Generalized Navier–Stokes equations associated with the Dolbeault complex

Cover Page

Cite item

Full Text

Abstract

We consider the Cauchy problem for a system of nonlinear differential equations structurally similar to the classical evolutional Navier–Stokes equations for an incompressible liquid. The main difference of this system is that it is generated not by the standard gradient, divergence, and curl operators, but by the multidimensional Cauchy–Riemann operator, its the compatibility complex (which is usually called the Dolbeault complex) and its formally adjoint operator. The similarity of the structure makes it possible to prove the theorem of the existence of weak solutions for this problem and the open mapping theorem on the scale of specially constructed Bochner–Sobolev spaces. In addition, a criterion for the existence of a “strong” solution in these spaces is obtained.

About the authors

Aleksandr Anatol'evich Shlapunov

Siberian Federal University

Doctor of physico-mathematical sciences, Professor

Alexander Nikolaevich Polkovnikov

Siberian Federal University

References

  1. Ладыженская О. А., Математические вопросы динамики вязкой несжимаемой жидкости, Наука, М., 1961
  2. Ладыженская О. А., “Шестая проблема тысячелетия: уравнения Навье-Стокса, существование и гладкость”, Успехи математических наук, 58:2(350) (2003), 45–78
  3. Barker T., “Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound”, Proc. Amer. Math. Soc. Ser. B, 11 (2024), 436-451
  4. Barker T., Prange C., “From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations”, Vietnam Journal of Mathematics, 52 (2024), 707–734
  5. Barker T., Seregin G., “A necessary condition of potential blowup for the Navier–Stokes system in half-space”, Mathematische Annalen, 369:3-4 (2017), 1327–1352
  6. Barker T., Seregin G., “On stability of weak Navier–Stokes solutions with large initial data”, Communications in Partial Differential Equations, 43:4 (2018), 628–651
  7. Choe H. J., Wolf J., Yang M., “A new local regularity criterion for suitable weak solutions of the Navier–Stokes equations in terms of the velocity gradient.”, Mathematische Annalen, 370:3-4 (2018), 629–-647
  8. Escauriaza L., Seregin G. A., “-solutions of the Navier-Stokes equations and backward uniqueness”, Russian Mathematical Surveys, 58:2 (2003), 211–250
  9. Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. of the AMS, 7:1 (1982), 65–222
  10. Lions J. L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin et al, 1972
  11. Mera A., Tarkhanov N., Shlapunov A. A., “Navier-Stokes Equations for Elliptic Complexes”, Journal of Siberian Federal University, Math. and Phys., 12:9 (2019), 3–27
  12. Mitrinovic‘ D. S., Pearic J. E, Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), V. 53, Kluwer Academic Publishers, Dordrecht, 1991
  13. Plechac P., Sverak V., “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097
  14. Polkovnikov A. N., “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis., 102 (2023), 2211-2233
  15. Prodi G., “Un teorema di unicita per le equazioni di Navier-Stokes”, Annali di Matematica Pura ed Applicata, 48 (1959), 173–182
  16. Serrin J., “On the interior regularity of weak solutions of the Navie-Stokes equations”, Archive for Rational Mechanics and Analysis, 9 (1962), 187–195
  17. Shlapunov A. A., Tarkhanov N., “An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ”, Siberian Electronic Math. Reports, 18:2 (2021), 1433–1466
  18. Shlapunov A. A., Tarkhanov N., “Inverse image of precompact sets and regular solutions to the Navier-Stokes equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 278–297
  19. Smale S., “An infinite dimensional version of Sard’s theorem”, Amer. J. Math., 87:4 (1965), 861–866
  20. Tao T., “Finite time blow-up for an averaged three-dimensional Navier-Stokes equation”, J. of the AMS, 29 (2016), 601–674
  21. Tarkhanov N., Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, NL, 1995
  22. Temam R., Navier-Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shlapunov A.A., Polkovnikov A.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).