The sediment budget and migration of 137Cs in Chernobyl affected area: 30 years of investigations in the Plava River basin, Tula region

Cover Image

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Plava River basin (Tula region) is considered the most polluted with Chernobyl fallout region in Russian Federation. Detailed studies of sediment redistribution and migration of 137Cs produced by Chernobyl were conducted in the basin. The article provides an overview of results from various studies conducted during the last 30 years estimating the rate of erosion and sediment redistribution based on different methodology including 137Cs. Sediment budgets for different parts of the fluvial network were developed based on estimated rates of erosion and accumulation of sediments within the Plava River basin for the post-Chernobyl period. It has been established that eroded from agricultural fields sediments accumulate on the slopes of interfluves (38.4%) and in the bottoms of dry valleys (27–38%). Part of the sediment delivered by slope runoff and temporary watercourses from the slopes of the interfluves to the bottoms of river valleys was redeposited on river floodplains (10–11%), and the remaining part (13.1–24.7%) passed into the river sediment load. The value of basin contribution of sediments to the Plava River sediment runoff is somewhat overestimated due to the specifics of the erosion models used to calculate soil erosion from arable land. It has been established that for the period of more than 25 years since the Chernobyl accident, 5% of 137Cs deposits were lost due to soil erosion (less than 0.2% annually). According to evaluated sediment budget, only a quarter of mobilized material leaves basin as a sediment yield. Thus, only about 1% of the initial 137Cs fallout was removed from the Plava basin. The perspective directions for research on sediment redistribution in the plain river basins located in the temperate zone using 137Cs as a technogenic tracer are outlined.

Full Text

Restricted Access

About the authors

M. M. Ivanov

Lomonosov Moscow State University, Faculty of Geography; Institute of Geography RAS

Author for correspondence.
Email: ivanovm@bk.ru
Russian Federation, Moscow; Moscow

V. N. Golosov

Lomonosov Moscow State University, Faculty of Geography; Institute of Geography RAS

Email: ivanovm@bk.ru
Russian Federation, Moscow; Moscow

N. N. Ivanova

Lomonosov Moscow State University, Faculty of Geography

Email: ivanovm@bk.ru
Russian Federation, Moscow

References

  1. Barabanov A.T., Dolgov S.V., Koronkevich N.I., Panov V.I., and Petel’ko A. I. Surface runoff and snowmelt infiltration into the soil on plowlands in the forest-steppe and steppe zones of the East European Plain. Eurasian soil science. 2018. Vol. 51. Iss. 1. P. 66-72. https://doi.org/10.1134/S1064229318010039
  2. Belyaev V.R., Golosov V.N., Kuznetsova J.S., and Markelov M.V. Quantitative assessment of effectiveness of soil conservation measures using a combination of 137Cs radioactive tracer and conventional techniques. Catena. 2009. Vol. 79. Iss. 3. P. 214-227. https://doi.org/10.1016/j.catena.2009.05.006
  3. Belyaev V.R., Golosov V.N., Markelov M.V., Evrard O., Ivanova N.N., Paramonova T.A., and Shamshurina E.N. Using Chernobyl-derived 137Cs to document recent sediment deposition rates on the River Plava floodplain. Hydrological Processes. 2013a. Vol. 27. No. 6. P. 807-821. https://doi.org/10.1002/hyp.9461
  4. Belyaev V.R., Golosov V.N., Markelov M.V., Ivanova N.N., Shamshurina E.N., and Evrard O. Effects of landuse and climate changes on small reservoir siltation in the agricultural belt of European Russia. Considering hydrological change in reservoir planning and management, proceeding of H09, IAHS-IAPSO-IASPEI assembly, Gothenburg. Sweden, Jul 2013. 2013b. P. 134-145.
  5. Belyaev V.R., Shamshurina E.N., Markelov M.V., Golosov V.N., Ivanova N.N., Bondarev V.P., Paramonova T.A., Evrard O., Lio Soon Shun N., Ottle C., Lefevre I., and Bonte P. Quantification of river basin sediment budget based on reconstruction of the post-Chernobyl particle-bound 137Cs redistribution. Erosion and sediment yields in the changing environment (proceedings of a symposium held in Chengdu, China, Oct, 2012), IAHS Publ. 356. IAHS Press, Wallingford. 2012. P. 394-403.
  6. Bobrovitskaya N.N. Erosion and sediment yield modeling in the former USSR. Modelling erosion, sediment transport and sediment yield. International Hydrological Programme. IHP-VI. Tech. Docs in Hydrology. 2002. No. 60. P. 31-45.
  7. Boiko F.F., Boutakov G.P., and Kourbanova S.G. Changes in the river network of the Tatarstan in XVIII-XX centuries. Ratsional’noe ispol’zovanie vodnykh resursov Respubliki Tatarstan. Kazan’: The Kazan’ University (Publ.), 1993. P. 22-23. (in Russ.)
  8. Byrne P., Wood P. J., and Reid I. The impairment of river systems by metal mine contamination: a review including remediation options. Critical Reviews in Environmental Science and Technology. 2012. Vol. 42. Iss. 19. P. 2017-2077. https://doi.org/10.1080/10643389.2011.574103
  9. Cerdan O., Le Bissonnais Y., Couturier A., and Saby N. Modelling interrill erosion in small cultivated catchments. Hydrological Processes. 2002. Vol. 16. Iss. 16. P. 3215-3226. https://doi.org/10.1002/hyp.1098
  10. Chernov A.V. Modern development of a small rivers in the central part of the European Russia. Malye reki tsentra Russkoi ravniny, ikh ispol’zovanie i okhrana. M.: MFGO SSSR (Publ.), 1988. P. 15-24. (in Russ.)
  11. De Moor J.J. W. and Verstraeten G. Alluvial and colluvial sediment storage in the Geul River catchment (The Netherlands) - combining field and modelling data to construct a Late Holocene sediment budget. Geomorphology. 2008. Vol. 95. Iss. 3-4. P. 487-503. https://doi.org/10.1016/j.geomorph.2007.07.012
  12. Dietrich W.E., Dunne T. Sediment budget for a small catchment in mountainous terrain. Zeits. Geomorphol. Supp. 1978. Vol. 29. P. 191-206. https://doi.org/10.1130/0091-7613(2001)029
  13. Dokuchaev V.V. Nashi stepi prezhde i teper’ (Our steppes before and now). SPB: Typography of E. Evdokimov (Publ.), 1892. 128 p. (in Russ.)
  14. Evrard O., Cerdan O., Chauvet M., Le Bissonnais Y., van Wesemael B., Raclot D., Vandaele K., Andrieux P., and Bielders C.L. Reliability of an expert-based runoff and erosion model: application of STREAM to different environments. Catena. 2009. Vol. 78. Iss. 2. P. 129-141. https://doi.org/10.1016/j.catena.2009.03.009
  15. Evrard O., Nord G., Cerdan O., Souchère V., Le Bissonnais Y., and Bonté P. Modelling the impact of land use change and rainfall erosivity on sediment export from an agricultural catchment of the northwestern Europe an loess belt. Agriculture. Ecosystems & Environment. 2010. Vol. 138. No. 1-2. P. 83-94. https://doi.org/10.1016/j.agee.2010.04.003
  16. Fridman Sh.D., Kvasnikova E.V., Golosov V.N., and Ivanova N.N. Caesium-137 migration in the geographical complexes of the central Russian hills. Russian Meteorology and Hydrology. 1997. No. 5. P. 45-55.
  17. Gennadiyev A.N., Golosov V.N., Chernyanskii S.S., Markelov M.V., Olson K.P., Kovach R.G., and Belyaev V.R. The concurrent use of radioactive and magnetic tracers for soil erosion quantification. Eurasian Soil Science. 2005. Vol. 38. Iss. 9. P. 954-965.
  18. Gennadiev A.N., Koshovskii T.S., Zhidkin A.P., and Kovach R.G. Lateral migration of soil solid-phase material within a landscape-geochemical arena detected using the magnetic tracer method. Eurasian soil science. 2013. Vol. 46. Iss. 10. P. 983-993. https://doi.org/10.1134/S1064229313100037
  19. Gennadiev A.N., Zhidkin A.P., Olson K.R., and Kachinskii V.L. Soil erosion under different land uses: Assessment by the magnetic tracer method. Eurasian Soil Science. 2010. Vol. 43. Iss. 9. P. 1047-1054. https://doi.org/10.1134/S1064229310090127
  20. Golosov V., Belyaev V., Kuznetsova Y., Markelov M., and Shamshurina E. Response of a small arable catchment sediment budget to introduction of soil conservation measures. Sediment Dynamics in Changing Environments, IAHS Publ. Vol. 325. IAHS Press: Wallingford, UK. 2008. P. 106-113.
  21. Golosov V.N. Erosion and accumulation processes in the basin of the Protva River. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 1988. No. 3. P. 19-25. (in Russ.)
  22. Golosov V.N. Influence of anthropogenic factors on sediment yield of the rivers of the Oka basin. Geografiya i prirodnye resursy. 1989. No. 3. P. 46-50. (in Russ.)
  23. Golosov V.N. Special considerations for areas affected by chernobyl fallout. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Kluwer Academic Publishers Dordracht. 2002. P. 165-183.
  24. Golosov V.N. Erozionno-akkumulyativnye protsessy v rechnykh basseinakh osvoennykh ravnin (Erosion and deposition processes in the river basins of cultivated plains). M: GEOS (Publ.), 2006. 296 p. (in Russ.)
  25. Golosov V. Influence of different factors on the sediment yield of the Oka basin rivers (central Russia). IAHS PUBLICATION. 2006. Vol. 306. P. 28-36. https://doi.org/10.13140/2.1.2938.1446
  26. Golosov V.N., Belyaev V.R., and Markelov M.V. Application of Chernobyl-derived 137Cs fallout for sediment redistribution studies: lessons from European Russia. Hydrological processes. 2013. Vol. 27. Iss. 6. P. 781-794. https://doi.org/10.1002/hyp.9470
  27. Golosov V.N., Gennadiev A.N., Olson K.R., Markelov M.V., Zhidkin A.P., Chendev Yu.G., and Kovach R.G. Spatial and temporal features of soil erosion in the foreststeppe zone of the East-European Plain. Eurasian Soil Science. 2011. Vol. 44. Iss. 7. P. 794-801. https://doi.org/10.1134/S1064229311070064
  28. Golosov V. and Ivanov M. Chapter 4: Quantitative assessment of lateral migration of the Chernobyl-derived 137Cs in contaminated territories of the east European Plain. Behavior of Radionuclides in the Environment II Chernobyl, Singapore, 2020. P. 195-226. https://doi.org/10.1007/978-981-15-3568-0_4
  29. Golosov V.N., Ivanov M.M., Tsyplenkov A.S., Ivanov M.A., Wakiyama Y., Konoplev A.V., Konstantinov E.A., and Ivanova N.N. Erosion as a Factor of Transformation of Soil Radioactive Contamination in the Basin of the Shchekino Reservoir (Tula Region). Eurasian Soil Science. 2021. Vol. 54. Iss. 2. P. 291-303. https://doi.org/10.1134/S106422932102006X
  30. Golosov V.N. and Ivanova N.N. Intrabasin distribution of sediments within river catchment: methods and research issues. Erozia pochv i ruslovye protsessy. 2000. Iss. 12. P. 215-229. (in Russ.)
  31. Golosov V.N. and Ivanova N.N. Some reasons of river net disappearance in conditions of intensive agriculture. Water Resources. 1993. Vol. 20. No. 6. P. 684-689.
  32. Golosov V., Ivanova N., and Kurbanova S. Influence of agricultural development and climate changes on the drainage valley density of the southern half of the Russian Plain. International Journal of Sediment Research. 2017. Vol. 32. Iss. 1. P. 60-72. https://doi.org/10.1016/j.ijsrc.2016.11.002
  33. Golosov V.N., Ivanova N.N., Litvin L.F., and Sidorchuk A.Yu. Sediment budget in river basins and small river aggradation. Geomorfologiya. 1992. No. 4. P. 62-71. (in Russ.)
  34. Golosov V., Koiter A., Ivanov M., Maltsev K., Gusarov A., Sharifullin A., and Radchenko, I. Assessment of soil erosion rate trends in two agricultural regions of European Russia for the last 60 years. Journal of Soils and Sediments. 2018a. Vol. 18. No. 12. P. 3388-3403. https://doi.org/10.1007/s11368-018-2032-1
  35. Golosov V.N., Kuksina L.V., Ivanov M.M., Frolova N.L., Ivanova N.N., and Belyaev V.R. Evaluation of 137Cs redistribution in the floodplain sediment of the Upa River (Tula oblas) after the Chernobyl accident. Izvestiya RAN. Seriya geograficheskaya. 2020. No. 1. P. 114-126. https://doi.org/10.31857/S2587556620010082
  36. Golosov V. and Panin A. Century-scale stream network dynamics in the Russian Plain in response to climate and land use change. Catena. 2006. Vol. 66. Iss. 1-2. P. 74-92. https://doi.org/10.1016/j.catena.2005.07.011
  37. Golosov V.N., Panin A.V., and Markelov M.V. Chernobyl 137Cs redistribution in the small basin of the Lokna river, Central Russia. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 1999b. Vol. 24. Iss. 10. P. 881-885. https://doi.org/10.1016/S1464-1895(99)00130-1
  38. Golosov V.N., Panin A.V., and Walling D.E. Post-fallout redistribution of Chernobyl-derived Cs-137 in small catchments within the Lokna river basin. The role of erosion and sediment transport in nutrient and contaminent transfer. Canada, Waterloo, July. 2000. P. 10-14.
  39. Golosov V.N., Walling D.E., Konoplev A.V., Ivanov M.M., and Sharifullin A.G. Application of bomb-and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout. Journal of environmental radioactivity. 2018c. Vol. 186. P. 78-89. https://doi.org/10.1016/j.jenvrad.2017.06.022
  40. Golosov V.N., Walling D.E., Panin A.V., Stukin E.D., Kvasnikova E.V., and Ivanova N.N. The spatial variability of Chernobyl-derived 137Cs inventories in a small agricultural drainage basin in central Russia. Applied Radiation and Isotopes. 1999a. Vol. 51. Iss. 3. P. 341-352. https://doi.org/10.1016/S0969-8043(99)00050-0
  41. Golosov V.N. and Yermolayev O.P. (Eds). Prostranstvennovremennye zakonomernosti razvitiya sovremennykh protsessov prirodno-antropogennoi erozii na Russkoi ravnine (Spatio-temporal patterns of contemporary processes dynamics of natural and human-induced erosion on agricultural lands of the Russian Plain). Kazan: AN RT (Publ.), 2019. 372 p. (in Russ.)
  42. Golosov V., Yermolaev O., Litvin L., Chizhikova N., Kiryukhina Z., and Safina G. Influence of climate and land use changes on recent trends of soil erosion rates within the Russian Plain. Land Degradation & Development. 2018b. Vol. 29. Iss. 8. P. 2658-2667. https://doi.org/10.1002/ldr.3061
  43. Golosov V.N., Zhidkin A.P., Petelko A.I., Osipova M.S., Ivanova N.N., and Ivanov M.M. Polevaya verificatsiya erozionnykh modelei na osnove issledovanii malogo vodosbora v basseine r. Vorobzhi (Kurskaya oblastʼ) (Field verification of the erosion models based on the exploration of a little catchment int Vorobzha River basin (Kursk Oblast)). Eurasian Soil Science. 2022. Iss. 10. P. 1321-1338. https://doi.org/10.31857/S0032180X22100045
  44. Govers G., Vandaele K., Desmet P., Poesen J., and Bunte K. The role of tillage in soil redistribution on hillslopes. European Journal of Soil Science. 1994. Vol. 45. P. 469-478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x
  45. Gusarov A.V. The impact of contemporary changes in climate and land use/cover on tendencies in water flow, suspended sediment yield and erosion intensity in the northeastern part of the Don River basin, SW European Russia. Environmental research. 2019. Vol. 175. P. 468-488. https://doi.org/10.1016/j.envres.2019.03.057
  46. Gusarov A.V., Golosov V.N., Ivanov M.M., and Sharifullin A.G. Influence of relief characteristics and landscape connectivity on sediment redistribution in small agricultural catchments in the forest-steppe landscape zone of the Russian Plain within European Russia. Geomorphology. 2019. Vol. 327. P. 230-247. https://doi.org/10.1016/j.geomorph.2018.11.004
  47. Gusarov A.V., Golosov V.N., and Sharifullin A.G. Contribution of climate and land cover changes to reduction in soil erosion rates within small cultivated catchments in the eastern part of the Russian Plain during the last 60 years. Environmental research. 2018. Vol. 167. P. 21-33. https://doi.org/10.1016/j.envres.2018.06.046
  48. Hartvigsen M. Land reform and land fragmentation in central and Eastern Europe. Land Use Policy. 2014. Vol. 36. P. 330-341. https://doi.org/10.1016/j.landusepol.2013.08.016
  49. Hinderer M. From gullies to mountain belts: a review of sediment budgets at various scales. Sedimentary Geology. 2012. Vol. 280. P. 21-59. https://doi.org/10.1016/j.sedgeo.2012.03.009
  50. Horowitz A.J. A Primer on Sediment-Trace Element Chemistry. Lewis, Michigan, 1991. 134 p.
  51. Ivanov M.M. Erozionno-accumulyativnye protsessy kak faktor transformatsii polya radioaktivnogo zagryazneniya basseina r. Plavy (Erosion and accumulation processes as a factor transformation of radioactive contamination of the Plava River basin) PhD thesis. Moscow: MSU (Publ.), 2017. 24 p. (in Russ.)
  52. Ivanov M.M., Golosov V.N., and Belyaev V.R. Analysis of topography structure for the evaluation of sediment delivery ratio within Plava River basin (Tula oblast). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2017. No. 3. P. 14-22. (in Russ.)
  53. Ivanov M.M., Gurinov A.L., Ivanova N.N., Konoplev A.V., Konstantinov E.A., Kuzmenkova N.V., Terskaya E.V., and Golosov V.N. Dynamics of 137Cs accumulation in the bottom sediments of the Sheckino Reservoir during post-Chernobyl period. Radiatsionnaya biologiya. Radioekologiya. 2019. Vol. 59. No. 6. P. 656-668. (in Russ.)
  54. Ivanov M.M., Ivanova N.N., Golosov V.N., and Shamshurina E.N. Assessing the accumulation of sorbed isotope 137Cs within the upper components of the fluvial network in the zone of Chernobyl contamination. Geography and Natural Resources. 2016. Vol. 37. Iss. 4. P. 355-361. https://doi.org/10.1134/S1875372816040107
  55. Ivanov M.M., Komissarova O.L., Koshovskyi T.S., and Tsyplenkov A.S. Application of field gamma-spectrometry and dosimetry to study sedimentation on the floodplain of a small plain river in the zone of radioactive contamination. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2021. No. 1. P. 120-127. (in Russ.)
  56. Ivanov M.M., Konoplev A.V., Walling D.E., Konstantinov E.A., Gurinov A.L., Ivanova N.N., Kuzmenkova N.V., Tsyplenkov A.S., Ivanov M.A., and Golosov V.N. Using reservoir sediment deposits to determine the longer-term fate of Chernobyl-derived 137Cs fallout in the fluvial system. Environmental Pollution. 2021. Vol. 274. 116588. https://doi.org/10.1016/j.envpol.2021.116588
  57. Ivanova N.N., Shamshurina E.N., Golosov V.N., Belyaev V.R., Markelov M.V., Paramonova T.A., and Evrard O. Assessment of 137Cs redistribution by exogenic processes in the Plava River valley bottom (Tula oblast) after the Chernobyl accident. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2014. No. 1. P. 24-34. (in Russ.)
  58. Izrael Yu.A., De Cort M., Jones A.R., Nazarov I.M., Fridman Sh.D., Kvasnikova E.V., Stukin E.D., Kelly G.N., Matveenko I.I., Pokumeiko Yu.M., Tabatchnyi L.Ya., and Tsaturov Yu.Yu. The atlas of cesium-137 contamination of Europe after the Chernobyl accident. Minsk (Belarus), 1996. 1192 p.
  59. Jones R.L., Olson K.R. Fly ash use as a time marker in sedimentation studies. Soil Science Society of America Journal. 1990. Vol. 54. Iss. 3. P. 855-859. https://doi.org/10.2136/sssaj1990.03615995005400030040x
  60. Kondolf G.M., Schmitt R.J., Carling P., Darby S., Arias M., Bizzi S., Castelletti A., Cochrane T. A., Gibson S., Kummu M., Oeurng C., Rubin Z., and Wild T. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin. Science of the total environment. 2018. Vol. 625. P. 114-134. https://doi.org/10.1016/j.scitotenv.2017.11.361
  61. Konoplev A., Golosov V., Laptev G., Nanba K., Onda Y., Takase T., Wakiyama Y., and Yoshimura K. Behavior of accidentally released radiocesium in soil-water environment: Looking at Fukushima from a Chernobyl perspective. Journal of environmental radioactivity. 2016. Vol. 151. P. 568-578. https://doi.org/10.1016/j.jenvrad.2015.06.019
  62. Konoplev A.V., Ivanov M.M., Golosov V.N., and Konstantinov E.A. Reconstruction of long-term dynamics of Chernobyl-derived 137Cs in the upa river using bottom sediments in the scheckino reservoir and semi-empirical modeling. Proceedings IAHS “Land use and climate change impacts on erosion and sediment transport”. 2019. Vol. 381. P. 95-99. https://doi.org/10.5194/piahs-381-95-2019
  63. Koval’chuk I.P., Shtoiko P.I. Changes in river systems of the Zapadnoyed Podolyie in XVIII-XX centuries. Geomorfologiya. 1992. No. 2. P. 55-73. (in Russ.)
  64. Larionov G.A. Eroziya i deflyatsiya pochv: osnovnye zakonomernosti i kolichestvennye otsenki (Erosion and deflation of soils: basic patterns and assessments). M.: MGU (Publ.), 1993. 198 p. (in Russ.)
  65. Litvin L.F. Geografiya erozii pochv selʼskokhozyaistvennykh zemelʼ Rossii (Geography of soil erosion on agricultural lands of Russia). M.: Akademkniga (Publ.), 255 p. (in Russ.)
  66. Litvin L.F., Golosov V.N., Doborvolskaya N.G., Ivanova N.N., Kyrukhina Z.P., and Krasnov S.F. The redistribution of 137Cs by water erosion of soils. Vodnye resursy. 1996. No. 3. P. 314-320. (in Russ.)
  67. Litvin L.F., Zorina Y.F., Sidorchuk A.Y., Chernov A.V., and Golosov V.N. Erosion and sedimentation on the Russian Plain, part 1: contemporary processes. Hydrological Processes. 2003. Vol. 17. Iss. 16. P. 3335-3346. https://doi.org/10.1002/hyp.1390
  68. Macklin M.G., Brewer P.A., Hudson-Edwards K.A., Bird G., Coulthard T.J., Dennis I.A., Lechler P.J., Miller J.R., and Turner J.N. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology. 2006. Vol. 79. Iss. 3-4. P. 423-447. https://doi.org/10.1016/j.geomorph.2006.06.024
  69. Macklin M.G., Hudson-Edwards K.A., and Dawson E.J. The significance of pollution of historic metal mining in the Pennine oreflelds on river sediment contaminant fluxes to the North Sea. Science of Total Environment. 1997. Vol. 194-195. P. 391-397. https://doi.org/10.1016/S0048-9697(96)05378-8
  70. Mamikhin S.V., Golosov V.N., Paramonova T.A., Shamshurina E.N., and Ivanov M.M. Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl accident and its simulation. Eurasian Soil Science. 2016. Vol. 49. Iss. 12. P. 1432-1442. https://doi.org/10.1134/S1064229316120103
  71. Marron D.C. Floodplain storage of mine tailings in the Belle Fourche River system: a sediment budget approach. Earth Surface Processes and Landforms. 1992. Vol. 17. Iss. 7. P. 675-685. https://doi.org/10.1002/esp.3290170704
  72. Miller J.R. The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration. 1997. Vol. 58. Iss. 2-3. P. 101-118. https://doi.org/10.1016/S0375-6742(96)00073-8
  73. Minella J.P., Walling D.E., and Merten G.H. Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies. Journal of Hydrology. 2014. Vol. 519. P. 2189-2201. https://doi.org/10.1016/j.jhydrol.2014.10.013
  74. Notebaert B., Verstraeten G., Rommens T., Vanmontfort B., Govers G., and Poesen J. Establishing a Holocene sediment budget for the river Dijle. Catena. 2009. Vol. 77. Iss. 2. P. 150-163. https://doi.org/10.1016/j.catena.2008.02.001
  75. Nyssen J., Poesen J., Moeyersons J., Haile M., and Deckers J. Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands-towards a sediment budget. Earth surface processes and landforms. 2008. Vol. 33. Iss. 5. P. 695-711. https://doi.org/10.1002/esp.1569
  76. Oldfield F., Thompson R., and Barber K.E. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections. Science. 1978. Vol. 199. Iss. 4329. P. 679-680. https://doi.org/10.1126/science.199.4329.679
  77. Olson K.R., Gennadiyev A.N., Zhidkin A.P., Markelov M.V., Golosov V.N., and Lang J.M. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena. 2013. Vol. 104. P. 103-110. https://doi.org/10.1016/j.catena.2012.10.015
  78. Olson K.R., Jones R.L. Use of fly ash as time marker in soil erosion and sedimentation studies. Sustaining the Global Farm. 2001. P. 1059-1061.
  79. Panin A.V., Walling D.E., and Golosov V.N. The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobyl-derived caesium-137: a case study of the Lapki catchment, Central Russia. Geomorphology. 2001. Vol. 40. Iss. 3-4. P. 185-204. https://doi.org/10.1016/S0169-555X(01)00043-5
  80. Prytkova M.Ya. Osadkonakoplenie v malykh vodokhranilishchakh. Balansovye issledovaniya (Sedimentation in small reservoirs. Balance studies). L.: Nauka (Publ.), 1981. 152 p. (in Russ.)
  81. Ratnikov A.I. Geomorphic and agro-pedologic zones of Tula region. Pochvennoe raionirovanie SSSR. Iss. 1. M.: MGU (Publ.), 1960. P. 92-116. (in Riss.)
  82. Shamshurina E.N., Golosov V.N., and Ivanov M.M. Spatial-temporal reconstruction of Chernobyl-derived Cs fallout on the soil cover in the upper reach of the Lokna River. Radiatsionnaya biologiya. Radioecologya. 2016. No. 4. P. 414-425. (in Russ.) https://doi.org/10.7868/S0869803116040123
  83. Sidorchuk A. Sediment Budget Change in the Fluvial System at the Central Part of the Russian Plain Due to Human Impact. Erosion and Sediment Yield: Global and Regional Perspectives: Proceedings of an International Symposium Held at Exeter, UK, from 15 to 19 July 1996. IAHS. No. 236. 1996. P. 445.
  84. Sidorchuk A.Y. and Golosov V.N. Erosion and sedimentation on the Russian Plain, II: the history of erosion and sedimentation during the period of intensive agriculture. Hydrological processes. 2003. Vol. 17. Iss. 16. P. 3347-3358. https://doi.org/10.1002/hyp.1391
  85. Slaymaker O. The sediment budget as conceptual framework and management tool. The interactions between sediments and water. Springer. Dordrecht, 2003. P. 71-82.
  86. Trimble S.W. Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin, 1975-93. Science. 1999. Vol. 285. Iss. 5431. P. 1244-1246. https://doi.org/10.1126/science.285.5431.1244
  87. Walling D.E. The sediment delivery problem. Journal of hydrology. 1983. Vol. 65. Iss. 1-3. P. 209-237. https://doi.org/10.1016/0022-1694(83)90217-2
  88. Walling D.E. Using environmental radionuclides as tracers in sediment budget investigations. IAHS Publication. 2003. Vol. 283. P. 57-78.
  89. Walling D.E., Collins A.L. The catchment sediment budget as a management tool. Environmental Science & Policy. 2008. Vol. 11. Iss.2. P. 136-143. https://doi.org/10.1016/j.envsci.2007.10.004
  90. Walling D.E., He Q. Improved models for estimating soil erosion rates from cesium-137 measurements. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 1999. Vol. 28. Iss. 2. P. 611-622. https://doi.org/10.2134/jeq1999.00472425002800020027x
  91. Walling D.E., Owens P.N., Carter J., Leeks G.J.L., Lewis S., Meharg A.A., and Wright J. Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied geochemistry. 2003. Vol. 18. Iss. 2. P. 195-220. https://doi.org/10.1016/S0883-2927(02)00121-X
  92. Wang Z.Y., Li Y., and He Y. Sediment budget of the Yangtze River. Water Resources Research. 2007. Vol. 43. Iss. 4. W04401. https://doi.org/10.1029/2006WR005012
  93. Zhidkin A.P., Shamshurina E.N., Golosov V.N., Komissarov M.A., Ivanova N.N., and Ivanov M.M. Detailed study of post-Chernobyl Cs-137 redistribution in the soils of a small agricultural catchment (Tula region, Russia). Journal of Environmental Radioactivity. 2020. Vol. 223. 106386. https://doi.org/10.1016/j.jenvrad.2020.106386

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of the Plava River basin (а) and its level of the radioactive contamination (б) (Izrael et al., 1996). 1 – rivers, 2 – the Plava River basin boundary.

Download (257KB)
3. Fig. 2. The location of the small key catchments and observation sites of the flood plains. 1 – rivers; 2 – the key catchment boundaries; key catchments: 3 – Lapki, 4 – Chasovenkov Verkh, 5 – Upper Lokna, 6 – Svyatoi Istochnik, 7 – Lyapunovka; floodplain observation sites: 8 – of the Lokna River, 9 – of the Plava River.

Download (223KB)

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies