Statistical structures on manifolds and their immersions

Cover Page

Cite item

Full Text

Abstract

An important example of structures of information geometry is a statistical structure. This is a Riemannian metric g on a smooth manifold M with a completely symmetric tensor field K of type (2, 1). On a manifold endowed with the statistical structure (g, K), a one-parameter family of α-connections ∇α = D + α • K is defined invariantly, where D is the Levi-Civita connection of the metric g and α is a parameter. In this paper, we characterize conjugate symmetric statistical structures and their particular case—structures of constant α-curvature. As an example, a description of a structure with α-connection of constant curvature on a two-dimensional statistical Pareto model is given. We prove that the two-dimensional logistic model has a 2-connection of constant negative curvature and the two-dimensional Weibull—Gnedenko model has a 1-connection of constant positive curvature. Both these models possess conjugate symmetric statistical structures. For the case of a manifold M^ with a torsion-free linear connection ^ immersed in a Riemannian manifold with statistical structure (g,K), a criterion is obtained that a statistical structure with an appropriate а-connection ^ is induced on the preimage.

About the authors

A. A. Rylov

Финансовый университет при Правительстве Российской Федерации

Author for correspondence.
Email: alexander_rylov@mail.ru
Russian Federation, Москва

References

  1. Морозова Е. А., Ченцов Н. Н. Естественная геометрия семейств вероятностных зконов// Итоги науки и техн. Совр. пробл. мат. Фундам. напр. — 1991. — 83. — С. 133-265.
  2. Рылов А. А. Связности, совместимые с метрикой, и статистические многообразия// Изв. вузов. Мат. — 1992. — № 12. — С. 47-56.
  3. Рылов А. А. Связности, совместимые с метрикой, в теории статистических многообразий// Изв. вузов. Мат. — 1994. — № 3. — С. 62-64.
  4. Рылов А. А. Связности Амари—Ченцова на логистической модели// Изв. Пензенск. гос. пед. ин-та им. В. Г. Белинского. — 2011. — № 26. — С. 195-206.
  5. Рылов А. А. Связности постоянной кривизны на статистической модели Парето// Изв. Пензенск. гос. пед. ин-та им. В. Г. Белинского. — 2012. — № 30. — С. 155-163.
  6. Amari S. Information Geometry and Its Applications. — Springer, 2016.
  7. Arwini K., Dodson C. T. J. Information Geometry: Near Randomness and Near Independence. — SpringerVerlag, 2008.
  8. Furuhata H. Hypersurfaces in statistical manifolds// Differ. Geom. Appl. — 2009. — 27, № 3. — P. 420-429.
  9. Furuhata H., Hasegawa I. Submanifold theory in holomorphic statistical manifolds// in: Geometry of Cauchy-Riemann Submanifolds. — Singapore: Springer, 2016. — P. 179-215.
  10. Ivanova R. A geometric observation on four statistical parameter spaces// Tensor, N.S. — 2010. — 72.— P. 188-195.
  11. Lauritzen S. Conjugate connections in statistical theory// in: Geometrization of Statistical Theory (Dodson C. T. J., ed.). — Lancaster, 1987. — P. 33-51.
  12. Lauritzen S. Statistical manifolds// in: Differential Geometry in Statistical Inference. — Hayward, California: Inst. of Math. Statistics, 1987. — P. 163-216.
  13. Matsuzoe H. Complex statistical manifolds and complex affine immersions// in: Current Developments in Differential Geometry and Its Related Fields. — Singapore: World Scientific, 2016. — P. 183-199.
  14. Min C. R., Choe S. O., An Y. H. Statistical immersions between statistical manifolds of constant curva- ture// Glob. J. Adv. Res. Class. Mod. Geom. — 2014. — 3, № 2. — P. 66-75.
  15. Nielsen F. An elementary introduction to information geometry// Entropy. — 2020. — 22. — 1100.
  16. Nore T. Second fundamental form of a map// Ann. Mat. Pura Appl. IV. Ser. — 1987. — 146. — P. 281-310.
  17. Opozda B. Bochner’s technique for statistical structures// Ann. Glob. Anal. Geom. — 2015. — 48.— P. 357-395.
  18. Rylov A. Constant curvature connections on statistical models// in: Information Geometry and Its Applications. — Cham: Springer, 2018. — P. 349-361.
  19. Siddiqui A. N., Shahid M. H., Lee J. W. On Ricci curvature of submanifolds in statistical manifolds of constant (quasi-constant) curvature// AIMS Mathematics. — 2020. — 5, № 4. — P. 3495-3509.
  20. Siddiqui A. N., Chen B.-Y., Siddiqi M. D. Chen inequalities for statistical submersions between statistical manifolds// Int. J. Geom. Meth. Mod. Phys. — 2021. — 18, № 4. — 2150049.
  21. Takano K. Statistical manifolds with almost contact structures and its statistical submersions// J. Geom. — 2006. — 85. — P. 171-187.
  22. Yano K., Ishihara S. Harmonic and relatively affine mappings// J. Differ. Geom. — 1975. — 10. — P. 501509.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Рылов А.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).