On the averaging principle for semilinear fractional differential inclusions in a banach space with a deviating argument and a small parameter

Cover Page

Cite item

Full Text

Abstract

The this paper, we considers the Cauchy problem for a class of semilinear differential inclusions in a separable Banach space involving a fractional Caputo derivative of order q ∈ (0,1), a small parameter, and a deviant argument. We assume that the linear part of the inclusion generates a Со-semigroup. In the space of continuous functions, we construct a multivalued integral operator whose fixed points are solutions. An analysis of the dependence of this operator on a parameter allows one to establish an analog of the averaging principle. We apply methods of the theory of fractional analysis and the theory of topological degree for condensing set-valued mappings.

About the authors

M. I. Kamenskii

Воронежский государственный университет

Author for correspondence.
Email: mikhailkamenski@mail.ru
Russian Federation, Воронеж

G. G. Petrosyan

Воронежский государственный университет инженерных технологий

Email: garikpetrosyan@yandex.ru
Russian Federation, Воронеж

References

  1. Афанасова М. С., Петросян Г. Г. О краевой задаче для функционально-дифференциального включения дробного порядка с общим начальным условием в банаховом пространстве// Изв. вузов. Мат. — 2019. — № 9. — С. 3-15.
  2. Каменский М. И., Макаренков О. Ю, Нистри П. Об одном подходе в теории обыкновенных дифференциальных уравнений с малым параметром// Докл. РАН. — 2003. — 388, № 4. — С. 439-442.
  3. Петросян Г. Г., Афанасова М. С. О задаче Коши для дифференциального включения дробного порядка с нелинейным граничным условием// Вестн. Воронеж. ун-та. Сер. Физ. Мат. — 2017. — № 1. — С. 135-151.
  4. Afanasova M., Liou Y. Ch., Obukhoskii V., Petrosyan G. On the controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space// J. Nonlin. Convex Anal.2019. — 20, № 9. — P. 1919-1935.
  5. Appell J., Lopez B., Sadarangani K. Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives// J. Nonlin. Var. Anal. — 2018. — 2, № 1. — P. 25-33.
  6. Benedetti I., Obukhovskii V., Taddei V. On generalized boundary-value problems for a class of fractional differential inclusions// Fract. Calc. Appl. Anal. — 2017. — № 20. — P. 1424-1446.
  7. Diestel J., Ruess W. M, S’chachermayer W. Weak compactness in L1(p,X)// Proc. Am. Math. Soc. — 1993. — 118. — P. 447-453.
  8. Hilfer R. Applications of Fractional Calculus in Physics. — Singapore: World Scientific, 2000.
  9. Johnson R, Nistri P., Kamenski M. On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods// J. Differ. Equations. — 1997. — 140, № 1. — P. 186-208.
  10. Kamenskii M. I., Obukhovskii V. V. Condensing multioperators and periodic solutions of parabolic functional-differential inclusions in Banach spaces// Nonlin. Anal. — 1993. — 20, № 7. — P. 781-792.
  11. Kamenskii M, Obukhovskii V., Zecca P. Condensing Multivalued Maps and Semilinear Differential Inclu sions in Banach Spaces. — Berlin-New-York: Walter de Gruyter, 2001.
  12. Kamenskii M, Obukhovskii V., Petrosyan G, Yao J. C. On semilinear fractional order differential inclusions in Banach spaces// Fixed Point Theory. — 2017. — 18, № 1. — P. 269-292.
  13. Kamenskii M, Obukhovskii V., Petrosyan G, Yao J. C. Boundary-value problems for semilinear differential inclusions of fractional order in a Banach space// Appl. Anal. — 2018. — 97, № 4. — P. 571-591.
  14. Kamenskii M, Obukhovskii V., Petrosyan G, Yao J. C. On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces// Fixed Point Theory Appl. — 2017. — 28, № 4.28.
  15. Kamenskii M, Obukhovskii V., Petrosyan G., Yao J. C. Existence and approximation of solutions to nonlocal boundary-value problems for fractional differential inclusions// Fixed Point Theory Appl. — 2019.2.
  16. Kamenskii M, Obukhovskii V., Petrosyan G, Yao J. C. On a periodic boundary-value problem for a fractional-order semilinear functional differential inclusions in a Banach space// Mathematics. — 2019. — 7, № 12. — 1146.
  17. Ke T. D., Loi N. V., Obukhovskii V. Decay solutions for a class of fractional differential variational inequal ities// Fract. Calc. Appl. Anal. — 2015. — № 18. — P. 531-553.
  18. Ke T. D., Obukhovskii V., Wong N. C., Yao J. C. On a class of fractional order differential inclusions with infinite delays// Appl. Anal. — 2013. — 92. — P. 115-137.
  19. Kilbas A. A., Srivastava H. M, Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Amsterdam: Elsevier, 2006.
  20. Mainardi F, Rionero S., Ruggeri T. On the initial-value problem for the fractional diffusion-wave equation// in: Waves and Stability in Continuous Media. — Singapore: World Scientific, 1994. — P. 246-251.
  21. Obukhovskii V. V., Gelman B. D. Multivalued Maps and Differential Inclusions. Elements of Theory and Applications. — Singapore: World Scientific, 2020.
  22. Podlubny I. Fractional Differential Equations. — San Diego: Academic Press, 1999.
  23. Tarasov V. E. Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. — London-New York: Springer-Verlag, 2010.
  24. Zhang Z, Liu B. Existence of mild solutions for fractional evolution equations// Fixed Point Theory. — 2014. — 15. — P. 325-334.
  25. Zhou Y. Fractional Evolution Equations and Inclusions: Analysis and Control. — London: Elsevier, 2016.
  26. Zhou Y., Jiao F. Existence of mild solutions for fractional neutral evolution equations// Comput. Math. Appl. — 2010. — 59. — P. 1063-1077.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Каменский К.I., Петросян Г.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).