Generalized Navier–Stokes equations associated with the Dolbeault complex
- Authors: Shlapunov A.A.1, Polkovnikov A.N.1
-
Affiliations:
- Siberian Federal University
- Issue: Vol 241 (2025)
- Pages: 90-100
- Section: Articles
- URL: https://journals.rcsi.science/2782-4438/article/view/312566
- DOI: https://doi.org/10.36535/2782-4438-2025-241-90-100
- ID: 312566
Cite item
Full Text
Abstract
We consider the Cauchy problem for a system of nonlinear differential equations structurally similar to the classical evolutional Navier–Stokes equations for an incompressible liquid. The main difference of this system is that it is generated not by the standard gradient, divergence, and curl operators, but by the multidimensional Cauchy–Riemann operator, its the compatibility complex (which is usually called the Dolbeault complex) and its formally adjoint operator. The similarity of the structure makes it possible to prove the theorem of the existence of weak solutions for this problem and the open mapping theorem on the scale of specially constructed Bochner–Sobolev spaces. In addition, a criterion for the existence of a “strong” solution in these spaces is obtained.
About the authors
Aleksandr Anatol'evich Shlapunov
Siberian Federal UniversityDoctor of physico-mathematical sciences, Professor
Alexander Nikolaevich Polkovnikov
Siberian Federal University
References
- Ладыженская О. А., Математические вопросы динамики вязкой несжимаемой жидкости, Наука, М., 1961
- Ладыженская О. А., “Шестая проблема тысячелетия: уравнения Навье-Стокса, существование и гладкость”, Успехи математических наук, 58:2(350) (2003), 45–78
- Barker T., “Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound”, Proc. Amer. Math. Soc. Ser. B, 11 (2024), 436-451
- Barker T., Prange C., “From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations”, Vietnam Journal of Mathematics, 52 (2024), 707–734
- Barker T., Seregin G., “A necessary condition of potential blowup for the Navier–Stokes system in half-space”, Mathematische Annalen, 369:3-4 (2017), 1327–1352
- Barker T., Seregin G., “On stability of weak Navier–Stokes solutions with large initial data”, Communications in Partial Differential Equations, 43:4 (2018), 628–651
- Choe H. J., Wolf J., Yang M., “A new local regularity criterion for suitable weak solutions of the Navier–Stokes equations in terms of the velocity gradient.”, Mathematische Annalen, 370:3-4 (2018), 629–-647
- Escauriaza L., Seregin G. A., “-solutions of the Navier-Stokes equations and backward uniqueness”, Russian Mathematical Surveys, 58:2 (2003), 211–250
- Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. of the AMS, 7:1 (1982), 65–222
- Lions J. L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin et al, 1972
- Mera A., Tarkhanov N., Shlapunov A. A., “Navier-Stokes Equations for Elliptic Complexes”, Journal of Siberian Federal University, Math. and Phys., 12:9 (2019), 3–27
- Mitrinovic‘ D. S., Pearic J. E, Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), V. 53, Kluwer Academic Publishers, Dordrecht, 1991
- Plechac P., Sverak V., “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097
- Polkovnikov A. N., “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis., 102 (2023), 2211-2233
- Prodi G., “Un teorema di unicita per le equazioni di Navier-Stokes”, Annali di Matematica Pura ed Applicata, 48 (1959), 173–182
- Serrin J., “On the interior regularity of weak solutions of the Navie-Stokes equations”, Archive for Rational Mechanics and Analysis, 9 (1962), 187–195
- Shlapunov A. A., Tarkhanov N., “An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ”, Siberian Electronic Math. Reports, 18:2 (2021), 1433–1466
- Shlapunov A. A., Tarkhanov N., “Inverse image of precompact sets and regular solutions to the Navier-Stokes equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 278–297
- Smale S., “An infinite dimensional version of Sard’s theorem”, Amer. J. Math., 87:4 (1965), 861–866
- Tao T., “Finite time blow-up for an averaged three-dimensional Navier-Stokes equation”, J. of the AMS, 29 (2016), 601–674
- Tarkhanov N., Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, NL, 1995
- Temam R., Navier-Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979
Supplementary files
