Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman’s centralizer theorem

Cover Page

Cite item

Full Text

Abstract

The purpose of this review is the collection and systematization of results concerning the quantization approach to the some classical aspects of non-commutative algebras, especially to the Jacobian conjecture. We start with quantization proof of Bergman centralizing theorem, then discourse authomorphisms of INd-schemes authomorphisms, then go to aproximation issues. Last chapter dedicated to relations between PI -theory Burnside type theorems and Jacobian Conjecture (Jagzev approach). This issue contains the second part of the work. The first part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 213 (2022), pp. 110-144. Continuation will be published in future issues.

About the authors

A. M. Elishev

Московский физико-технический институт (национальный исследовательский университет)

Author for correspondence.
Email: ame1511@mail.ru
Russian Federation, Москва

A. Ya. Kanel-Belov

Московский физико-технический институт (национальный исследовательский университет)

Email: kanelster@gmail.com
Russian Federation, Москва

Farrokh Razavinia

Московский физико-технический институт (национальный исследовательский университет)

Email: farrokh.razavinia@gmail.com
Russian Federation, Москва

Jie-Tai Yu

Шэньчженьский университет

Email: yujt@hkucc.hku.hk
China, Шэньчжень

Wenchao Zhang

Университет Хуэйчжоу

Email: zhangwc@hzu.edu.cn

Школа математики и статистики

China

References

  1. Abdesselam A. The Jacobian conjecture as a problem of perturbative quantum field theory// Ann. H. Poincare. — 2003. — 4, № 2. — P. 199-215.
  2. Abhyankar S., Moh T. Embedding of the line in the plane// J. Reine Angew. Math. — 1975. — 276. — P. 148-166.
  3. Amitsur S’. A. Algebras over infinite fields// Proc. Am. Math. Soc. — 1956. — 7. — P. 35-48.
  4. Amitsur S’. A. A general theory of radicals, III. Applications// Am. J. Math. — 1954. — 75. — P. 126-136.
  5. Alev J., Le Bruyn L. Automorphisms of generic 2 by 2 matrices// in: Perspectives in Ring Theory. — Springer, 1988. — P. 69-83.
  6. Amitsur A. S, Levitzki J. Minimal identities for algebras// Proc. Am. Math. Soc. — 1950. — 1. — P. 449-463.
  7. Amitsur A. S, Levitzki J. Remarks on minimal identities for algebras// Proc. Am. Math. Soc. — 1951.2. — P. 320-327.
  8. Anick D. J. Limits of tame automorphisms of k[x1,..., xn]// J. Algebra. — 1983. — 82, № 2. — P. 459-468.
  9. Artamonov V. A. Projective metabelian groups and Lie algebras// Izv. Math. — 1978. — 12, № 2. — С. 213-223.
  10. Artamonov V. A. Projective modules over universal enveloping algebras// Math. USSR Izv. — 1985. — 25, № 3. — С. 429.
  11. Artamonov V. A. Nilpotence, projectivity, decomposability// Sib. Math. J. — 1991. — 32, № 6. — С. 901909.
  12. Artamonov V. A. The quantum Serre problem// Russ. Math. Surv. — 1998. — 53, № 4. — С. 3-77.
  13. Artamonov V. A. Automorphisms and derivations of quantum polynomials// in: Recent Advances in Lie Theory (Bajo I., Sanmartin E., eds.). — Heldermann Verlag, 2002. — P. 109-120.
  14. Artamonov V. A. Generalized derivations of quantum plane// J. Math. Sci. — 2005. — 131, № 5. — С. 5904-5918.
  15. Artamonov V. A. Quantum polynomials in: Advances in Algebra and Combinatorics. — Singapore: World Scientific, 2008. — P. 19-34.
  16. Artin M. Noncommutative Rings. — Preprint, 1999.
  17. Arzhantsev I., Kuyumzhiyan K., Zaidenberg M. Infinite transitivity, finite generation, and Demazure roots// Adv. Math. — 2019. — 351. — P. 1-32.
  18. Asanuma T. Non-linearizable algebraic k*-actions on affine spaces. — Preprint, 1996.
  19. Backelin E. Endomorphisms of quantized Weyl algebras// Lett. Math. Phys. — 2011. — 97, № 3. — P. 317-338.
  20. Bass H. A non-triangular action of Ga on A3// J. Pure Appl. Algebra. — 1984. — 33, № 1. — P. 1-5.
  21. Bass H., Connell E. H, Wright D. The Jacobian conjecture: reduction of degree and formal expansion of the inverse// Bull. Am. Math. Soc. — 1982. — 7, № 2. — P. 287-330.
  22. Bavula V. V. A question of Rentschler and the Dixmier problem// Ann. Math. (2). — 2001. — 154, № 3.P. 683-702.
  23. Bavula V. V. Generalized Weyl algebras and diskew polynomial rings/ arXiv: 1612.08941 [math.RA].
  24. Bavula V. V. The group of automorphisms of the Lie algebra of derivations of a polynomial algebra// J. Alg. Appl. — 2017. — 16, № 5. — 1750088.
  25. Bavula V. V. The groups of automorphisms of the Lie algebras of formally analytic vector fields with constant divergence// C. R. Math. — 2014. — 352, № 2. — P. 85-88.
  26. Bavula V. V. The inversion formulae for automorphisms of Weyl algebras and polynomial algebras// J. Pure Appl. Algebra. — 2007. — 210. — P. 147-159.
  27. Bavula V. V. The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic// J. Pure Appl. Algebra. — 2008. — 212, № 10. — P. 2320-2337.
  28. Bavula V. V. An analogue of the conjecture of Dixmier is true for the algebra of polynomial integrodifferential operators// J. Algebra. — 2012. — 372. — P. 237-250.
  29. Bavula V. V. Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an au- thomorphism// C. R. Acad. Sci. Paris. Ser. 1. — 2012. — 350, № 11-12. — P. 553-556.
  30. Bavula V. V. The Jacobian conjecture2n implies the Dixmier problemn/ arXiv: math/0512250[math.RA].
  31. Beauville A., Colliot-Thelene J.-L., Sansuc J.-J., and Swinnerton-Dyer P. Varietes stablement rationnelles non rationnelles// Ann. Math. — 1985. — 121. — P. 283-318.
  32. Bayen F, Flato M, Fronsdal C, Lichnerowicz A., Sternheimer D. Deformation theory and quantization. 1.Deformations of symplectic structures// Ann. Phys. — 1978. — 111, № 1. — P. 61-110.
  33. Belov A. Linear recurrence equations on a tree// Math. Notes. — 2005. — 78, № 5. — С. 603-609.
  34. Belov A. Local finite basis property and local representability of varieties of associative rings.// Izv. Math.2010. — 74. — С. 1-126.
  35. Belov A., Bokut L., Rowen L, Yu J.-T. The Jacobian conjecture, together with Specht and Burnside-type problems// in: Automorphisms in Birational and Affine Geometry. — Springer, 2014. — P. 249-285.
  36. Belov A., Makar-Limanov L., Yu J. T. On the generalised cancellation conjecture// J. Algebra. — 2004.281. — P. 161-166.
  37. Belov A., Rowen L. H., Vishne U. Structure of Zariski-closed algebras// Trans. Am. Math. Soc. — 2012.362. — P. 4695-4734.
  38. Belov-Kanel A., Yu J.-T. On the lifting of the Nagata automorphism// Selecta Math. — 2011. — 17. — P. 935-945.
  39. Kanel-Belov A., Berzins A., Lipyanski R. Automorphisms of the semigroup of endomorphisms of free associative algebras// Int. J. Algebra Comp. — 2007. — 17, № 5/6. — P. 923-939.
  40. Belov-Kanel A., Elishev A. On planar algebraic curves and holonomic P-modules in positive characteristic// J. Algebra Appl. — 2016. — 15, № 8. — 1650155.
  41. Belov-Kanel A., Kontsevich M. Automorphisms of the Weyl algebra// Lett. Math. Phys. — 2005. — 74, № 2. — P. 181-199.
  42. Belov-Kanel A., Kontsevich M. The Jacobian conjecture is stably equivalent to the Dixmier conjecture// Moscow Math. J. — 2007. — 7, № 2. — С. 209-218.
  43. Belov-Kanel A., Lipyanski R. Automorphisms of the endomorphism semigroup of a polynomial algebra//J. Algebra. — 2011. — 333, № 1. — P. 40-54.
  44. Belov-Kanel A., Yu J.-T. Stable tameness of automorphisms of F(x, y, z') fixing z// Selecta Math. — 2012.18. — P. 799-802.
  45. Bergman G. M. Centralizers in free associative algebras// Trans. Am. Math. Soc. — 1969. — 137. — P. 327-344.
  46. Bergman G. M. The diamond lemma for ring theory// Adv. Math. — 1978. — 29, № 2. — P. 178-218.
  47. Berson J., van den Essen A., Wright D. Stable tameness of two-dimensional polynomial automorphisms over a regular ring// Adv. Math. — 2012. — 230. — P. 2176-2197.
  48. Birman J. An inverse function theorem for free groups// Proc. Am. Math. Soc. — 1973. — 41. — P. 634638.
  49. Bonnet P., Venereau S. Relations between the leading terms of a polynomial automorphism// J. Algebra.2009. — 322, № 2. — P. 579—599.
  50. Berzins A. The group of automorphisms of semigroup of endomorphisms of free commutative and free associative algebras/ arXiv: abs/math/0504015 [math.AG].
  51. Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, I// Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. — 1966. — 14. — P. 177-181.
  52. Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, II// Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. — 1967. — 15. — P. 123-125.
  53. Bialynicki-Birula A. Some theorems on actions of algebraic groups// Ann. Math. — 1973. — 98, № 3. — P. 480-497.
  54. Bitoun T. The p-support of a holonomic P-module is lagrangian, for p large enough/ arXiv: 1012.4081 [math.AG].
  55. Bodnarchuk Yu. Every regular automorphism of the affine Cremona group is inner// J. Pure Appl. Algebra.2001. — 157. — P. 115-119.
  56. Bokut L., Zelmanov E. Selected works of A. I. Shirshov. — Springer, 2009.
  57. Bokut L. A. Embedding Lie algebras into algebraically closed Lie algebras// Algebra Logika. — 1962. — 1. — С. 47-53.
  58. Bokut L. A. Embedding of algebras into algebraically closed algebras// Dokl. Akad. Nauk. — 1962. — 145, №5. — С. 963-964.
  59. Bokut L. A. Theorems of embedding in the theory of algebras// Colloq. Math. — 1966. — 14. — P. 349353.
  60. Bresar M., Procesi C., Spenko S. Functional identities on matrices and the Cayley-Hamilton polynomial/ arXiv:1212.4597 [math.RA].
  61. Campbell L. A. A condition for a polynomial map to be invertible// Math. Ann. — 1973. — 205, № 3. — P. 243-248.
  62. Cohn P. M. Subalgebras of free associative algebras// Proc. London Math. Soc. — 1964. — 3, № 4. — P. 618-632.
  63. Cohn P. M. Progress in free associative algebras// Isr. J. Math. — 1974. — 19, № 1-2. — P. 109-151.
  64. Cohn P. M. A brief history of infinite-dimensional skew fields// Math. Sci. — 1992. — 17. — P. 1-14.
  65. Cohn P. M. Free Rings and Their Relations. — Academic Press, 1985.
  66. Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. I// Trans. Am. Math. Soc.1971. — 160. — P. 393-401.
  67. Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. II// Trans. Am. Math. Soc.1972. — 171. — P. 309-315.
  68. Danielewski W. On the cancellation problem and automorphism groups of affine algebraic varieties. — Warsaw: Preprint, 1989.
  69. De Bondt M., van den Essen A. The Jacobian conjecture for symmetric Druzkowski mappings. — University of Nijmegen, 2004.
  70. De Bondt M., van den Essen A. A reduction of the Jacobian conjecture to the symmetric case// Proc. Am. Math. Soc. — 2005. — 133, № 8. — P. 2201-2205.
  71. De Concini C., Procesi C. A characteristic free approach to invariant theory// in: Young Tableaux in Combinatorics, Invariant Theory, and Algebra. — Elsevier, 1982. — P. 169-193.
  72. Deserti J. Sur le groupe des automorphismes polynomiaux du plan affine// J. Algebra. — 2006. — 297.P. 584-599.
  73. Dicks W. Automorphisms of the free algebra of rank two// Contemp. Math. — 1985. — 43. — P. 63-68.
  74. Dicks W., Lewin J. Jacobian conjecture for free associative algebras// Commun. Algebra. — 1982. — 10, № 12. — P. 1285-1306.
  75. Dixmier J. Sur les algebres de Weyl// Bull. Soc. Math. France. — 1968. — 96. — P. 209-242.
  76. Dodd C. The p-cycle of holonomic P-modules and auto-equivalences of the Weyl algebra/ arXiv: 1510.05734 [math.OC].
  77. Donkin S. Invariants of several matrices// Inv. Math. — 1992. — 110, № 1. — P. 389-401.
  78. Donkin S. Invariant functions on matrices// Math. Proc. Cambridge Phil. Soc. — 1993. — 113, № 1. — P. 23-43.
  79. Drensky V., Yu J.-T. A cancellation conjecture for free associative algebras// Proc. Am. Math. Soc. — 2008. — 136, № 10. — P. 3391-3394.
  80. Drensky V., Yu J.-T. The strong Anick conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2006. — 103. — P. 4836-4840.
  81. Drensky V., Yu J.-T. Coordinates and automorphisms of polynomial and free associative algebras of rank three// Front. Math. China. — 2007. — 2, № 1. — P. 13-46.
  82. Drensky V., Yu J.-T. The strong Anick conjecture is true// J. Eur. Math. Soc. — 2007. — 9. — P. 659-679.
  83. DruZkowski L. An effective approach to Keller’s Jacobian conjecture// Math. Ann. — 1983. — 264, № 3.P. 303-313.
  84. DruZkowski L. The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case// Ann. Polon. Math. — 2005. — 87, № 1. — P. 83-92.
  85. Druzkowski L. M. New reduction in the Jacobian conjecture// in: Effective Methods in Algebraic and Analytic Geometry. — Krakow: Univ. lagel. Acta Math., 2001. — P. 203-206.
  86. Elishev A. Automorphisms of polynomial algebras, quantization and Kontsevich conjecture/ PhD Thesis-Moscow Institute of Physics and Technology, 2019.
  87. Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Noncommutative Bialynicki-Birula theorem./ arXiv:1808.04903 [math.AG].
  88. Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Torus actions on free associative algebras, lifting and Bialynicki-Birula type theorems/ arXiv: 1901.01385 [math.AG].
  89. van den Bergh M. On involutivity of p-support// Int. Math. Res. Not. — 2015. — 15. — P. 6295-6304.
  90. van den Essen A. The amazing image conjecture/ arXiv: 1006.5801 [math.AG].
  91. van den Essen A., de Bondt M. Recent progress on the Jacobian conjecture// Ann. Polon. Math. — 2005.87. — P. 1-11.
  92. van den Essen A., de Bondt M. The Jacobian conjecture for symmetric DruZkowski mappings// Ann. Polon. Math. — 2005. — 86, № 1. — P. 43-46.
  93. van den Essen A., Wright D, Zhao W. On the image conjecture// J. Algebra. — 2011. — 340. — P. 211— 224.
  94. Fox R. H. Free differential calculus, I. Derivation in the free group ring// Ann. Math. (2). — 1953. — 57.P. 547-560.
  95. Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, I// Izv. Math. — 1975. — 9, № 3. — С. 493-534.
  96. Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, II// Izv. Math. — 1977. — 11, № 1. — С. 51-98.
  97. Gorni G., Zampieri G. Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse// Polon. Math. — 1996. — 64. — P. 285-290.
  98. Fedosov B. A simple geometrical construction of deformation quantization// J. Differ. Geom. — 1994. — 40, № 2. — P. 213-238.
  99. Frayne T, Morel A. C, Scott D. S. Reduced direct products// J. Symb. Logic.. — 31, № 3. — P. 1966.
  100. Fulton W., Harris J. Representation Theory. A First Course. — Springer-Verlag, 1991.
  101. Furter J.-P., Kraft H. On the geometry of the automorphism groups of affine varieties/ arXiv: 1809.04175 [math.AG].
  102. Gutwirth A. The action of an algebraic torus on the affine plane// Trans. Am. Math. Soc. — 1962. — 105, № 3. — P. 407-414.
  103. Jung H. W. E. Uber ganze birationale Transformationen der Ebene// J. Reine Angew. Math. — 1942. — P. 161-174.
  104. Kaliman S., Koras M, Makar-Limanov L., Russell P. C*-actions on C3 are linearizable// Electron. Res. Announc. Am. Math. Soc. — 1997. — 3. — P. 63-71.
  105. Kaliman S., Zaidenberg M. Families of affine planes: the existence of a cylinder// Michigan Math. J. — 2001. — 49. — P. 353-367.
  106. Kuroda S. Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism// Tohoku Math. J. — 2010. — 62. — P. 75-115.
  107. Kuzmin E., Shestakov I. P. Nonassociative structures// Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr. — 1990. — 57. — С. 179-266.
  108. Karas’ M. Multidegrees of tame automorphisms of Cn// Dissert. Math. — 2011. — 477.
  109. Khoroshkin A., Piontkovski D. On generating series of finitely presented operads/ arXiv: 1202.5170 [math.QA].
  110. Kambayashi T. Pro-affine algebras, Ind-affine groups and the Jacobian problem// J. Algebra. — 1996. — № 2. — P. 481-501.
  111. Kambayashi T. Some basic results on pro-affine algebras and Ind-affine schemes// Osaka J. Math. — 2003.40, № 3. — P. 621-638.
  112. Kambayashi T., Russell P. On linearizing algebraic torus actions// J. Pure Appl. Algebra. — 1982. — 23, № 3. — P. 243-250.
  113. Kanel-Belov A., Borisenko V., Latysev V. Monomial algebras// J. Math. Sci. — 1997. — 87, № 3. — С. 3463-3575.
  114. Kanel-Belov A., Elishev A. On planar algebraic curves and holonomic D-modules in positive characteristic/ arXiv:1412.6836 [math.AG].
  115. Kanel-Belov A., Elishev A., Yu J.-T. Independence of the B-KK isomorphism of infinite prime/ arXiv: 1512.06533 [math.AG].
  116. Kanel-Belov A., Elishev A., Yu J.-T. Augmented polynomial symplectomorphisms and quantization/// arXiv:1812.02859 [math.AG].
  117. Kanel-Belov A., Grigoriev S, Elishev A., Yu J.-T., Zhang W. Lifting of polynomial symplectomorphisms and deformation quantization// Commun. Algebra. — 2018. — 46, № 9. — P. 3926-3938.
  118. Kanel-Belov A., Malev S., Rowen L. The images of noncommutative polynomials evaluated on 2 x 2 matrices// Proc. Am. Math. Soc. — 2012. — 140. — P. 465-478.
  119. Kanel-Belov A., Malev S., Rowen L. The images of multilinear polynomials evaluated on 3 x 3 matrices// Proc. Am. Math. Soc. — 2016. — 144. — P. 7-19.
  120. Kanel-Belov A., Razavinia F., Zhang W. Bergman’s centralizer theorem and quantization// Commun. Algebra. — 2018. — 46, № 5. — P. 2123-2129.
  121. Kanel-Belov A., Razavinia F., Zhang W. Centralizers in free associative algebras and generic matrices/ arXiv:1812.03307 [math.RA].
  122. Kanel-Belov A., Rowen L. H., Vishne U. Full exposition of Specht’s problem// Serdica Math. J. — 2012.38. — P. 313-370.
  123. Kanel-Belov A., Yu J.-T., Elishev A. On the augmentation topology of automorphism groups of affine spaces and algebras// Int. J. Algebra Comput. * — 2018. — 28, № 08. — P. 1449-1485.
  124. Keller B. Notes for an Introduction to Kontsevich’s Quantization Theorem, 2003.
  125. Keller O. H. Ganze Cremona Transformationen// Monatsh. Math. Phys. — 1939. — 47, № 1. — P. 299306.
  126. Kolesnikov P. S. The Makar-Limanov algebraically closed skew field// Algebra Logic. — 2000. — 39, № 6.С. 378-395.
  127. Kolesnikov P. S. Different definitions of algebraically closed skew fields// Algebra Logic. — 2001. — 40, № 4. — С. 219-230.
  128. Kontsevich M. Deformation quantization of Poisson manifolds// Lett. Math. Phys. — 2003. — 66, № 3.P. 157-216.
  129. Kontsevich M. Holonomic P-modules and positive characteristic// Jpn. J. Math. — 2009. — 4, № 1. — P. 1-25.
  130. Koras M, Russell P. C*-actions on C3: The smooth locus of the quotient is not of hyperbolic type// J. Alg. Geom. — 1999. — 8, № 4. — P. 603-694.
  131. Kovalenko S., Perepechko A., Zaidenberg M. On automorphism groups of affine surfaces// in: Algebraic Varieties and Automorphism Groups. — Math. Soc. Jpn., 2017. — P. 207-286.
  132. Kraft H., Regeta A. Automorphisms of the Lie algebra of vector fields// J. Eur. Math. Soc. — 2017. — 19, № 5. — P. 1577-1588.
  133. Kraft H., Stampfli I. On automorphisms of the affine Cremona group// Ann. Inst. Fourier. — 2013. — 63, № 3. — P. 1137-1148.
  134. Kulikov V. S. Generalized and local Jacobian problems// Izv. Math. — 1993. — 41, № 2. — С. 351-365.
  135. Kulikov V. S. The Jacobian conjecture and nilpotent maps// J. Math. Sci. — 2001. — 106, № 5. — С. 33123319.
  136. Levy R., Loustaunau P, Shapiro J. The prime spectrum of an infinite product of copies of Z// Fundam. Math. — 1991. — 138. — P. 155-164.
  137. Li Y.-C., Yu J.-T. Degree estimate for subalgebras// J. Algebra. — 2012. — 362. — P. 92-98.
  138. Gaiotto D, Witten E. Probing quantization via branes/ arXiv: 2107.12251 [hep-th].
  139. Lothaire M. Combinatorics on Words. — Cambridge Univ. Press, 1997.
  140. Makar-Limanov L. A new proof of the Abhyankar-Moh-=Suzuki theorem/ arXiv: 1212.0163 [math.AC].
  141. Makar-Limanov L. Automorphisms of a free algebra with two generators// Funct. Anal. Appl. — 1970. — 4, № 3. — С. 262-264.
  142. Makar-Limanov L. On automorphisms of Weyl algebra// Bull. Soc. Math. France. — 1984. — 112. — P. 359-363.
  143. Makar-Limanov L., Yu J.-T. Degree estimate for subalgebras generated by two elements// J. Eur. Math. Soc. — 2008. — 10. — P. 533-541.
  144. Makar-Limanov L. Algebraically closed skew fields// J. Algebra. — 1985. — 93, № 1. — P. 117-135.
  145. Makar-Limanov L., Turusbekova U., Umirbaev U. Automorphisms and derivations of free Poisson algebras in two variables// J. Algebra. — 2009. — 322, № 9. — P. 3318-3330.
  146. Markl M, Shnider S., Stasheff J. Operads in Algebra, Topology, and Physics. — Providence, Rhode Island: Am. Math. Soc., 2002.
  147. Miyanishi M., Sugie T. Affine surfaces containing cylinderlike open sets// J. Math. Kyoto Univ. — 1980.20. — P. 11-42.
  148. Nagata M. On the automorphism group of k[x,y]. — Tokyo: Kinokuniya, 1972.
  149. Nielsen J. Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden// Math. Ann. — 1918. — 78. — P. 385-397.
  150. Nielsen J. Die Isomorphismengruppe der freien Gruppen// Math. Ann. — 1924. — 91. — P. 169-209.
  151. Ol’shanskij A. Yu. Groups of bounded period with subgroups of prime order// Algebra and Logic. — 1983.21. — С. 369-418.
  152. Peretz R. Constructing polynomial mappings using non-commutative algebras// in: Affine Algebraic Geometry. — Providence, Rhode Island: Am. Math. Soc., 2005. — P. 197-232.
  153. Piontkovski D. Operads versus Varieties: a dictionary of universal algebra. — Preprint, 2011.
  154. Piontkovski D. On Kurosh problem in varieties of algebras// J. Math. Sci. — 2009. — 163, № 6. — С. 743750.
  155. Razmyslov Yu. P. Algebras satisfying identity relations of Capelli type// Izv. Akad. Nauk SSSR. Ser. Mat.1981. — 45. — С. 143-166, 240.
  156. Razmyslov Yu. P. Identities of Algebras and Their Representations. — Providence, Rhode Island: Am. Math. Soc., 1994.
  157. Razmyslov Yu. P., Zubrilin K. A. Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type// Russ. Math. Surveys — 1993. — 48. — С. 183-184.
  158. Reutenauer C. Applications of a noncommutative Jacobian matrix// J. Pure Appl. Algebra. — 1992. — P. 634-638.
  159. Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
  160. Moh T.-T. On the global Jacobian conjecture for polynomials of degree less than 100. — Preprint, 1983.
  161. Moh T.-T. On the Jacobian conjecture and the configurations of roots// J. Reine Angew. Math. — 1983.340. — P. 140-212.
  162. Moyal J. E. Quantum mechanics as a statistical theory// Math. Proc. Cambridge Philos. Soc. — 1949. — 45, № 1. — P. 99-124.
  163. Orevkov S. Yu. The commutant of the fundamental group of the complement of a plane algebraic curve// Russ. Math. Surv. — 1990. — 45, № 1. — С. 221-222.
  164. Orevkov S. Yu. An example in connection with the Jacobian conjecture// Math. Notes. — 1990. — 47, № 1. — С. 82-88.
  165. Orevkov S. Yu. The fundamental group of the complement of a plane algebraic curve// Sb. Math. — 1990.65, № 1. — С. 267-267.
  166. Plotkin B. Varieties of algebras and algebraic varieties// Israel J. Math. — 1996. — 96, № 2. — P. 511-522.
  167. Plotkin B. Algebras with the same (algebraic) geometry/ arXiv: math/0210194 [math.GM].
  168. Popov V. L. Around the Abhyankar-Sathaye conjecture/ arXiv: 1409.6330 [math.AG].
  169. Procesi C. Rings with Polynomial Identities. — Marcel Dekker, 1973.
  170. Procesi C. The invariant theory of n x n matrices// Adv. Math. — 1976. — 19, № 3. — P. 306-381.
  171. Razar M. Polynomial maps with constant Jacobian// Israel J. Math. — 1979. — 32, № 2-3. — P. 97-106.
  172. Robinson A. Non-Standard Analysis. — Princeton Univ. Press, 2016.
  173. Rosset S. A new proof of the Amitsur-Levitzki identity// Israel J. Math. — 1976. — 23, № 2. — P. 187-188.
  174. Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
  175. Schofield A. H. Representations of Rings over Skew Fields. — Cambridge: Cambridge Univ. Press, 1985.
  176. Schwarz G. Exotic algebraic group actions// C. R. Acad. Sci. Paris — 1989. — 309. — P. 89-94.
  177. Shafarevich I. R. On some infinite-dimensional groups, II// Izv. Ross. Akad. Nauk. Ser. Mat. — 1981. — 45, № 1. — С. 214-226.
  178. Sharifi Y. Centralizers in Associative Algebras/ Ph.D. thesis, 2013.
  179. Shestakov I. P. Finite-dimensional algebras with a nil basis// Algebra Logika. — 1971. — 10. — С. 87-99.
  180. Shestakov I. P., Umirbaev U. U. Degree estimate and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17. — P. 181-196.
  181. Shestakov I., Umirbaev U. The Nagata automorphism is wild// Proc. Natl. Acad. Sci. — 2003. — 100, № 22. — P. 12561-12563.
  182. Shestakov I., Umirbaev U. Poisson brackets and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17, № 1. — P. 181-196.
  183. Shestakov I. P, Umirbaev U. U. The tame and the wild automorphisms of polynomial rings in three variables// J. Am. Math. Soc. — 2004. — 17. — P. 197-220.
  184. Umirbaev U., Shestakov I. Subalgebras and automorphisms of polynomial rings// Dokl. Ross. Akad. Nauk 2002. — 386, № 6. — С. 745-748.
  185. Shpilrain V. On generators of L/R2 Lie algebras// Proc. Am. Math. Soc. — 1993. — 119. — P. 1039-1043.
  186. Singer D. On Catalan trees and the Jacobian conjecture// Electron. J. Combin. — 2001. — 8, № 1. — 2.
  187. Shpilrain V., Yu J.-T. Affine varieties with equivalent cylinders// J. Algebra. — 2002. — 251, № 1. — P. 295-307.
  188. Shpilrain V., Yu J.-T. Factor algebras of free algebras: on a problem of G. Bergman// Bull. London Math. Soc. — 2003. — 35. — P. 706-710.
  189. Suzuki M. Propietes topologiques des polynomes de deux variables complexes, et automorphismes algebraique de l’espace C2// J. Math. Soc. Jpn. — 1974. — 26. — P. 241-257.
  190. Tsuchimoto Y. Preliminaries on Dixmier conjecture Mem. Fac. Sci. Kochi Univ. Ser. A. Math. — 2003.24. — P. 43-59.
  191. Tsuchimoto Y. Endomorphisms of Weyl algebra and p-curvatures// Osaka J. Math. — 2005. — 42, № 2.P. 435-452.
  192. Tsuchimoto Y. Auslander regularity of norm based extensions of Weyl algebra/// arXiv: 1402.7153 [math.AG].
  193. Umirbaev U. On the extension of automorphisms of polynomial rings// Sib. Math. J. — 1995. — 36, № 4.С. 787-791.
  194. Umirbaev U. U. On Jacobian matrices of Lie algebras// в кн.: Proc. 6 All-Union Conf. on Varieties of Algebraic Systems. — Magnitogorsk, 1990. — С. 32-33.
  195. Umirbaev U. U. Shreer varieties of algebras// Algebra Logic. — 1994. — 33. — С. 180-193.
  196. Umirbaev U. U. Tame and wild automorphisms of polynomial algebras and free associative algebras. — Preprint MPIM 2004-108..
  197. Umirbaev U. The Anick automorphism of free associative algebras// J. Reine Angew. Math. — 2007. — 605. — P. 165-178.
  198. Umirbaev U. U. Defining relations of the tame automorphism group of polynomial algebras in three vari- ables// J. Reine Angew. Math. — 2006. — 600. — P. 203-235.
  199. Umirbaev U. U. Defining relations for automorphism groups of free algebras// J. Algebra. — 2007. — 314.P. 209-225.
  200. Umirbaev U. U., Yu J.-T. The strong Nagata conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2004. — 101.P. 4352-4355.
  201. Urech C, Zimmermann S. Continuous automorphisms of Cremona groups/ arXiv: 1909.11050 [math.AG].
  202. van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. — Birkhauser, 2012.
  203. van der Kulk W. On polynomial rings in two variables// Nieuw Arch. Wisk. (3) — 1953. — 1. — P. 33-41.
  204. Vitushkin A. G. A criterion for the representability of a chain of ст-processes by a composition of triangular chains// Math. Notes — 1999. — 65, № 5-6. — С. 539-547.
  205. Vitushkin A. G. On the homology of a ramified covering over C2// Math. Notes. — 1998. — 64, № 5. — С. 726-731.
  206. Vitushkin A. G. Evaluation of the Jacobian of a rational transformation of C2 and some applications// Math. Notes — 1999. — 66, № 2. — С. 245-249.
  207. Wedderburn J. H. M. Note on algebras// Ann. Math. — 1937. — 38. — P. 854-856.
  208. Wright D. The Jacobian conjecture as a problem in combinatorics/ arXiv: math/0511214 [math.CO].
  209. Wright D. The Jacobian conjecture: Ideal membership questions and recent advances// Contemp. Math.2005. — 369. — P. 261-276.
  210. Yagzhev A. V. Finiteness of the set of conservative polynomials of a given degree// Math. Notes. — 1987.41, № 2. — С. 86—88.
  211. Yagzhev A. V. Nilpotency of extensions of an abelian group by an abelian group// Math. Notes. — 1988.43, № 3-4. — С. 244-245.
  212. Yagzhev A. V. Locally nilpotent subgroups of the holomorph of an abelian group// Mat. Zametki — 1989.46, № 6. — С. 118.
  213. Yagzhev A. V. A sufficient condition for the algebraicity of an automorphism of a group// Algebra Logic.1989. — 28, № 1. — С. 83-85.
  214. Yagzhev A. V. The generators of the group of tame automorphisms of an algebra of polynomials// Sib. Mat. Zh. — 1977. — 18, № 1. — P. 222-225.
  215. Wang S. A Jacobian criterion for separability// J. Algebra. — 1980. — 65, № 2. — P. 453-494.
  216. Wright D. On the Jacobian conjecture// Ill. J. Math. — 1981. — 25, № 3. — P. 423-440.
  217. Yagzhev A. V. Invertibility of endomorphisms of free associative algebras// Math. Notes. — 1991. — 49, № 3-4. — С. 426—430.
  218. Yagzhev A. V. Endomorphisms of free algebras// Sib. Math. J. — 1980. — 21, № 1. — С. 133—141.
  219. Yagzhev A. V. On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank// Sib. Math. J. — 1980. — 21, № 1. — С. 142-146.
  220. Yagzhev A. V. Keller’s problem// Sib. Math. J. — 1980. — 21, № 5. — С. 747-754.V.
  221. A.V. Yagzhev Engel algebras satisfying Capelli identities// в кн.: Proceedings of Shafarevich Seminar. — Moscow: Steklov Math. Inst., 2000. — С. 83-88 (in Russian).
  222. A.V. Yagzhev Endomorphisms of polynomial rings and free algebras of different varieties// в кн.: Proceedings of Shafarevich Seminar. — Moscow: Steklov Math. Inst., 2000. — С. 15-47 (in Russian).
  223. Yagzhev A. V. Invertibility criteria of a polynomial mapping. — Unpublished (in Russian).
  224. Zaks A. Dedekind subrings of K[x1,..., xn] are rings of polynomials// Israel J. Math. — 1971. — 9. — P. 285-289.
  225. Zelmanov E. On the nilpotence of nilalgebras// Lect. Notes Math. — 1988. — 1352. — P. 227-240.
  226. Zhao W. New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture// Proc. Am. Math. Soc. — 2011. — 139. — P. 3141-3154.
  227. Zhao W. Mathieu subspaces of associative algebras// J. Algebra. — 2012. — 350. — P. 245-272.
  228. Zhevlakov K. A., Slin’ko A. M., Shestakov I. P., Shirshov A. I. Nearly Associative Rings. — Moscow: Nauka, 1978 (in Russian).
  229. Zubrilin K. A. Algebras that satisfy the Capelli identities// Sb. Math. — 1995. — 186, № 3. — С. 359-370.
  230. Zubrilin K. A. On the class of nilpotence of obstruction for the representability of algebras satisfying Capelli identities// Fundam. Prikl. Mat. — 1995. — 1, № 2. — С. 409-430.
  231. Zubrilin K. A. On the Baer ideal in algebras that satisfy the Capelli identities// Sb. Math. — 1998. — 189.С. 1809-1818.
  232. Zaidenberg M. G. On exotic algebraic structures on affine spaces// in: Geometric Complex Analysis. — World Scientific, 1996. — P. 691-714.
  233. Zhang W. Alternative proof of Bergman’s centralizer theorem by quantization/ Master thesis — Bar-Ilan University, 2017.
  234. Zhang W. Polynomial automorphisms and deformation quantization/ Ph.D. thesis — Bar-Ilan University, 2019.
  235. Zubkov A. N. Matrix invariants over an infinite field of finite characteristic// Sib. Math. J. — 1993. — 34, № 6. — С. 1059-1065.
  236. Zubkov A. N. A generalization of the Razmyslov-Procesi theorem// Algebra Logic. — 1996. — 35, № 4. — С. 241-254.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Елишев А.M., Канель-Белов А.Y., Разавиния Ф., Юй Ц., Чжан В.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».