2010 annual meeting INQUA-SEQS . Rostov-on-Don. 2010. P. 72–74.
  9. Kochetov N.I. Subsidence landforms in Western Ciscaucasia. Geomorfologiya . 1978. No. 4. P. 73–75. (in Russ.)
  10. Konstantinov E.A., Velichko A.A., Kurbanov R.N., and Zakharov A.L. Middle to Late Pleistocene topography evolution of the north-eastern Azov region. Quaternary International. 2018. Vol. 456. P. 72–84. https://doi.org/10.1016/j.quaint.2016.04.014
  11. Larionov A.K. The mechanism and the nature of subsidence and its role in the relief formation. Sovremennye ekzogennye protsessy relʼefoobrazovaniya . Moscow: Nauka (Publ.), 1970. P. 179–188. (in Russ.)
  12. Levandovskiy P.A. Geomorphology and geomorphological zoning of the Azov lowland. Uchenye zapiski Krasnodarskogo gosudarstvennogo pedagogicheskogo instituta . 1956. Vol. 17. P. 19–32. (in Russ.)
  13. Lisitsin K.I. On the deformation of loamy soils of the Ciscaucasia, in connection with the issue of the formation of steppe saucers. Materialy Sev.-Kavkaz. geologorazvedochnogo tresta . 1932. No. 1. P. 1–19 p. (in Russ.)
  14. Molodykh I.I. Inzhenerno-geologicheskie osnovy izucheniya territorii regionalʼnogo rasprostraneniya zapadinnykh form relʼefa ukrainskoi chasti Russkoi platformy v svyazi s meliorativnym stroitelʼstvom (The engineering-geological basis for studying the territories of the regional distribution of large depressions of the Ukrainian part of the Russian platform in connection with land reclamation). Doctoral Thesis . Kiev: Akademiya nauk Ukrainskoi SSR (Publ.), 1982. 207 p. (in Russ.)
  15. Rodriguez E., Morris C.S., and Belz J.E. A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing. 2006. Vol. 72 (3). P. 249–260. https://doi.org/10.14358/PERS.72.3.249
  16. Rubinshtein A.L. Gruntovedenie, osnovaniya i fundamenty (Soil and rock engineering, beds and foundations). Moscow: Sel’khozgiz (Publ.), 1961. 312 p. (in Russ.)
  17. Safronov I.N. Geomorfologiya Severnogo Kavkaza i Nizhnego Dona (Geomorphology of the North Caucasus and the Lower Don). Krasnodar: Kubanskii gosudarstvennyi universitet (Publ.), 1987. 275 p. (in Russ.)
  18. Safronov I.N. Geomorphology of the Western and Central Ciscaucasia. Voprosy geografii severo-zapadnogo Kavkaza i Predkavkaz’ya . Krasnodar: Kubanskii gosudarstvennyi universitet (Publ.), 1973. P. 4–39. (in Russ.)
  19. Shchukin I.S. Chetyrekh”yazychnyi entsiklopedicheskii slovarʼ terminov po fizicheskoi geografii (Four-language Encyclopedic Dictionary of Terms in Physical Geography). Moscow: Sovetskaya entsiklopediya (Publ.), 1980. 703 p. (in Russ.)
  20. Tesakov A.S., Dodonov A.E., Titov V.V., and Trubikhin V.M. Plio-Pleistocene geological record and small mammal faunas, eastern shore of the Azov Sea, Southern European Russia. Quaternary International. 2007. Vol. 160(1). P. 57–69. https://doi.org/10.1016/j.quaint.2006.09.009
  21. Velichko A.A. Environmental process in Pleistocene. Proceedings of IX INQUA congress, New Zealand. Мoscow: Nauka (Publ.), 1973. 256 p. (in Russ.)
  22. Velichko A.A. Loess-paleosol formation on the Russian Plain. Quaternary International. 1990. Vol. 7–8. P. 103–114. https://doi.org/10.1016/1040-6182(90)90044-5
  23. Velichko A.A., Catto N., Tesakov A.S., Titov V.V., Morozova T.D., Semenov V.V., and Timireva S.N. Structural specificity of Pleistocene loess and soil formation of the southern Russian plain according to materials of eastern Priazovie. Doklady Earth Sciences . 2009. Vol. 429. No. 1. P. 1364–1368.
  24. Velichko A.A., Morozova T.D., Borisova O.K., Timireva S.N., Semenov V.V., Kononov Y.M., Konstantinov E.A., Kurbanov R.N., Titov V.V., and Tesakov A.S. Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don–Azov Region. Doklady Earth Sciences. 2012. Vol. 445. P. 999–1002. https://doi.org/10.1134/S1028334X12080107
  25. Velichko A.A., Konstantinov E.A. Experience in Reconstruction of the Pleistocene Morphodynamics of Plakors in the Northern Sea of Azov Region (Key Area Melekino, Donetsk Region of Ukraine). Geomorfologiya. 2013. No. 3. P. 51–61. (in Russ.) https://doi.org/10.15356/0435-4281-2013-3-51-61
  26. Vostrikov N.G. Prosadochnye protsessy i ikh formy relʼefa na territorii Prikubanskoi ravniny: osobennosti i rasprostranenie (Subsidence processes and landforms on the territory of Kuban plain: characteristics and distribution). PhD Thesis . Krasnodar: Kubanskii gosudarstvennyi universitet (Publ.), 2012. 195 p. (in Russ.)
  27. Zakharov A.L. and Konstantinov E.A. Morphology of the hollow relief of the Eastern Azov region. Geomorfologi. Novoe Pokolenie . Moscow: Media-PRESS (Publ.), 2013. P. 5–13. (in Russ.)
  28. Zakharov A.L. and Konstantinov E.A. Structure of large flat-bottom depressions on loess interfluves of eastern Azov region (on the example of “Chervonaya Pad’”). Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. 2019. Vol. 28 (4). P. 85–96. (in Russ.) https://doi.org/10.31857/S2587-55662019485-96

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1 . Distribution of large oriented depressions in the south of the East European Plain. (a) – position of large oriented depressions sites; (б) – structure of relief in selected sites. The rose diagrams on the map (a) show the directions of the long axes of large oriented depressions. The topographic base is the SRTM model.

Download (3MB)
3. Fig. 2. Distribution of large oriented depressions by altitude.

Download (307KB)
4. Fig. 3 . Topography of the largest oriented depressions of the site 3. (а) – overview map, (б) – Pad’ Krikunova, (в) – Chervonaya Pad’, (г) – Vorontsovskaya Pad’, (д) – Liman Bol’shoy, (е) – Kugeiskaya Pad’.

Download (2MB)
5. Fig. 4. Histogram of the distribution of large oriented depressions by area.

Download (147KB)

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies