Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman’s centralizer theorem
- Authors: Elishev A.M.1, Kanel-Belov A.Y.1, Razavinia F.1, Yu J.2, Zhang W.3
-
Affiliations:
- Московский физико-технический институт (национальный исследовательский университет)
- Шэньчженьский университет
- Университет Хуэйчжоу
- Issue: Vol 214 (2022)
- Pages: 107-126
- Section: Статьи
- URL: https://journals.rcsi.science/2782-4438/article/view/271792
- DOI: https://doi.org/10.36535/0233-6723-2022-214-107-126
- ID: 271792
Cite item
Full Text
Abstract
The purpose of this review is the collection and systematization of results concerning the quantization approach to the some classical aspects of non-commutative algebras, especially to the Jacobian conjecture. We start with quantization proof of Bergman centralizing theorem, then discourse authomorphisms of INd-schemes authomorphisms, then go to aproximation issues. Last chapter dedicated to relations between PI -theory Burnside type theorems and Jacobian Conjecture (Jagzev approach). This issue contains the second part of the work. The first part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 213 (2022), pp. 110-144. Continuation will be published in future issues.
Keywords
About the authors
A. M. Elishev
Московский физико-технический институт (национальный исследовательский университет)
Author for correspondence.
Email: ame1511@mail.ru
Russian Federation, Москва
A. Ya. Kanel-Belov
Московский физико-технический институт (национальный исследовательский университет)
Email: kanelster@gmail.com
Russian Federation, Москва
Farrokh Razavinia
Московский физико-технический институт (национальный исследовательский университет)
Email: farrokh.razavinia@gmail.com
Russian Federation, Москва
Jie-Tai Yu
Шэньчженьский университет
Email: yujt@hkucc.hku.hk
China, Шэньчжень
Wenchao Zhang
Университет Хуэйчжоу
Email: zhangwc@hzu.edu.cn
Школа математики и статистики
ChinaReferences
- Abdesselam A. The Jacobian conjecture as a problem of perturbative quantum field theory// Ann. H. Poincare. — 2003. — 4, № 2. — P. 199-215.
- Abhyankar S., Moh T. Embedding of the line in the plane// J. Reine Angew. Math. — 1975. — 276. — P. 148-166.
- Amitsur S’. A. Algebras over infinite fields// Proc. Am. Math. Soc. — 1956. — 7. — P. 35-48.
- Amitsur S’. A. A general theory of radicals, III. Applications// Am. J. Math. — 1954. — 75. — P. 126-136.
- Alev J., Le Bruyn L. Automorphisms of generic 2 by 2 matrices// in: Perspectives in Ring Theory. — Springer, 1988. — P. 69-83.
- Amitsur A. S, Levitzki J. Minimal identities for algebras// Proc. Am. Math. Soc. — 1950. — 1. — P. 449-463.
- Amitsur A. S, Levitzki J. Remarks on minimal identities for algebras// Proc. Am. Math. Soc. — 1951.2. — P. 320-327.
- Anick D. J. Limits of tame automorphisms of k[x1,..., xn]// J. Algebra. — 1983. — 82, № 2. — P. 459-468.
- Artamonov V. A. Projective metabelian groups and Lie algebras// Izv. Math. — 1978. — 12, № 2. — С. 213-223.
- Artamonov V. A. Projective modules over universal enveloping algebras// Math. USSR Izv. — 1985. — 25, № 3. — С. 429.
- Artamonov V. A. Nilpotence, projectivity, decomposability// Sib. Math. J. — 1991. — 32, № 6. — С. 901909.
- Artamonov V. A. The quantum Serre problem// Russ. Math. Surv. — 1998. — 53, № 4. — С. 3-77.
- Artamonov V. A. Automorphisms and derivations of quantum polynomials// in: Recent Advances in Lie Theory (Bajo I., Sanmartin E., eds.). — Heldermann Verlag, 2002. — P. 109-120.
- Artamonov V. A. Generalized derivations of quantum plane// J. Math. Sci. — 2005. — 131, № 5. — С. 5904-5918.
- Artamonov V. A. Quantum polynomials in: Advances in Algebra and Combinatorics. — Singapore: World Scientific, 2008. — P. 19-34.
- Artin M. Noncommutative Rings. — Preprint, 1999.
- Arzhantsev I., Kuyumzhiyan K., Zaidenberg M. Infinite transitivity, finite generation, and Demazure roots// Adv. Math. — 2019. — 351. — P. 1-32.
- Asanuma T. Non-linearizable algebraic k*-actions on affine spaces. — Preprint, 1996.
- Backelin E. Endomorphisms of quantized Weyl algebras// Lett. Math. Phys. — 2011. — 97, № 3. — P. 317-338.
- Bass H. A non-triangular action of Ga on A3// J. Pure Appl. Algebra. — 1984. — 33, № 1. — P. 1-5.
- Bass H., Connell E. H, Wright D. The Jacobian conjecture: reduction of degree and formal expansion of the inverse// Bull. Am. Math. Soc. — 1982. — 7, № 2. — P. 287-330.
- Bavula V. V. A question of Rentschler and the Dixmier problem// Ann. Math. (2). — 2001. — 154, № 3.P. 683-702.
- Bavula V. V. Generalized Weyl algebras and diskew polynomial rings/ arXiv: 1612.08941 [math.RA].
- Bavula V. V. The group of automorphisms of the Lie algebra of derivations of a polynomial algebra// J. Alg. Appl. — 2017. — 16, № 5. — 1750088.
- Bavula V. V. The groups of automorphisms of the Lie algebras of formally analytic vector fields with constant divergence// C. R. Math. — 2014. — 352, № 2. — P. 85-88.
- Bavula V. V. The inversion formulae for automorphisms of Weyl algebras and polynomial algebras// J. Pure Appl. Algebra. — 2007. — 210. — P. 147-159.
- Bavula V. V. The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic// J. Pure Appl. Algebra. — 2008. — 212, № 10. — P. 2320-2337.
- Bavula V. V. An analogue of the conjecture of Dixmier is true for the algebra of polynomial integrodifferential operators// J. Algebra. — 2012. — 372. — P. 237-250.
- Bavula V. V. Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an au- thomorphism// C. R. Acad. Sci. Paris. Ser. 1. — 2012. — 350, № 11-12. — P. 553-556.
- Bavula V. V. The Jacobian conjecture2n implies the Dixmier problemn/ arXiv: math/0512250[math.RA].
- Beauville A., Colliot-Thelene J.-L., Sansuc J.-J., and Swinnerton-Dyer P. Varietes stablement rationnelles non rationnelles// Ann. Math. — 1985. — 121. — P. 283-318.
- Bayen F, Flato M, Fronsdal C, Lichnerowicz A., Sternheimer D. Deformation theory and quantization. 1.Deformations of symplectic structures// Ann. Phys. — 1978. — 111, № 1. — P. 61-110.
- Belov A. Linear recurrence equations on a tree// Math. Notes. — 2005. — 78, № 5. — С. 603-609.
- Belov A. Local finite basis property and local representability of varieties of associative rings.// Izv. Math.2010. — 74. — С. 1-126.
- Belov A., Bokut L., Rowen L, Yu J.-T. The Jacobian conjecture, together with Specht and Burnside-type problems// in: Automorphisms in Birational and Affine Geometry. — Springer, 2014. — P. 249-285.
- Belov A., Makar-Limanov L., Yu J. T. On the generalised cancellation conjecture// J. Algebra. — 2004.281. — P. 161-166.
- Belov A., Rowen L. H., Vishne U. Structure of Zariski-closed algebras// Trans. Am. Math. Soc. — 2012.362. — P. 4695-4734.
- Belov-Kanel A., Yu J.-T. On the lifting of the Nagata automorphism// Selecta Math. — 2011. — 17. — P. 935-945.
- Kanel-Belov A., Berzins A., Lipyanski R. Automorphisms of the semigroup of endomorphisms of free associative algebras// Int. J. Algebra Comp. — 2007. — 17, № 5/6. — P. 923-939.
- Belov-Kanel A., Elishev A. On planar algebraic curves and holonomic P-modules in positive characteristic// J. Algebra Appl. — 2016. — 15, № 8. — 1650155.
- Belov-Kanel A., Kontsevich M. Automorphisms of the Weyl algebra// Lett. Math. Phys. — 2005. — 74, № 2. — P. 181-199.
- Belov-Kanel A., Kontsevich M. The Jacobian conjecture is stably equivalent to the Dixmier conjecture// Moscow Math. J. — 2007. — 7, № 2. — С. 209-218.
- Belov-Kanel A., Lipyanski R. Automorphisms of the endomorphism semigroup of a polynomial algebra//J. Algebra. — 2011. — 333, № 1. — P. 40-54.
- Belov-Kanel A., Yu J.-T. Stable tameness of automorphisms of F(x, y, z') fixing z// Selecta Math. — 2012.18. — P. 799-802.
- Bergman G. M. Centralizers in free associative algebras// Trans. Am. Math. Soc. — 1969. — 137. — P. 327-344.
- Bergman G. M. The diamond lemma for ring theory// Adv. Math. — 1978. — 29, № 2. — P. 178-218.
- Berson J., van den Essen A., Wright D. Stable tameness of two-dimensional polynomial automorphisms over a regular ring// Adv. Math. — 2012. — 230. — P. 2176-2197.
- Birman J. An inverse function theorem for free groups// Proc. Am. Math. Soc. — 1973. — 41. — P. 634638.
- Bonnet P., Venereau S. Relations between the leading terms of a polynomial automorphism// J. Algebra.2009. — 322, № 2. — P. 579—599.
- Berzins A. The group of automorphisms of semigroup of endomorphisms of free commutative and free associative algebras/ arXiv: abs/math/0504015 [math.AG].
- Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, I// Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. — 1966. — 14. — P. 177-181.
- Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, II// Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. — 1967. — 15. — P. 123-125.
- Bialynicki-Birula A. Some theorems on actions of algebraic groups// Ann. Math. — 1973. — 98, № 3. — P. 480-497.
- Bitoun T. The p-support of a holonomic P-module is lagrangian, for p large enough/ arXiv: 1012.4081 [math.AG].
- Bodnarchuk Yu. Every regular automorphism of the affine Cremona group is inner// J. Pure Appl. Algebra.2001. — 157. — P. 115-119.
- Bokut L., Zelmanov E. Selected works of A. I. Shirshov. — Springer, 2009.
- Bokut L. A. Embedding Lie algebras into algebraically closed Lie algebras// Algebra Logika. — 1962. — 1. — С. 47-53.
- Bokut L. A. Embedding of algebras into algebraically closed algebras// Dokl. Akad. Nauk. — 1962. — 145, №5. — С. 963-964.
- Bokut L. A. Theorems of embedding in the theory of algebras// Colloq. Math. — 1966. — 14. — P. 349353.
- Bresar M., Procesi C., Spenko S. Functional identities on matrices and the Cayley-Hamilton polynomial/ arXiv:1212.4597 [math.RA].
- Campbell L. A. A condition for a polynomial map to be invertible// Math. Ann. — 1973. — 205, № 3. — P. 243-248.
- Cohn P. M. Subalgebras of free associative algebras// Proc. London Math. Soc. — 1964. — 3, № 4. — P. 618-632.
- Cohn P. M. Progress in free associative algebras// Isr. J. Math. — 1974. — 19, № 1-2. — P. 109-151.
- Cohn P. M. A brief history of infinite-dimensional skew fields// Math. Sci. — 1992. — 17. — P. 1-14.
- Cohn P. M. Free Rings and Their Relations. — Academic Press, 1985.
- Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. I// Trans. Am. Math. Soc.1971. — 160. — P. 393-401.
- Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. II// Trans. Am. Math. Soc.1972. — 171. — P. 309-315.
- Danielewski W. On the cancellation problem and automorphism groups of affine algebraic varieties. — Warsaw: Preprint, 1989.
- De Bondt M., van den Essen A. The Jacobian conjecture for symmetric Druzkowski mappings. — University of Nijmegen, 2004.
- De Bondt M., van den Essen A. A reduction of the Jacobian conjecture to the symmetric case// Proc. Am. Math. Soc. — 2005. — 133, № 8. — P. 2201-2205.
- De Concini C., Procesi C. A characteristic free approach to invariant theory// in: Young Tableaux in Combinatorics, Invariant Theory, and Algebra. — Elsevier, 1982. — P. 169-193.
- Deserti J. Sur le groupe des automorphismes polynomiaux du plan affine// J. Algebra. — 2006. — 297.P. 584-599.
- Dicks W. Automorphisms of the free algebra of rank two// Contemp. Math. — 1985. — 43. — P. 63-68.
- Dicks W., Lewin J. Jacobian conjecture for free associative algebras// Commun. Algebra. — 1982. — 10, № 12. — P. 1285-1306.
- Dixmier J. Sur les algebres de Weyl// Bull. Soc. Math. France. — 1968. — 96. — P. 209-242.
- Dodd C. The p-cycle of holonomic P-modules and auto-equivalences of the Weyl algebra/ arXiv: 1510.05734 [math.OC].
- Donkin S. Invariants of several matrices// Inv. Math. — 1992. — 110, № 1. — P. 389-401.
- Donkin S. Invariant functions on matrices// Math. Proc. Cambridge Phil. Soc. — 1993. — 113, № 1. — P. 23-43.
- Drensky V., Yu J.-T. A cancellation conjecture for free associative algebras// Proc. Am. Math. Soc. — 2008. — 136, № 10. — P. 3391-3394.
- Drensky V., Yu J.-T. The strong Anick conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2006. — 103. — P. 4836-4840.
- Drensky V., Yu J.-T. Coordinates and automorphisms of polynomial and free associative algebras of rank three// Front. Math. China. — 2007. — 2, № 1. — P. 13-46.
- Drensky V., Yu J.-T. The strong Anick conjecture is true// J. Eur. Math. Soc. — 2007. — 9. — P. 659-679.
- DruZkowski L. An effective approach to Keller’s Jacobian conjecture// Math. Ann. — 1983. — 264, № 3.P. 303-313.
- DruZkowski L. The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case// Ann. Polon. Math. — 2005. — 87, № 1. — P. 83-92.
- Druzkowski L. M. New reduction in the Jacobian conjecture// in: Effective Methods in Algebraic and Analytic Geometry. — Krakow: Univ. lagel. Acta Math., 2001. — P. 203-206.
- Elishev A. Automorphisms of polynomial algebras, quantization and Kontsevich conjecture/ PhD Thesis-Moscow Institute of Physics and Technology, 2019.
- Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Noncommutative Bialynicki-Birula theorem./ arXiv:1808.04903 [math.AG].
- Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Torus actions on free associative algebras, lifting and Bialynicki-Birula type theorems/ arXiv: 1901.01385 [math.AG].
- van den Bergh M. On involutivity of p-support// Int. Math. Res. Not. — 2015. — 15. — P. 6295-6304.
- van den Essen A. The amazing image conjecture/ arXiv: 1006.5801 [math.AG].
- van den Essen A., de Bondt M. Recent progress on the Jacobian conjecture// Ann. Polon. Math. — 2005.87. — P. 1-11.
- van den Essen A., de Bondt M. The Jacobian conjecture for symmetric DruZkowski mappings// Ann. Polon. Math. — 2005. — 86, № 1. — P. 43-46.
- van den Essen A., Wright D, Zhao W. On the image conjecture// J. Algebra. — 2011. — 340. — P. 211— 224.
- Fox R. H. Free differential calculus, I. Derivation in the free group ring// Ann. Math. (2). — 1953. — 57.P. 547-560.
- Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, I// Izv. Math. — 1975. — 9, № 3. — С. 493-534.
- Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, II// Izv. Math. — 1977. — 11, № 1. — С. 51-98.
- Gorni G., Zampieri G. Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse// Polon. Math. — 1996. — 64. — P. 285-290.
- Fedosov B. A simple geometrical construction of deformation quantization// J. Differ. Geom. — 1994. — 40, № 2. — P. 213-238.
- Frayne T, Morel A. C, Scott D. S. Reduced direct products// J. Symb. Logic.. — 31, № 3. — P. 1966.
- Fulton W., Harris J. Representation Theory. A First Course. — Springer-Verlag, 1991.
- Furter J.-P., Kraft H. On the geometry of the automorphism groups of affine varieties/ arXiv: 1809.04175 [math.AG].
- Gutwirth A. The action of an algebraic torus on the affine plane// Trans. Am. Math. Soc. — 1962. — 105, № 3. — P. 407-414.
- Jung H. W. E. Uber ganze birationale Transformationen der Ebene// J. Reine Angew. Math. — 1942. — P. 161-174.
- Kaliman S., Koras M, Makar-Limanov L., Russell P. C*-actions on C3 are linearizable// Electron. Res. Announc. Am. Math. Soc. — 1997. — 3. — P. 63-71.
- Kaliman S., Zaidenberg M. Families of affine planes: the existence of a cylinder// Michigan Math. J. — 2001. — 49. — P. 353-367.
- Kuroda S. Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism// Tohoku Math. J. — 2010. — 62. — P. 75-115.
- Kuzmin E., Shestakov I. P. Nonassociative structures// Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr. — 1990. — 57. — С. 179-266.
- Karas’ M. Multidegrees of tame automorphisms of Cn// Dissert. Math. — 2011. — 477.
- Khoroshkin A., Piontkovski D. On generating series of finitely presented operads/ arXiv: 1202.5170 [math.QA].
- Kambayashi T. Pro-affine algebras, Ind-affine groups and the Jacobian problem// J. Algebra. — 1996. — № 2. — P. 481-501.
- Kambayashi T. Some basic results on pro-affine algebras and Ind-affine schemes// Osaka J. Math. — 2003.40, № 3. — P. 621-638.
- Kambayashi T., Russell P. On linearizing algebraic torus actions// J. Pure Appl. Algebra. — 1982. — 23, № 3. — P. 243-250.
- Kanel-Belov A., Borisenko V., Latysev V. Monomial algebras// J. Math. Sci. — 1997. — 87, № 3. — С. 3463-3575.
- Kanel-Belov A., Elishev A. On planar algebraic curves and holonomic D-modules in positive characteristic/ arXiv:1412.6836 [math.AG].
- Kanel-Belov A., Elishev A., Yu J.-T. Independence of the B-KK isomorphism of infinite prime/ arXiv: 1512.06533 [math.AG].
- Kanel-Belov A., Elishev A., Yu J.-T. Augmented polynomial symplectomorphisms and quantization/// arXiv:1812.02859 [math.AG].
- Kanel-Belov A., Grigoriev S, Elishev A., Yu J.-T., Zhang W. Lifting of polynomial symplectomorphisms and deformation quantization// Commun. Algebra. — 2018. — 46, № 9. — P. 3926-3938.
- Kanel-Belov A., Malev S., Rowen L. The images of noncommutative polynomials evaluated on 2 x 2 matrices// Proc. Am. Math. Soc. — 2012. — 140. — P. 465-478.
- Kanel-Belov A., Malev S., Rowen L. The images of multilinear polynomials evaluated on 3 x 3 matrices// Proc. Am. Math. Soc. — 2016. — 144. — P. 7-19.
- Kanel-Belov A., Razavinia F., Zhang W. Bergman’s centralizer theorem and quantization// Commun. Algebra. — 2018. — 46, № 5. — P. 2123-2129.
- Kanel-Belov A., Razavinia F., Zhang W. Centralizers in free associative algebras and generic matrices/ arXiv:1812.03307 [math.RA].
- Kanel-Belov A., Rowen L. H., Vishne U. Full exposition of Specht’s problem// Serdica Math. J. — 2012.38. — P. 313-370.
- Kanel-Belov A., Yu J.-T., Elishev A. On the augmentation topology of automorphism groups of affine spaces and algebras// Int. J. Algebra Comput. * — 2018. — 28, № 08. — P. 1449-1485.
- Keller B. Notes for an Introduction to Kontsevich’s Quantization Theorem, 2003.
- Keller O. H. Ganze Cremona Transformationen// Monatsh. Math. Phys. — 1939. — 47, № 1. — P. 299306.
- Kolesnikov P. S. The Makar-Limanov algebraically closed skew field// Algebra Logic. — 2000. — 39, № 6.С. 378-395.
- Kolesnikov P. S. Different definitions of algebraically closed skew fields// Algebra Logic. — 2001. — 40, № 4. — С. 219-230.
- Kontsevich M. Deformation quantization of Poisson manifolds// Lett. Math. Phys. — 2003. — 66, № 3.P. 157-216.
- Kontsevich M. Holonomic P-modules and positive characteristic// Jpn. J. Math. — 2009. — 4, № 1. — P. 1-25.
- Koras M, Russell P. C*-actions on C3: The smooth locus of the quotient is not of hyperbolic type// J. Alg. Geom. — 1999. — 8, № 4. — P. 603-694.
- Kovalenko S., Perepechko A., Zaidenberg M. On automorphism groups of affine surfaces// in: Algebraic Varieties and Automorphism Groups. — Math. Soc. Jpn., 2017. — P. 207-286.
- Kraft H., Regeta A. Automorphisms of the Lie algebra of vector fields// J. Eur. Math. Soc. — 2017. — 19, № 5. — P. 1577-1588.
- Kraft H., Stampfli I. On automorphisms of the affine Cremona group// Ann. Inst. Fourier. — 2013. — 63, № 3. — P. 1137-1148.
- Kulikov V. S. Generalized and local Jacobian problems// Izv. Math. — 1993. — 41, № 2. — С. 351-365.
- Kulikov V. S. The Jacobian conjecture and nilpotent maps// J. Math. Sci. — 2001. — 106, № 5. — С. 33123319.
- Levy R., Loustaunau P, Shapiro J. The prime spectrum of an infinite product of copies of Z// Fundam. Math. — 1991. — 138. — P. 155-164.
- Li Y.-C., Yu J.-T. Degree estimate for subalgebras// J. Algebra. — 2012. — 362. — P. 92-98.
- Gaiotto D, Witten E. Probing quantization via branes/ arXiv: 2107.12251 [hep-th].
- Lothaire M. Combinatorics on Words. — Cambridge Univ. Press, 1997.
- Makar-Limanov L. A new proof of the Abhyankar-Moh-=Suzuki theorem/ arXiv: 1212.0163 [math.AC].
- Makar-Limanov L. Automorphisms of a free algebra with two generators// Funct. Anal. Appl. — 1970. — 4, № 3. — С. 262-264.
- Makar-Limanov L. On automorphisms of Weyl algebra// Bull. Soc. Math. France. — 1984. — 112. — P. 359-363.
- Makar-Limanov L., Yu J.-T. Degree estimate for subalgebras generated by two elements// J. Eur. Math. Soc. — 2008. — 10. — P. 533-541.
- Makar-Limanov L. Algebraically closed skew fields// J. Algebra. — 1985. — 93, № 1. — P. 117-135.
- Makar-Limanov L., Turusbekova U., Umirbaev U. Automorphisms and derivations of free Poisson algebras in two variables// J. Algebra. — 2009. — 322, № 9. — P. 3318-3330.
- Markl M, Shnider S., Stasheff J. Operads in Algebra, Topology, and Physics. — Providence, Rhode Island: Am. Math. Soc., 2002.
- Miyanishi M., Sugie T. Affine surfaces containing cylinderlike open sets// J. Math. Kyoto Univ. — 1980.20. — P. 11-42.
- Nagata M. On the automorphism group of k[x,y]. — Tokyo: Kinokuniya, 1972.
- Nielsen J. Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden// Math. Ann. — 1918. — 78. — P. 385-397.
- Nielsen J. Die Isomorphismengruppe der freien Gruppen// Math. Ann. — 1924. — 91. — P. 169-209.
- Ol’shanskij A. Yu. Groups of bounded period with subgroups of prime order// Algebra and Logic. — 1983.21. — С. 369-418.
- Peretz R. Constructing polynomial mappings using non-commutative algebras// in: Affine Algebraic Geometry. — Providence, Rhode Island: Am. Math. Soc., 2005. — P. 197-232.
- Piontkovski D. Operads versus Varieties: a dictionary of universal algebra. — Preprint, 2011.
- Piontkovski D. On Kurosh problem in varieties of algebras// J. Math. Sci. — 2009. — 163, № 6. — С. 743750.
- Razmyslov Yu. P. Algebras satisfying identity relations of Capelli type// Izv. Akad. Nauk SSSR. Ser. Mat.1981. — 45. — С. 143-166, 240.
- Razmyslov Yu. P. Identities of Algebras and Their Representations. — Providence, Rhode Island: Am. Math. Soc., 1994.
- Razmyslov Yu. P., Zubrilin K. A. Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type// Russ. Math. Surveys — 1993. — 48. — С. 183-184.
- Reutenauer C. Applications of a noncommutative Jacobian matrix// J. Pure Appl. Algebra. — 1992. — P. 634-638.
- Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
- Moh T.-T. On the global Jacobian conjecture for polynomials of degree less than 100. — Preprint, 1983.
- Moh T.-T. On the Jacobian conjecture and the configurations of roots// J. Reine Angew. Math. — 1983.340. — P. 140-212.
- Moyal J. E. Quantum mechanics as a statistical theory// Math. Proc. Cambridge Philos. Soc. — 1949. — 45, № 1. — P. 99-124.
- Orevkov S. Yu. The commutant of the fundamental group of the complement of a plane algebraic curve// Russ. Math. Surv. — 1990. — 45, № 1. — С. 221-222.
- Orevkov S. Yu. An example in connection with the Jacobian conjecture// Math. Notes. — 1990. — 47, № 1. — С. 82-88.
- Orevkov S. Yu. The fundamental group of the complement of a plane algebraic curve// Sb. Math. — 1990.65, № 1. — С. 267-267.
- Plotkin B. Varieties of algebras and algebraic varieties// Israel J. Math. — 1996. — 96, № 2. — P. 511-522.
- Plotkin B. Algebras with the same (algebraic) geometry/ arXiv: math/0210194 [math.GM].
- Popov V. L. Around the Abhyankar-Sathaye conjecture/ arXiv: 1409.6330 [math.AG].
- Procesi C. Rings with Polynomial Identities. — Marcel Dekker, 1973.
- Procesi C. The invariant theory of n x n matrices// Adv. Math. — 1976. — 19, № 3. — P. 306-381.
- Razar M. Polynomial maps with constant Jacobian// Israel J. Math. — 1979. — 32, № 2-3. — P. 97-106.
- Robinson A. Non-Standard Analysis. — Princeton Univ. Press, 2016.
- Rosset S. A new proof of the Amitsur-Levitzki identity// Israel J. Math. — 1976. — 23, № 2. — P. 187-188.
- Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
- Schofield A. H. Representations of Rings over Skew Fields. — Cambridge: Cambridge Univ. Press, 1985.
- Schwarz G. Exotic algebraic group actions// C. R. Acad. Sci. Paris — 1989. — 309. — P. 89-94.
- Shafarevich I. R. On some infinite-dimensional groups, II// Izv. Ross. Akad. Nauk. Ser. Mat. — 1981. — 45, № 1. — С. 214-226.
- Sharifi Y. Centralizers in Associative Algebras/ Ph.D. thesis, 2013.
- Shestakov I. P. Finite-dimensional algebras with a nil basis// Algebra Logika. — 1971. — 10. — С. 87-99.
- Shestakov I. P., Umirbaev U. U. Degree estimate and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17. — P. 181-196.
- Shestakov I., Umirbaev U. The Nagata automorphism is wild// Proc. Natl. Acad. Sci. — 2003. — 100, № 22. — P. 12561-12563.
- Shestakov I., Umirbaev U. Poisson brackets and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17, № 1. — P. 181-196.
- Shestakov I. P, Umirbaev U. U. The tame and the wild automorphisms of polynomial rings in three variables// J. Am. Math. Soc. — 2004. — 17. — P. 197-220.
- Umirbaev U., Shestakov I. Subalgebras and automorphisms of polynomial rings// Dokl. Ross. Akad. Nauk 2002. — 386, № 6. — С. 745-748.
- Shpilrain V. On generators of L/R2 Lie algebras// Proc. Am. Math. Soc. — 1993. — 119. — P. 1039-1043.
- Singer D. On Catalan trees and the Jacobian conjecture// Electron. J. Combin. — 2001. — 8, № 1. — 2.
- Shpilrain V., Yu J.-T. Affine varieties with equivalent cylinders// J. Algebra. — 2002. — 251, № 1. — P. 295-307.
- Shpilrain V., Yu J.-T. Factor algebras of free algebras: on a problem of G. Bergman// Bull. London Math. Soc. — 2003. — 35. — P. 706-710.
- Suzuki M. Propietes topologiques des polynomes de deux variables complexes, et automorphismes algebraique de l’espace C2// J. Math. Soc. Jpn. — 1974. — 26. — P. 241-257.
- Tsuchimoto Y. Preliminaries on Dixmier conjecture Mem. Fac. Sci. Kochi Univ. Ser. A. Math. — 2003.24. — P. 43-59.
- Tsuchimoto Y. Endomorphisms of Weyl algebra and p-curvatures// Osaka J. Math. — 2005. — 42, № 2.P. 435-452.
- Tsuchimoto Y. Auslander regularity of norm based extensions of Weyl algebra/// arXiv: 1402.7153 [math.AG].
- Umirbaev U. On the extension of automorphisms of polynomial rings// Sib. Math. J. — 1995. — 36, № 4.С. 787-791.
- Umirbaev U. U. On Jacobian matrices of Lie algebras// в кн.: Proc. 6 All-Union Conf. on Varieties of Algebraic Systems. — Magnitogorsk, 1990. — С. 32-33.
- Umirbaev U. U. Shreer varieties of algebras// Algebra Logic. — 1994. — 33. — С. 180-193.
- Umirbaev U. U. Tame and wild automorphisms of polynomial algebras and free associative algebras. — Preprint MPIM 2004-108..
- Umirbaev U. The Anick automorphism of free associative algebras// J. Reine Angew. Math. — 2007. — 605. — P. 165-178.
- Umirbaev U. U. Defining relations of the tame automorphism group of polynomial algebras in three vari- ables// J. Reine Angew. Math. — 2006. — 600. — P. 203-235.
- Umirbaev U. U. Defining relations for automorphism groups of free algebras// J. Algebra. — 2007. — 314.P. 209-225.
- Umirbaev U. U., Yu J.-T. The strong Nagata conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2004. — 101.P. 4352-4355.
- Urech C, Zimmermann S. Continuous automorphisms of Cremona groups/ arXiv: 1909.11050 [math.AG].
- van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. — Birkhauser, 2012.
- van der Kulk W. On polynomial rings in two variables// Nieuw Arch. Wisk. (3) — 1953. — 1. — P. 33-41.
- Vitushkin A. G. A criterion for the representability of a chain of ст-processes by a composition of triangular chains// Math. Notes — 1999. — 65, № 5-6. — С. 539-547.
- Vitushkin A. G. On the homology of a ramified covering over C2// Math. Notes. — 1998. — 64, № 5. — С. 726-731.
- Vitushkin A. G. Evaluation of the Jacobian of a rational transformation of C2 and some applications// Math. Notes — 1999. — 66, № 2. — С. 245-249.
- Wedderburn J. H. M. Note on algebras// Ann. Math. — 1937. — 38. — P. 854-856.
- Wright D. The Jacobian conjecture as a problem in combinatorics/ arXiv: math/0511214 [math.CO].
- Wright D. The Jacobian conjecture: Ideal membership questions and recent advances// Contemp. Math.2005. — 369. — P. 261-276.
- Yagzhev A. V. Finiteness of the set of conservative polynomials of a given degree// Math. Notes. — 1987.41, № 2. — С. 86—88.
- Yagzhev A. V. Nilpotency of extensions of an abelian group by an abelian group// Math. Notes. — 1988.43, № 3-4. — С. 244-245.
- Yagzhev A. V. Locally nilpotent subgroups of the holomorph of an abelian group// Mat. Zametki — 1989.46, № 6. — С. 118.
- Yagzhev A. V. A sufficient condition for the algebraicity of an automorphism of a group// Algebra Logic.1989. — 28, № 1. — С. 83-85.
- Yagzhev A. V. The generators of the group of tame automorphisms of an algebra of polynomials// Sib. Mat. Zh. — 1977. — 18, № 1. — P. 222-225.
- Wang S. A Jacobian criterion for separability// J. Algebra. — 1980. — 65, № 2. — P. 453-494.
- Wright D. On the Jacobian conjecture// Ill. J. Math. — 1981. — 25, № 3. — P. 423-440.
- Yagzhev A. V. Invertibility of endomorphisms of free associative algebras// Math. Notes. — 1991. — 49, № 3-4. — С. 426—430.
- Yagzhev A. V. Endomorphisms of free algebras// Sib. Math. J. — 1980. — 21, № 1. — С. 133—141.
- Yagzhev A. V. On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank// Sib. Math. J. — 1980. — 21, № 1. — С. 142-146.
- Yagzhev A. V. Keller’s problem// Sib. Math. J. — 1980. — 21, № 5. — С. 747-754.V.
- A.V. Yagzhev Engel algebras satisfying Capelli identities// в кн.: Proceedings of Shafarevich Seminar. — Moscow: Steklov Math. Inst., 2000. — С. 83-88 (in Russian).
- A.V. Yagzhev Endomorphisms of polynomial rings and free algebras of different varieties// в кн.: Proceedings of Shafarevich Seminar. — Moscow: Steklov Math. Inst., 2000. — С. 15-47 (in Russian).
- Yagzhev A. V. Invertibility criteria of a polynomial mapping. — Unpublished (in Russian).
- Zaks A. Dedekind subrings of K[x1,..., xn] are rings of polynomials// Israel J. Math. — 1971. — 9. — P. 285-289.
- Zelmanov E. On the nilpotence of nilalgebras// Lect. Notes Math. — 1988. — 1352. — P. 227-240.
- Zhao W. New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture// Proc. Am. Math. Soc. — 2011. — 139. — P. 3141-3154.
- Zhao W. Mathieu subspaces of associative algebras// J. Algebra. — 2012. — 350. — P. 245-272.
- Zhevlakov K. A., Slin’ko A. M., Shestakov I. P., Shirshov A. I. Nearly Associative Rings. — Moscow: Nauka, 1978 (in Russian).
- Zubrilin K. A. Algebras that satisfy the Capelli identities// Sb. Math. — 1995. — 186, № 3. — С. 359-370.
- Zubrilin K. A. On the class of nilpotence of obstruction for the representability of algebras satisfying Capelli identities// Fundam. Prikl. Mat. — 1995. — 1, № 2. — С. 409-430.
- Zubrilin K. A. On the Baer ideal in algebras that satisfy the Capelli identities// Sb. Math. — 1998. — 189.С. 1809-1818.
- Zaidenberg M. G. On exotic algebraic structures on affine spaces// in: Geometric Complex Analysis. — World Scientific, 1996. — P. 691-714.
- Zhang W. Alternative proof of Bergman’s centralizer theorem by quantization/ Master thesis — Bar-Ilan University, 2017.
- Zhang W. Polynomial automorphisms and deformation quantization/ Ph.D. thesis — Bar-Ilan University, 2019.
- Zubkov A. N. Matrix invariants over an infinite field of finite characteristic// Sib. Math. J. — 1993. — 34, № 6. — С. 1059-1065.
- Zubkov A. N. A generalization of the Razmyslov-Procesi theorem// Algebra Logic. — 1996. — 35, № 4. — С. 241-254.
Supplementary files
