To the theory of the Pliocene – Pleistocene and Holocene climate

Cover Image

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, an attempt to explain the main features of the planetary climate dynamics over the past ~5 Myr is made. In particular, a general cooling from the Pliocene to the Pleistocene, predominant climate variations with periodicities of 100, 41, 23–19 thousand years and the continuous nature of the spectrum are discussed. As a result, it was shown that the decrease in temperature is due to a monotonous decrease of the CO2 concentration during the Cenozoic era. This led to glaciations and restructuring the predominant climate rhythmicity of from 41ka to 100 ka years cycles with an increase in the amplitude of fluctuations. 41 ka, 23 ka and 19 ka year cycles are associated with variations in the position of the planet in its orbit and the elongation of its orbit. 100 ka rhythms exists due to the stochastic resonance of internal variability and eccentricity variations. The continuous spectrum of oscillations reflects the transfer of energy along the spectrum from the energy-carrying range due to the direct cascade, which has a Kolmogorov character. At the same time, energy transfer to the low-frequency region (inverse cascade) is also possible and associated with the effect of the Brownian process. Climate change on a century scales is associated with the inflow of energy from two sides, from long-term and short-term processes. In the first case, it is transfer from the energy-carrying Milankovitch cycles, and in the second case, it is pumping from high frequencies. Therefore, these variations, in a certain sense, are the most difficult for causal analysis. The Dansgaard–Oeschger and Heinrich oscillations, which are included in the range of centenary variations, stand apart, having a specific oceanic-glacial nature.

Full Text

Restricted Access

About the authors

A. V. Kislov

Lomonosov Moscow State University, Faculty of Geography

Author for correspondence.
Email: avkislov@mail.ru
Russian Federation, Moscow

References

  1. Anderson D.M., Tardif R., Horlick K., Erb M.P., Hakim G.J., Noone D., Perkins W.A., and Steig E. Additions to the Last Millennium Reanalysis Multi-Proxy Database. Data Science Journal. 2019. Vol. 18. No. 1. R. 2. https://doi.org/10.5334/dsj-2019-002
  2. Beghin P., Charbit S., Combourieu-Nebout N., Christine H., Dumas C., Petterschmitt J.-Y., and Kageyama M. What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Climate Dynamics. 2015. Vol. 46. No. 7. P. 2611-2631. https://doi.org/10.1007/s00382-015-2720-0
  3. Berger A. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences. 1978. Vol. 35. Iss. 12. P. 2362-2367. https://doi.org/10.1175/1520-0469(1978)035<2362:LT-VODI>2.0.CO;2
  4. Berger A. and Loutre M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews. 1991. Vol. 10. Iss. 4. P. 297-317. https://doi.org/10.1016/0277-3791(91)90033-Q
  5. Braconnot P., Marzin C., Grégoire L., Mosquet E., and Marti O. Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Climate of the Past. 2008. No. 4. P. 281-294. https://doi.org/10.5194/cp-4-281-2008
  6. Brierley C.M., Zhao A., Harrison S.P., Braconnot P., Williams C.J.R., Thornalley D.J.R., Shi X., Peterschmitt J.-Y., Ohgaito R., Kaufman D.S., Kageyama M., Hargreaves J.C., Erb M.P., Emile-Geay J., D’Agostino R., Chandan D., Carré M., Bartlein P.J., Zheng W., Zhang Z., Zhang Q., Yang H., Volodin E.M., Tomas R.A., Routson C., Peltier W.R., Otto-Bliesner B., Morozova P.A., McKay N.P., Lohmann G., Legrande A.N., Guo C., Cao J., Brady E., Annan J.D., and Abe-Ouchi A. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Climate of the Past. 2020. No. 16. P. 1847-1872. https://doi.org/10.5194/cp-16-1847-2020
  7. Budyko M.I., Ronov A.B., and Yanshin A.L. Istoriya atmosfery (History of the atmosphere). L.: Gidrometeoizdat (Publ.), 1985. 207 p. (in Russ.)
  8. Crowley T.J. Causes of Climate Change Over the Past 1000 Years. Science. 2000. Vol. 289 Iss. 5477. P. 270-277. https://doi.org/10.1126/science.289.5477.270
  9. Demchenko P.F. and Kislov A.V. Stokhasticheskaya dinamika prirodnykh ob”ektov. Brounovskoe dvizhenie I geofizicheskie primery (Stochastic dynamics of natural objects. Brownian motion and geophysical examples.). M.: GEOS (Publ.), 2010. 190 p. (in Russ.)
  10. Dobrovolski S.G., Yushkov V.P., Vyruchalkina T.YU., and Sokolova O.V. Are there fundamental laws in hydrology? Pure and Applied Geophysics. 2022. Vol. 179. Iss. 4. P. 1475-1484 https://doi.org/10.1007/s00024-022-03003-1
  11. Dommenget D. and Latif M. Analysis of observed and simulated SST spectra in the midlatitudes. Climate Dynamics. 2002. No. 19. P. 277-288. https://doi.org/10.1007/s00382-002-0229-9
  12. Franke J., Brönnimann S., Bhend J., and Brugnara Y. A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations // Scientific Data. 2017. No. 4. 170076. https://doi.org/10.1038/sdata.2017.76
  13. Ganopolski A. and Calov R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Climate of the Past. 2011. No. 7. P. 1415-1425. https://doi.org/10.5194/cp-7-1415-2011
  14. Golitsyn G.S. Statistika i dinamika prirodnykh protsessov I yavlenii. Metody, instrumentarii, rezulʼtaty (Statistics and dynamics of natural processes and phenomena. Methods, tools, results.). M.: Krasand (Publ.), 2013. 400 p. (in Russ.)
  15. Gurvich A.S., Kon A.I., Mironov V.L., and Khmelevtsov S.S. (Eds.). Lazernoe izluchenie v turbulentnoi atmosfere. Glava 1 (Laser radiation in a turbulent atmosphere. Chapter 1.). M.: Nauka (Publ.), 1976. P. 7-55. (in Russ.)
  16. Hall A. and Manabe S. Can local linear stochastic theory explain sea surface temperature and salinity variability? Climate Dynamics. 1997. No. 13. P. 167-180. https://doi.org/10.1007/s003820050158
  17. Hasselmann K. Stochastic climate models. Part I. Theory. Tellus. 1976. Vol. 28. Iss. 6. P. 473-485. https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
  18. Hays J., Imbrie J., and Shackleton N. Variation in the Earth’s orbit: pacemakers of the ice ages. Science. 1976. Vol. 194. Iss. 4270. P. 1121-1132. https://doi.org/10.1126/science.194.4270.112
  19. Huybers P.J. and Curry W. Links between annual, Milankovitch and continuum temperature variability. Nature. 2006. No. 441. P. 329-332. https://doi.org/10.1038/nature04745
  20. Kageyama M., Harrison S.P., Kapsch M.-L., Lofverstrom M., Lora J.M., Mikolajewicz U., Sherriff-Tadano S., Vadsa-ria T., Abe-Ouchi A., Bouttes N., Chandan D., Gregoire L.J., Ivanovic R.F., Izumi K., LeGrande A.N., Lhardy F., Lohmann G., Morozova P.A., Ohgaito R., Paul A., Peltier W.R., Poulsen C.J., Quiquet A., Didier M., Roche D.M., Shi X., Tierney J.E, Paul J., Valdes P.J., Volodin E.M., and Jiang Zhu J. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past. 2021. Vol. 17. P. 1065-1089. https://doi.org/10.5194/cp-17-1065-2021
  21. Kislov A.V. Amplitude and periodicity of global climate fluctuations. Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya. 1981. № 2. P. 26-30. (in Russ.)
  22. Kislov A.V. Astronomical forcing and mathematical theory of glacial-interglacial cycles. Climate of the Past Discussions. 2009. No. 5. P. 327-340. https://doi.org/10.5194/cpd-5-327-2009
  23. Kronover R.M. Fraktaly i khaos v dinamicheskikh sistemakh (Fractals and chaos in dynamical systems). M.: Post-market (Publ.), 1999. 350 p. (in Russ.)
  24. Lourens L.J., Becker J., Bintanja R., Hilgen F.J., Tuenter E., van de Wal R.S.W., and Ziegler M. Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory. Quaternary Science Reviews. 2010. Vol. 29. Iss. 1-2. P. 352-365. https://doi.org/10.1016/j.quascirev.2009.10.018
  25. Lovejoy S. Fractional relaxation noises, motions and the fractional energy balance equation. Nonlinear Processes in Geophysics. 2022. No. 29. P. 93-121. https://doi.org/10.5194/npg-29-93-2022
  26. Lovejoy S. The Half-order Energy Balance Equation, Part 1: The homogeneous HEBE and long memories. Earth System Dynamics. 2021. No. 12. P. 1-18. https://doi.org/10.5194/esd-12-469-2021
  27. Lovejoy S. Weather, Macroweather and the Climate. Oxford Univ. press, 2019. 347 p.
  28. Mann M.E. On long range dependence in global surface temperature series. Climatic Change. 2011. No. 107. P. 267-276. https://doi.org/10.1007/s10584-010-9998-z
  29. Mitchell J.M. An overview of climatic variability and its causal mechanisms. Quaternary Research. 1976. Vol. 6. Iss. 4. P. 481-493. https://doi.org/10.1016/0033-5894(76)90021-1
  30. Mukhin D., Gavrilov A., Loskutov E., Juergen Kurths J., and Feigin A. Bayesian Data Analysis for Revealing Causes of the Middle Pleistocene Transition. Scientific Reports. 2019. No. 9. 7328. https://doi.org/10.1038/s41598-019-43867-3
  31. Ou H.-W. A theory of abrupt climate changes: their genesis and anatomy. EGUsphere [preprint], 2022. https://doi.org/10.5194/egusphere-2022-208.
  32. Rousseau D.-D., Bagniewski W., and Ghil M. Abrupt climate changes and the astronomical theory: are they related? Climate of the Past. No. 18. P. 249-271. https://doi.org/10.5194/cp-18-249-2022, 2022.
  33. Sidorenkov N.S. Atmosfernye protsessy i vrashchenie Zemli (Atmospheric processes and the rotation of the Earth). SPb.: Gidrometeoizdat (Publ.), 2002. 365 p. (in Russ.)
  34. Tan N., Ladant J.-B., Ramstein G., Dumas C., Bachem P., and Jansen E. Dynamic Greenland ice sheet driven by pCO2 variations across the Pliocene Pleistocene transition. Nature Communications. 2018. No. 9. P. 4755. https://doi.org/10.1038/s41467-018-07206-w
  35. Tzedakis P.C., Crucifix M., Mitsui T., and Wolff E.W. A simple rule to determine which insolation cycles lead to interglacials. Nature. 2017. No. 542. P. 427-432. https://doi.org/10.1038/nature21364
  36. Venti N.L., Billups K., and Herbert T.D. Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing. Earth and Planetary Science Letters. 2013. Vol. 384. P. 121-131. https://doi.org/10.1016/j.epsl.2013.10.007
  37. Wunsch C. The spectral description of climate change including the 100 ky energy. Climate Dynamics. 2003. No. 20. P. 353-363. https://doi.org/10.1007/s00382-002-0279-z
  38. Zachos J., Pagani M., Sloan L., Thomas E., and Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001. Vol. 292. Iss. 5517. P. 686-693. https://doi.org/10.1126/science.1059412
  39. Zhu F., Emile-Geay J., McKay N.P., Hakim G.J. Khider D., Ault T.R., Steig E.J., Dee S., and Kirchner J.W. Climate models can correctly simulate the continuum of global-average temperature variability. Proceedings of the National Academy of Sciences of the United States of America. 2019. Vol. 116. Iss. 18. P. 8728-8733. www.pnas.org/cgi/doi/10.1073/pnas.1809959116

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Insolation anomalies on the MAA (W/m2 ) for (a) 6 and (б) 127 kyr ago. On the abscissa axis, the numbers of the months, on the ordinate axis, the sine of latitude (Southern Hemisphere <0). The calculations were carried out on the basis of the algorithms and programs presented (Berger, 1978).

Download (642KB)
3. Fig. 2. Anomalies of insolation on the VGA (W/m2 ) for the last 21 thousand years (y-axis; 0 is the present time). On the abscissa axis are the numbers of the months. The calculations were carried out on the basis of the algorithms and programs presented in (Berger, 1978).

Download (445KB)
4. Fig. 3. Spectra of temperature fluctuations (in relative units) according to paleoreconstruction data (see tabl. 1) and a generalized line composed of segments with the specified value of the coefficient k = 2, 0.6, 2, 1.67, and in the low-frequency range it has two branches. The annual cycle is filtered out.

Download (104KB)

Copyright (c) 2023 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies