Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay
- Authors: Tsekhan O.B.1, Naligama C.A.1
-
Affiliations:
- Гродненский государственный университет имени Янки Купалы
- Issue: Vol 204 (2022)
- Pages: 170-184
- Section: Статьи
- URL: https://journals.rcsi.science/2782-4438/article/view/270105
- DOI: https://doi.org/10.36535/0233-6723-2022-204-170-184
- ID: 270105
Cite item
Full Text
Abstract
The splitting transformation is a generalization of the well-known Chang transformation for linear, stationary, singularly perturbed system with many delays in slow-state variables; it reduces the original two-speed system to two independent subsystems of smaller dimensions with different rates of change of variables. The splitting transformation leads us to Riccati and Sylvester equations for functional matrices, which can be found in the form of asymptotic series in powers of the small parameter. In this work, we prove that asymptotic approximations of any order of accuracy based on these series can be represented as finite sums in powers of А. We compare exact solutions with approximations obtained by the method proposed.
About the authors
O. B. Tsekhan
Гродненский государственный университет имени Янки Купалы
Author for correspondence.
Email: tsekhan@grsu.by
Belarus, Гродно
C. A. Naligama
Гродненский государственный университет имени Янки Купалы
Email: chammme@gmail.com
Belarus, Гродно
References
- Васильева А. Б., Дмитриев М. Г. Сингулярные возмущения в задачах оптимального управления// Итоги науки и техн. Сер. Мат. анал. — 1982. — 20. — С. 3-77.
- Дмитриев М. Г., Курина Г. А. Сингулярные возмущения в задачах управления// Автомат. телемех. — 2006. — № 1. — С. 3-51.
- Копейкина Т. Б. Об управляемости линейных сингулярно возмущенных систем с запаздыванием// Диффер. уравн. — 1989. — С. 1508-1518.
- Курина Г. А. О полной управляемости разнотемповых сингулярно возмущенных систем// Мат. за метки. — 1992. — 52, № 4. — С. 56-61.
- Хейл Дж. Теория функционально-дифференциальных уравнений. — М.: Мир, 1984.
- Цехан О. Б. Расщепляющее преобразование для линейной стационарной сингулярно возмущенной системы с запаздыванием и его применение к анализу и управлению спектром// Весн. Грозд. ун-та. Сер. 2. Мат. — 2017. — 7, № 1. — С. 50-61.
- Bellman R., Cooke K. Differential Difference Equations. — New York: Academic Press, 1963.
- Chang K. Singular perturbations of a general boundary-value problem// SIAM J. Math. Anal. — 1972. — 3, № 3. — P. 520-526.
- Chen X., Heidarinejad M., Liu J., Christofides P. D. Composite fast-slow MPC design for nonlinear sin gularly perturbed systems// AIChE J. — 2012. — 58, № 6. — P. 1802-1811.
- Fridman E. Decoupling transformation of singularly perturbed systems with small delays and its applica tions// Z. Angew. Math. Mech. — 1996. — 76, № 2. — P. 201-204.
- Gajic Z, Shen X. Parallel Algorithms for Optimal Control of Large Scale Linear Systems. — London: Springer Verlag, 1993.
- Glizer V. Ya. L2-Stabilizability conditions for a class of nonstandard singularly perturbed functional differential systems// Dynam. Contin. Discr. Impulsive Syst. Ser. B: Appl. Algorithms. — 2009. — 16.P. 181-213.
- Glizer V. Ya. Approximate state-space controllability of linear singularly perturbed systems with two scales of state delays// Asympt. Anal. — 2018.. — 107, № 1-2. — P. 73-114.
- Johnson R. Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering. — Springer-Verlag, 2005.
- Kokotovic P. V., Haddad A. H. Controllability and time-optimal control of systems with slow and fast modes// IEEE Trans. Automat. Control. — 1975. — 20, № 1. — P. 111-113.
- Kokotovic P. V., Khalil H. K, O’Reilly J. Singular Perturbation Methods in Control: Analysis and Design.New York: Academic Press, 1986.
- Magalhaes L. T. Exponential estimates for singularly perturbed linear functional differential equations// J. Math. Anal. Appl. — 1984. — 103. — P. 443-460.
- Manitius A. Z, Olbrot A. W. Finite spectrum assignment problem for systems with delays// IEEE Trans. Automat. Control. — 1979. — 24. — P. 541-553.
- Michiels W., Niculescu S. I. Stability and Stabilization of Time Delay Systems: An Eigenvalue Based Approach. — Philadelphia: SIAM, 2007.
- Niculescu S. I. Delay Effects on Stability: A Robust Control Approach. — New York: Springer, 2001.
- Pekar L., Gao Q. Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results// IEEE Access. — 2018. — 6. — P. 35457-35491.
- Prljaca N., Gajic Z. General transformation for block diagonalization of multitime-scale singularly perturbed linear systems// IEEE Trans. Automat. Control. — 2008. — 53, № 5. — P. 1303-1305.
- S’euret A., Ozbay H., Bonnet C. Mounier H. (eds.). Low-Complexity Controllers for Time-Delay Systems.Cham: Springer, 2014.
- Tsekhan O. Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation// Axioms. — 2019. — 8, № 2. — 71.
- Yang X., Zhu J. J. A generalization of Chang transformation for linear time-varying systems// Proc. 49 IEEE Conf. on Decision and Control (Atlanta, GA), 2010. — P. 6863-6869.
- Yang X., Zhu J. J. Chang transformation for decoupling of singularly perturbed linear slowly time-varying systems// Proc. 51 IEEE Conf. on Decision and Control (Maui, Hawaii, USA), 2012. — P. 5755-5760.
- Zhang Y., Naidu D. S., Cai C, et al. Singular perturbations and time scales in control theories and applications: An overview 2002-2012// Int. J. Inf. Syst. Sci. — 2014. — 9, № 1. — P. 1-36.
Supplementary files
