Задачи типа Римана—Гильберта для обобщенного уравнения Коши—Римана с младшим коэффициентом, имеющим особенность в окружности

Обложка

Цитировать

Полный текст

Аннотация

Целью работы является построение общего решения обобщенного уравнения Коши—Римана, коэффициент которого допускает особенность первого порядка на окружности, содержащейся в области, и исследование краевой задачи, объединяющей элементы задач Римана—Гильберта и линейного сопряжения.

Полный текст

1. История вопроса. В конечной области 0D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyicI4SaamiraiabgAOinp rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8NaHmea aa@4152@  рассматривается эллиптическое уравнение вида

u z ¯ +au+b u ¯ =f, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITceWG6bGbaebaaaGaey4kaSIaamyyaiaadwhacqGHRaWkcaWG IbWaa0aaaeaacaWG1baaaiaai2dacaWGMbGaaGilaaaa@3EA8@

c комплекснозначными функциями a(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadQhacaaIPaaaaa@3507@ , b(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGikaiaadQhacaaIPaaaaa@3508@ , f(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadQhacaaIPaaaaa@350C@ , заданными в ограниченной области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ , причем коэффициенты a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@  этих уравнений могут допускать в множестве lD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbGaeyicI4Saamiraaaa@34FB@  степенные особенности по z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32BC@ .

Обозначим через C λ ( D ¯ ,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiabeU7aSbqaba GccaaIOaWaa0aaaeaacaWGebaaaiaaiYcacaaIWaGaaGykaaaa@381E@ , λ<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcaaI8aGaaGimaaaa@34F1@ , пространство всех непрерывных в D ¯ \{0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadseaaaGaaiixaiaaiU hacaaIWaGaaGyFaaaa@363D@  функций φ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamOEaiaaiMcaaa a@35DE@  с точечной особенностью z=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaicdaaaa@343D@  и c поведением O(|z | λ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaaGikaiaaiYhacaWG6bGaaG iFamaaCaaaleqabaGaeq4UdWgaaOGaaGykaaaa@38EC@  при z0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyOKH4QaaGimaaaa@3563@ . Оно снабжается нормой

φ= sup zD |z | λ |φ(z)|, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHgpGAcqWFLicucaaI9aWaaybuaeqaleaacaWG6bGaeyicI4Sa amiraaqabOqaaiGacohacaGG1bGaaiiCaaaacaaI8bGaamOEaiaaiY hadaahaaWcbeqaaiabgkHiTiabeU7aSbaakiaaiYhacqaHgpGAcaaI OaGaamOEaiaaiMcacaaI8bGaaGilaaaa@4E90@

относительно которой указанное пространство является банаховым.

Классическая теория И. Н. Векуа обобщенных аналитических функций (см. [3]) охватывает случай, когда коэффициенты и правая часть уравнения (10) принадлежат пространству L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaWbaaSqabeaacaWGWbaaaO GaaGikaiaadseacaaIPaaaaa@35E8@  с показателем p>2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaikdaaaa@3436@  (везде далее считаем это условие выполненным). Коэффициенты таких систем могут допускать слабые особенности с требованием их p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  -интегрируемости в области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ . Уравнения с коэффициентами a C α1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaBaaale aacqGHsislcqaHXoqycqGHsislcaaIXaaabeaaaaa@394F@ , α0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHLjYScaaIWaaaaa@35DC@ , и b C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaeyicI4Saam4qamaaBaaale aacqGHsislcaaIXaaabeaaaaa@36C4@  не удовлетворяют этому условию.

В монографии Л. Г. Михайлова [5] решение уравнения (10) с коэффициентами a,b C 1 ( D ¯ ,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGilaiaadkgacqGHiiIZca WGdbWaaSbaaSqaaiabgkHiTiaaigdaaeqaaOGaaGikamaanaaabaGa amiraaaacaaISaGaaGimaiaaiMcaaaa@3C19@  ищется в классе C λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiabgkHiTiabeU 7aSbqabaaaaa@3552@ , 0<λ<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeU7aSjaaiYdaca aIXaaaaa@3672@ . Разрешимость интегрального уравнения, к которому сводится уравнение (10), доказывается при определенных условиях малости этих коэффициентов.

З. Д. Усмановым [11] построена теория уравнения (10) при a=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaaicdaaaa@3424@ , b(z)= z ¯ 1 β e ikφ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGikaiaadQhacaaIPaGaaG ypaiqadQhagaqeamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabek7a IjaadwgadaahaaWcbeqaaiaadMgacaWGRbGaeqOXdOgaaaaa@3F18@ , kZ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamOwaaaa@3510@ . Однако случай, когда b(z)= z ¯ 1 ( β 1 e ikφ + β 2 e imφ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGikaiaadQhacaaIPaGaaG ypaiqadQhagaqeamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIca cqaHYoGydaWgaaWcbaGaaGymaaqabaGccaWGLbWaaWbaaSqabeaaca WGPbGaam4AaiabeA8aQbaakiabgUcaRiabek7aInaaBaaaleaacaaI YaaabeaakiaadwgadaahaaWcbeqaaiaadMgacaWGTbGaeqOXdOgaaO GaaGykaaaa@49AB@ , где β 1 β 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaaGymaaqaba GccqGHGjsUcqaHYoGydaWgaaWcbaGaaGOmaaqabaaaaa@389F@ , приводит к бесконечной системе обыкновенных дифференциальных уравнений, исследование которой представляет собой весьма нетривиальную проблему и ранее не проводилось. Также показано, что для случая a=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaaicdaaaa@3424@ , b=λ|z | α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGypaiabeU7aSjaaiYhaca WG6bGaaGiFamaaCaaaleqabaGaeyOeI0IaeqySdegaaaaa@3AE3@ , α>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGimaaaa@34DE@ , существуют решения уравнения (10) в виде рядов Фурье, коэффициенты которых определяются через функции Бесселя и Макдональда.

На необходимость изучения уравнений с коэффициентами, допускающими особенности не ниже первого порядка, впервые было указано И. Н. Векуа [3] и A. В. Бицадзе [2]. Понятие же сверхсингулярной особенности принадлежит Н. Р. Раджабову [8].

В последние время исследованию уравнения (10), а также других аналогичных уравнений с сингулярными коэффициентами были посвящены многочисленные работы (см., например, [>8, 12, 14] и др.).

В [13] изучалась разрешимость задачи Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта для уравнения

w z ¯ = Q(z) P(z) w(z)+a(z)w+b(z) w ¯ ,|z|<1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiqadQhagaqeaa qabaGccaaI9aWaaSaaaeaacaWGrbGaaGikaiaadQhacaaIPaaabaGa amiuaiaaiIcacaWG6bGaaGykaaaacaWG3bGaaGikaiaadQhacaaIPa Gaey4kaSIaamyyaiaaiIcacaWG6bGaaGykaiaadEhacqGHRaWkcaWG IbGaaGikaiaadQhacaaIPaWaa0aaaeaacaWG3baaaiaaiYcacaaMf8 UaaGiFaiaadQhacaaI8bGaaGipaiaaigdacaaIUaaaaa@509A@

где полином P(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadQhacaaIPaaaaa@34F6@  внутри круга |z|1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOEaiaaiYhacqGHKjYOca aIXaaaaa@3738@  имеет простые корни, a(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadQhacaaIPaaaaa@3507@ , b(z) L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGikaiaadQhacaaIPaGaey icI4SaamitamaaCaaaleqabaGaamiCaaaakiaaiIcacaWGebGaaGyk aaaa@3AB7@ . Показано, что число непрерывных решений зависит не только от индекса, но и от места расположения и типа особенностей.

В настоящей статье изучен эффект влияния неизолированных особенностей в младшем коэффициенте (т.е. когда младший коэффициент имеет особенность по замкнутой линии l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32AE@ , лежащей внутри области) уравнения (10) [ниже уранение (1)] на постановку краевых задач. Оказывается, условие задачи Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта по границе области недостаточно для ее корректной постановки. Естественной постановкой задачи является объединение элементы задач Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта на границе области и задачи линейного сопряжения на окружности MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  носителе сингулярности коэффициента лежащего внутри области.

2. Интегральное представление решения. Пусть область D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  ограничена простым ляпуновским контуром Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWraaa@3325@ , ориентированным против часовой стрелки, содержит окружность l={z:|z|=R} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbGaaGypaiaaiUhacaWG6bGaaG OoaiaaiYhacaWG6bGaaGiFaiaai2dacaWGsbGaaGyFaaaa@3BED@  ), и D 0 =D\({0}l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadseacaGGCbGaaGikaiaaiUhacaaIWaGaaGyFaiabgQIi ilaadYgacaaIPaaaaa@3CA2@ . Кроме того, для связных компонент открытого множества D 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaa aa@336C@  используем обозначения D 1 ={z:|z|<R} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaiUhacaWG6bGaaGOoaiaaiYhacaWG6bGaaGiFaiaaiYda caWGsbGaaGyFaaaa@3CB5@ , D 2 =D{|z|>R} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadseacqGHPiYXcaaI7bGaaGiFaiaadQhacaaI8bGaaGOp aiaadkfacaaI9baaaa@3D5C@ .

В открытом множестве D 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaa aa@336C@  рассмотрим уравнение

u z ¯ z a 0 (z) |z|(|z|R) u+ b 0 (z) |z | m u ¯ =f(z), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITceWG6bGbaebaaaGaeyOeI0YaaSaaaeaacaWG6bGaamyyamaa BaaaleaacaaIWaaabeaakiaaiIcacaWG6bGaaGykaaqaaiaaiYhaca WG6bGaaGiFaiaaiIcacaaI8bGaamOEaiaaiYhacqGHsislcaWGsbGa aGykaaaacaWG1bGaey4kaSYaaSaaaeaacaWGIbWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaaabaGaaGiFaiaadQhacaaI8bWa aWbaaSqabeaacaWGTbaaaaaakmaanaaabaGaamyDaaaacaaI9aGaam OzaiaaiIcacaWG6bGaaGykaiaaiYcaaaa@5651@  (1)

где функции a 0 , b 0 C( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaadkgadaWgaaWcbaGaaGimaaqabaGccqGHiiIZcaWGdbGa aGikamaanaaabaGaamiraaaacaaIPaaaaa@3AAB@ . Относительно правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  предполагаем, что она принадлежит классу L p ( G 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaWbaaSqabeaacaWGWbaaaO GaaGikaiaadEeadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@36DB@ , в каждой подобласти G 0 D 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaicdaaeqaaO GaeyOHI0SaamiramaaBaaaleaacaaIWaaabeaaaaa@3729@ , лежащей вне некоторой окрестности точке z=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaicdaaaa@343D@  и границы Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWraaa@3325@ .

Напомним некоторые известные факты из теории эллиптических систем, изложенной в [1, 3].

Пусть в некотором открытом множестве Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  на плоскости задана линейная эллиптическая система первого порядка с постоянными старшими коэффициентами, младшие коэффициенты и правая часть которой принадлежат L loc p (Q) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaadYgacaWGVb Gaam4yaaqaaiaadchaaaGccaaIOaGaamyuaiaaiMcaaaa@38C2@ , p>2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaikdaaaa@3436@ , т.е. принадлежат W 1,p ( Q 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaaIXaGaaG ilaiaadchaaaGccaaIOaGaamyuamaaBaaaleaacaaIWaaabeaakiaa iMcaaaa@3861@  в любой ограниченной области Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaaicdaaeqaaa aa@3379@ , лежащей в Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  вместе со своей границей. Тогда на основании внутренней регулярности (см. [3]) любое слабое решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  этого уравнения регулярно в том смысле, что оно принадлежит классу W loc 1,p (Q) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaa0baaSqaaiaadYgacaWGVb Gaam4yaaqaaiaaigdacaaISaGaamiCaaaakiaaiIcacaWGrbGaaGyk aaaa@3A3E@  и удовлетворяют рассматриваемой системе. В силу теоремы вложения функция u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  в действительности принадлежит классу C μ ( Q 0 ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacqaH8oqBaa GccaaIOaWaa0aaaeaacaWGrbWaaSbaaSqaaiaaicdaaeqaaaaakiaa iMcaaaa@37AE@  с показателем μ(p2)/p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHKjYOcaaIOaGaamiCai abgkHiTiaaikdacaaIPaGaaG4laiaadchaaaa@3AD9@ . Этот факт был доказан И. Н. Векуа в [3]. В соответствии с этим в дальнейшем функция u(z) W loc 1,p ( D 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadQhacaaIPaGaey icI4Saam4vamaaDaaaleaacaWGSbGaam4BaiaadogaaeaacaaIXaGa aGilaiaadchaaaGccaaIOaGaamiramaaBaaaleaacaaIWaaabeaaki aaiMcaaaa@4003@ , удовлетворяющая уравнению (1) почти всюду, называется его регулярным решением.

Рассмотрим сначала случай

u z ¯ au=f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiqadQhagaqeaa qabaGccqGHsislcaWGHbGaamyDaiaai2dacaWGMbaaaa@3883@  (2)

с коэффициентом

a(z)= a * z |z|(|z|R) + A 0 (z), a * , A 0 (z) L p (D). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadQhacaaIPaGaaG ypamaalaaabaGaamyyamaaBaaaleaacaaIQaaabeaakiaadQhaaeaa caaI8bGaamOEaiaaiYhacaaIOaGaaGiFaiaadQhacaaI8bGaeyOeI0 IaamOuaiaaiMcaaaGaey4kaSIaamyqamaaBaaaleaacaaIWaaabeaa kiaaiIcacaWG6bGaaGykaiaaiYcacaaMf8UaamyyamaaBaaaleaaca aIQaaabeaakiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbaceaGae8NaHmKaaGilaiaaywW7caWGbbWaaSbaaSqaaiaaic daaeqaaOGaaGikaiaadQhacaaIPaGaeyicI4SaamitamaaCaaaleqa baGaamiCaaaakiaaiIcacaWGebGaaGykaiaai6caaaa@63D2@

При построении общего решения уравнения (2) и его описания существенную роль играет интегральный оператор Помпейю MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Векуа:

(Tf)(z)= 1 π D f(ζ) d 2 ζ ζz , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamivaiaadAgacaaIPaGaaG ikaiaadQhacaaIPaGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiab ec8aWbaadaWdraqabSqaaiaadseaaeqaniabgUIiYdGcdaWcaaqaai aadAgacaaIOaGaeqOTdONaaGykaiaadsgadaWgaaWcbaGaaGOmaaqa baGccqaH2oGEaeaacqaH2oGEcqGHsislcaWG6baaaiaaiYcaaaa@4A78@

с плотностью f L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4SaamitamaaCaaale qabaGaamiCaaaakiaaiIcacaWGebGaaGykaaaa@3857@ , которая обладает свойством (Tf) z ¯ =f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamivaiaadAgacaaIPaWaaS baaSqaamaanaaabaGaamOEaaaaaeqaaOGaaGypaiaadAgaaaa@37DE@ . Здесь и ниже d 2 ζ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaO GaeqOTdOhaaa@3555@  означает элемент площади.

Лемма 1. Одним из решений уравнения Ω z ¯ =a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGabmOEayaara aabeaakiaai2dacaWGHbaaaa@3645@  в множестве D 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaa aa@336C@  является функция

Ω(z)=2 a * ln||z|R|+(T A 0 )(z),z D 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaIOaGaamOEaiaaiMcaca aI9aGaaGOmaiaadggadaWgaaWcbaGaaGOkaaqabaGcciGGSbGaaiOB aiaaiYhacaaI8bGaamOEaiaaiYhacqGHsislcaWGsbGaaGiFaiabgU caRiaaiIcacaWGubGaamyqamaaBaaaleaacaaIWaaabeaakiaaiMca caaIOaGaamOEaiaaiMcacaaISaGaaGzbVlaadQhacqGHiiIZcaWGeb WaaSbaaSqaaiaaicdaaeqaaOGaaGOlaaaa@5033@  (3)

Доказательство непосредственно получится из равенств (ln||z|R|) z ¯ =z (|z|(|z|R)) 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaciiBaiaac6gacaaI8bGaaG iFaiaadQhacaaI8bGaeyOeI0IaamOuaiaaiYhacaaIPaWaaSbaaSqa aiqadQhagaqeaaqabaGccaaI9aGaamOEaiaaiIcacaaI8bGaamOEai aaiYhacaaIOaGaaGiFaiaadQhacaaI8bGaeyOeI0IaamOuaiaaiMca caaIPaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGykaaaa@4C2A@  и (T A 0 ) z ¯ = A 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamivaiaadgeadaWgaaWcba GaaGimaaqabaGccaaIPaWaaSbaaSqaamaanaaabaGaamOEaaaaaeqa aOGaaGypaiaadgeadaWgaaWcbaGaaGimaaqabaaaaa@396A@ .

Теорема 1. Пусть функция Ω(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaIOaGaamOEaiaaiMcaaa a@35AF@  имеет вид (3) и e Ω f L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq qHPoWvaaGccaWGMbGaeyicI4SaamitamaaCaaaleqabaGaamiCaaaa kiaaiIcacaWGebGaaGykaaaa@3BF3@ . Тогда общее решение уравнения (2) в классе C( D ¯ \l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaanaaabaGaamiraa aacaGGCbGaamiBaiaaiMcaaaa@3695@  дается формулой

u= e Ω [ϕ+T( e Ω f)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwgadaahaaWcbe qaaiabfM6axbaakiaaiUfacqaHvpGzcqGHRaWkcaWGubGaaGikaiaa dwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAgacaaIPaGaaG yxaiaaiYcaaaa@421E@

где ϕC( D ¯ \l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcqGHiiIZcaWGdbGaaGikam aanaaabaGaamiraaaacaGGCbGaamiBaiaaiMcaaaa@39E1@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  произвольная аналитическая функция в открытом множестве D\{l} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaiixaiaaiUhacaWGSbGaaG yFaaaa@3663@ .

Утверждение показывает, что u(z)=O(1)(|z|R | 2 a ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadQhacaaIPaGaaG ypaiaad+eacaaIOaGaaGymaiaaiMcacaaIOaGaaGiFaiaadQhacaaI 8bGaeyOeI0IaamOuaiaaiYhadaahaaWcbeqaaiaaikdacaWGHbWaaS baaeaacqGHxiIkaeqaaaaakiaaiMcaaaa@42F9@  при |z|R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOEaiaaiYhacqGHsgIRca WGsbaaaa@378C@ . Используя обозначение f 0 = e Ω f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAga aaa@38E6@ , уравнение (1) с ненулевыми a 0 (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadQhacaaIPaaaaa@35F7@  и b 0 (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadQhacaaIPaaaaa@35F8@  с помощью леммы 1 по отношению к функции φ= e Ω u L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaamyzamaaCaaale qabaGaeyOeI0IaeuyQdCfaaOGaamyDaiabgIGiolaadYeadaahaaWc beqaaiaadchaaaGccaaIOaGaamiraiaaiMcaaaa@3E86@  можно свести к уравнению

φ z ¯ + b 0 c φ ¯ = f 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGabmOEayaara aabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGimaaqabaGccaWGJbWa a0aaaeaacqaHgpGAaaGaaGypaiaadAgadaWgaaWcbaGaaGimaaqaba GccaaISaaaaa@3D8E@

которое эквивалентным образом редуцируется к интегральному уравнению

φ+T( b 1 φ ¯ )=ϕ+T f 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHRaWkcaWGubGaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGcdaqdaaqaaiabeA8aQbaacaaI PaGaaGypaiabew9aMjabgUcaRiaadsfacaWGMbWaaSbaaSqaaiaaic daaeqaaOGaaGilaaaa@411B@  (4)

где b 1 = b 0 c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadkgadaWgaaWcbaGaaGimaaqabaGccaWGJbaaaa@371B@ , c(z)= e 2iImΩ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGikaiaadQhacaaIPaGaaG ypaiaadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWGPbGaamysaiaa d2gacqqHPoWvcaaIOaGaamOEaiaaiMcaaaaaaa@3F30@ , функция ϕH( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcqGHiiIZcaWGibGaaGikam aanaaabaGaamiraaaacaaIPaaaaa@3815@  аналитична в D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ . Для исследования уравнения (4) необходимо предварительно изучить действие в различных пространствах интегрального оператора вида

( K 0 φ)(z)= D φ(ζ) d 2 ζ |ζ | m |ζz | α ,zD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaBaaaleaacaaIWa aabeaakiabeA8aQjaaiMcacaaIOaGaamOEaiaaiMcacaaI9aWaa8qe aeqaleaacaWGebaabeqdcqGHRiI8aOWaaSaaaeaacqaHgpGAcaaIOa GaeqOTdONaaGykaiaadsgadaWgaaWcbaGaaGOmaaqabaGccqaH2oGE aeaacaaI8bGaeqOTdONaaGiFamaaCaaaleqabaGaamyBaaaakiaaiY hacqaH2oGEcqGHsislcaWG6bGaaGiFamaaCaaaleqabaGaeqySdega aaaakiaaiYcacaaMf8UaamOEaiabgIGiolaadseacaaISaaaaa@57F2@

где положительные m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@ , α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@  удовлетворяют условиям

0<m<1α< 3m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaad2gacaaI8aGaaG ymaiabgsMiJkabeg7aHjaaiYdadaWcaaqaaiaaiodacqGHsislcaWG TbaabaGaaGOmaaaacaaISaaaaa@3DE8@

так что 0<3m2α<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaaiodacqGHsislca WGTbGaeyOeI0IaaGOmaiabeg7aHjaaiYdacaaIXaaaaa@3AA2@ .

Лемма 2 (см. [15]). Пусть

p> 2 3m2α ,μ=3m2α 2 p . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpamaalaaabaGaaGOmaa qaaiaaiodacqGHsislcaWGTbGaeyOeI0IaaGOmaiabeg7aHbaacaaI SaGaaGzbVlabeY7aTjaai2dacaaIZaGaeyOeI0IaamyBaiabgkHiTi aaikdacqaHXoqycqGHsisldaWcaaqaaiaaikdaaeaacaWGWbaaaiaa i6caaaa@4835@

Тогда оператор K 0 : L p (D) C μ ( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaicdaaeqaaO GaaGOoaiaadYeadaahaaWcbeqaaiaadchaaaGccaaIOaGaamiraiaa iMcacqGHsgIRcaWGdbWaaWbaaSqabeaacqaH8oqBaaGccaaIOaWaa0 aaaeaacaWGebaaaiaaiMcaaaa@3F4D@  ограничен.

Из леммы 2 следует, что при m+μ+2/p<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaey4kaSIaeqiVd0Maey4kaS IaaGOmaiaai+cacaWGWbGaaGipaiaaigdaaaa@3A14@  оператор T b 1 : MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaamOyamaaBaaaleaacaaIXa aabeaakiaaiQdaaaa@3532@   L p (D) C μ ( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaWbaaSqabeaacaWGWbaaaO GaaGikaiaadseacaaIPaGaeyOKH4Qaam4qamaaCaaaleqabaGaeqiV d0gaaOGaaGikamaanaaabaGaamiraaaacaaIPaaaaa@3CC9@  ограничен и компактен в каждом из пространств L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaWbaaSqabeaacaWGWbaaaO GaaGikaiaadseacaaIPaaaaa@35E8@ , C μ ( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacqaH8oqBaa GccaaIOaWaa0aaaeaacaWGebaaaiaaiMcaaaa@36B1@ , принадлежащих классу C μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacqaH8oqBaa aaaa@3468@  в каждой из компонент связности множества D 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaicdaaeqaaa aa@336C@ . Согласно (4) в представлении общего решения уравнения (2) важную роль играет линейный интегральный оператор Kφ=T b 1 φ ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaeqOXdOMaaGypaiaadsfaca WGIbWaaSbaaSqaaiaaigdaaeqaaOWaa0aaaeaacqaHgpGAaaaaaa@3990@ , а также связанное с ним уравнение Фредгольма φ+Kφ=f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHRaWkcaWGlbGaeqOXdO MaaGypaiaadAgaaaa@389B@ .

Теорема 2.

>(a>) Однородное уравнение φ+Kφ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHRaWkcaWGlbGaeqOXdO MaaGypaiaaicdaaaa@386A@  в классе C( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C4@  имеет конечное число линейно независимых (над полем MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C74@  ) решений φ 1 ,, φ n H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaaGymaaqaba GccaaISaGaeSOjGSKaaGilaiabeA8aQnaaBaaaleaacaWGUbaabeaa kiabgIGiolaadIeacaaIOaWaa0aaaeaacaWGebaaaiaaiMcaaaa@3E6F@  и существуют такие линейно независимые суммируемые функции h 1 ,, h n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiablAciljaaiYcacaWGObWaaSbaaSqaaiaad6gaaeqaaaaa @3835@ , что условия ортогональности

Re D f(ζ) h j (ζ) d 2 ζ=0,1jn, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzamaapebabeWcbaGaam iraaqab0Gaey4kIipakiaadAgacaaIOaGaeqOTdONaaGykaiaadIga daWgaaWcbaGaamOAaaqabaGccaaIOaGaeqOTdONaaGykaiaadsgada WgaaWcbaGaaGOmaaqabaGccqaH2oGEcaaI9aGaaGimaiaaiYcacaaM f8UaaGymaiabgsMiJkaadQgacqGHKjYOcaWGUbGaaGilaaaa@4DB7@  (5)

являются необходимыми и достаточными для разрешимости неоднородного уравнения φ+Kφ=f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHRaWkcaWGlbGaeqOXdO MaaGypaiaadAgaaaa@389B@ .

>(b>) При выполнении условий (5) любое решения уравнения φ+Kφ=f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHRaWkcaWGlbGaeqOXdO MaaGypaiaadAgaaaa@389B@  дается формулой φ=f+Pf MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaamOzaiabgUcaRi aadcfacaWGMbaaaa@37CE@ , с оператором

(Pf)(z)= 1 π D [ p 1 (z,ζ)f(ζ)+ p 2 (z,ζ) f(ζ) ¯ ] d 2 ζ |ζ | m |ζz | α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiuaiaadAgacaaIPaGaaG ikaiaadQhacaaIPaGaaGypamaalaaabaGaaGymaaqaaiabec8aWbaa daWdraqabSqaaiaadseaaeqaniabgUIiYdGcdaWcaaqaaiaaiUfaca WGWbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadQhacaaISaGaeqOT dONaaGykaiaadAgacaaIOaGaeqOTdONaaGykaiabgUcaRiaadchada WgaaWcbaGaaGOmaaqabaGccaaIOaGaamOEaiaaiYcacqaH2oGEcaaI PaWaa0aaaeaacaWGMbGaaGikaiabeA7a6jaaiMcaaaGaaGyxaiaads gadaWgaaWcbaGaaGOmaaqabaGccqaH2oGEaeaacaaI8bGaeqOTdONa aGiFamaaCaaaleqabaGaamyBaaaakiaaiYhacqaH2oGEcqGHsislca WG6bGaaGiFamaaCaaaleqabaGaeqySdegaaaaakiaaiYcaaaa@66A2@  (6)

где 1α<(3m)/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaeyizImQaeqySdeMaaGipai aaiIcacaaIZaGaeyOeI0IaamyBaiaaiMcacaaIVaGaaGOmaaaa@3C08@ , который действует из пространства C( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C4@  в пространство H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C9@ .

Теорема 3. В условиях теоремы 2 любое решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  уравнения (1) с правой частью f 0 = e Ω f L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAga cqGHiiIZcaWGmbWaaWbaaSqabeaacaWGWbaaaOGaaGikaiaadseaca aIPaaaaa@3E95@  представимо в виде

u= e Ω ϕ+T f 0 +P(ϕ+T f 0 )+ 1 n ξ j φ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwgadaahaaWcbe qaaiabfM6axbaakmaadmaabaGaeqy1dyMaey4kaSIaamivaiaadAga daWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGqbGaaGikaiabew9aMj abgUcaRiaadsfacaWGMbWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiab gUcaRmaaqahabeWcbaGaaGymaaqaaiaad6gaa0GaeyyeIuoakiabe6 7a4naaBaaaleaacaWGQbaabeaakiabeA8aQnaaBaaaleaacaWGQbaa beaaaOGaay5waiaaw2faaaaa@509E@  (7)

с произвольными ξ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaamOAaaqaba GccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risbaa@40E0@ , и функция ϕ(z)H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcacq GHiiIZcaWGibGaaGikamaanaaabaGaamiraaaacaaIPaaaaa@3A79@ , аналитическая в области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ , удовлетворяет условиям

Re D (ϕ+T f 0 )(ζ) h j (ζ) d 2 ζ=0,1jn. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzamaapebabeWcbaGaam iraaqab0Gaey4kIipakiaaiIcacqaHvpGzcqGHRaWkcaWGubGaamOz amaaBaaaleaacaaIWaaabeaakiaaiMcacaaIOaGaeqOTdONaaGykai aadIgadaWgaaWcbaGaamOAaaqabaGccaaIOaGaeqOTdONaaGykaiaa dsgadaWgaaWcbaGaaGOmaaqabaGccqaH2oGEcaaI9aGaaGimaiaaiY cacaaMf8UaaGymaiabgsMiJkaadQgacqGHKjYOcaWGUbGaaGOlaaaa @5391@

Схемы доказательства теорем 2, 3 приведены в [15].

3. Постановка краевой задачи. Для уравнения (2), исследуем краевую задачу, объединяющую элементы задач Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта на Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWraaa@3325@  и линейного сопряжения на l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32AE@ .

Задача R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@ Найти регулярное решение уравнения (2) в классе e Ω uH( D j ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq qHPoWvaaGccaWG1bGaeyicI4SaamisaiaaiIcadaqdaaqaaiaadsea daWgaaWcbaGaamOAaaqabaaaaOGaaGykaaaa@3C08@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ , по краевым условиям

ReG(t)u | Γ =g(t),tΓ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaadEeacaaIOaGaam iDaiaaiMcacaWG1bGaaGiFamaaBaaaleaacqqHtoWraeqaaOGaaGyp aiaadEgacaaIOaGaamiDaiaaiMcacaaISaGaaGzbVlaadshacqGHii IZcqqHtoWrcaaI7aaaaa@4545@

( e Ω u) + (t) G 1 (t)( e Ω u ) (t)= g 1 (t),tl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyzamaaCaaaleqabaGaey OeI0IaeuyQdCfaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgUcaRaaa kiaaiIcacaWG0bGaaGykaiabgkHiTiaadEeadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiDaiaaiMcacaaIOaGaamyzamaaCaaaleqabaGa eyOeI0IaeuyQdCfaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgkHiTa aakiaaiIcacaWG0bGaaGykaiaai2dacaWGNbWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadshacaaIPaGaaGilaiaaywW7caWG0bGaeyicI4 SaamiBaiaaiYcaaaa@551E@

где знаки + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkaaa@329F@  и MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislaaa@32AA@  указывают на граничные значения со стороны D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaa aa@336D@  и D 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaa aa@336E@ .

Эту задачу рассматриваем при следующих требованиях на ее данные:

(i) e Ω f L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq qHPoWvaaGccaWGMbGaeyicI4SaamitamaaCaaaleqabaGaamiCaaaa kiaaiIcacaWGebGaaGykaaaa@3BF3@ ;

>(ii>) коэффициенты G(t)H(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiaadshacaaIPaGaey icI4SaamisaiaaiIcacqqHtoWrcaaIPaaaaa@3A05@ , G 1 (t)H(l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaeyicI4SaamisaiaaiIcacaWGSbGaaGyk aaaa@3A7F@  всюду отличны от нуля, причем ln G 1 H(l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGSbGaaiOBaiaadEeadaWgaaWcba GaaGymaaqabaGccqGHiiIZcaWGibGaaGikaiaadYgacaaIPaaaaa@3A05@ ;

>(iii>) правые части краевых условий удовлетворяют условиям g(t)H(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadshacaaIPaGaey icI4SaamisaiaaiIcacqqHtoWrcaaIPaaaaa@3A25@ , g 1 (t)H(l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaeyicI4SaamisaiaaiIcacaWGSbGaaGyk aaaa@3A9F@ .

Предварительно напомним хорошо известные результаты относительно классической задачи Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта в монографиях Н. И. Мусхелишвили [6] и Ф. Д. Гахова [4]:

Классическая задача Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ Гильберта. Найти аналитическую в области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  функцию ϕ(z)H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcacq GHiiIZcaWGibGaaGikamaanaaabaGaamiraaaacaaIPaaaaa@3A79@ , которая на границе Γ=D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaI9aGaeyOaIyRaamiraa aa@361B@  удовлетворяет условию

ReGϕ | Γ =g, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaadEeacqaHvpGzca aI8bWaaSbaaSqaaiabfo5ahbqabaGccaaI9aGaam4zaiaaiYcaaaa@3B1F@  (8)

 где функция G= G 1 +i G 2 H(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGypaiaadEeadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGPbGaam4ramaaBaaaleaacaaIYaaa beaakiabgIGiolaadIeacaaIOaGaeu4KdCKaaGykaaaa@3DB9@  всюду отлична от нуля, H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  класс функций, удовлетворяющих условию Гельдера с некоторым показателем (см. [6]).

В дальнейшем воспользуемся компактным изложением А. П. Солдатова относительно решения задачи Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта (8) и вкратце приведем некоторые факты о разрешимости этой задачи в случае единичного круга D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=ni8ebaa@3D9B@  с границей T=D={z:|z|=1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=nj8ujaai2dacqGHciITcqWFdcprcaaI9aGa aG4EaiaadQhacaaI6aGaaGiFaiaadQhacaaI8bGaaGypaiaaigdaca aI9baaaa@4B47@ . C этой целью функцию ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@  продолжим в область \D={|z|>1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=jqidjaacYfacqWFdcprcaaI9aGaaG4Eaiaa iYhacaWG6bGaaGiFaiaai6dacaaIXaGaaGyFaaaa@46C7@ , полагая, что она удовлетворяет условию ϕ= ϕ * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaI9aGaeqy1dy2aaSbaaS qaaiaaiQcaaeqaaaaa@36F4@ , где ϕ * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaaGOkaaqaba aaaa@3465@  определяется с помощью инверсии ϕ * (z)= ϕ(1/ z ¯ ) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaaGOkaaqaba GccaaIOaGaamOEaiaaiMcacaaI9aWaa0aaaeaacqaHvpGzcaaIOaGa aGymaiaai+cadaqdaaqaaiaadQhaaaGaaGykaaaaaaa@3D5C@ . Операция ϕ ϕ * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcqGHsgIRcqaHvpGzdaWgaa WcbaGaaGOkaaqabaaaaa@381A@ , являющаяся линейной, над полем MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C74@  инволютивна, т.е. ( ϕ * ) * =ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqy1dy2aaSbaaSqaaiaaiQ caaeqaaOGaaGykamaaBaaaleaacaaIQaaabeaakiaai2dacqaHvpGz aaa@394D@ . Видно, что ϕ * ± (t)= ϕ ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaqhaaWcbaGaaGOkaaqaai abgglaXcaakiaaiIcacaWG0bGaaGykaiaai2dadaqdaaqaaiabew9a MnaaCaaaleqabaGaeS4eI0gaaaaaaaa@3CBC@ , tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFtcpvaaa@4038@ . Очевидно, задачу (8) с коэффициентом G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbaaaa@3289@  можем представить в форме

ϕ + G ˜ ϕ = g ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgUcaRa aakiabgkHiTmaaGaaabaGaam4raaGaay5adaGaeqy1dy2aaWbaaSqa beaacqGHsislaaGccaaI9aWaaacaaeaacaWGNbaacaGLdmaaaaa@3C7A@  (9)

по отношению к коэффициенту G ˜ = G ¯ /G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaiaai2 dacqGHsisldaqdaaqaaiaadEeaaaGaaG4laiaadEeaaaa@3761@  и правой части g ˜ =2g/G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEgaaiaawoWaaiaai2 dacaaIYaGaam4zaiaai+cacaWGhbaaaa@375F@ .

Исследование последней задачи с коэффициентом G ˜ = G ¯ /G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaiaai2 dacqGHsisldaqdaaqaaiaadEeaaaGaaG4laiaadEeaaaa@3761@  осуществляется с помощью так называемой G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  -канонической функции. По определению под ней понимается функция X(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybGaaGikaiaadQhacaaIPaaaaa@34FE@ , которая аналитична в каждой связной компоненте D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=ni8ebaa@3D9B@ , \D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=jqidjaacYfacqWFdcpraaa@3F66@  и продолжается по непрерывности на ее замыкание D ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaamrr1ngBPrwtHrhAYaqegu uDJXwAKbstHrhAGq1DVbaceaGae83GWteaaaaa@3DAC@ , \D ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaamrr1ngBPrwtHrhAYaqegu uDJXwAKbstHrhAGq1DVbaceaGae8NaHmKaaiixaiab=ni8ebaaaaa@3F77@  и всюду отлична от нуля, включая ее граничные значения X ± MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacqGHXcqSaa aaaa@34B5@ , вместе с X 1 (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacqGHsislca aIXaaaaOGaaGikaiaadQhacaaIPaaaaa@36DD@  имеет конечный порядок на бесконечности и удовлетворяет соотношению

X + = G ˜ X . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacqGHRaWkaa GccaaI9aWaaacaaeaacaWGhbaacaGLdmaacaWGybWaaWbaaSqabeaa cqGHsislaaGccaaIUaaaaa@38C1@

Лемма 3. Пусть ϰ=In d Γ G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=b=a5laai2dacaWGjbGaamOBaiaadsgadaWg aaWcbaGaeu4KdCeabeaakiaadEeaaaa@4394@ , так что функция θ(t)=argG(t)ϰargtH(T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaciyyaiaackhacaGGNbGaam4raiaaiIcacaWG0bGaaGykaiab gkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8 h8dKVaciyyaiaackhacaGGNbGaamiDaiabgIGiolaadIeacaaIOaWe fv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiuaacqGFtcpvca aIPaaaaa@5CE9@ , и пусть

R(z)= 1, |z|<1, z 2ϰ , |z|>1, Θ(z)= 1 2π T π2θ(t) tz dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaaGikaiaadQhacaaIPaGaaG ypamaaceaabaqbaeqabiGaaaqaaiaaigdacaaISaaabaGaaGiFaiaa dQhacaaI8bGaaGipaiaaigdacaaISaaabaGaamOEamaaCaaaleqaba GaaGOmamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGa e8h8dKpaaOGaaGilaaqaaiaaiYhacaWG6bGaaGiFaiaai6dacaaIXa GaaGilaaaaaiaawUhaaiaaywW7caaMf8UaeuiMdeLaaGikaiaadQha caaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikdacqaHapaCaaWaa8 qeaeqaleaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGqb aiab+nj8ubqab0Gaey4kIipakmaalaaabaGaeqiWdaNaeyOeI0IaaG OmaiabeI7aXjaaiIcacaWG0bGaaGykaaqaaiaadshacqGHsislcaWG 6baaaiaadsgacaWG0bGaaGOlaaaa@77A3@

Тогда функция

X(z)=R(z) e Θ(z)Θ(0)/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybGaaGikaiaadQhacaaIPaGaaG ypaiaadkfacaaIOaGaamOEaiaaiMcacaWGLbWaaWbaaSqabeaacqqH yoqucaaIOaGaamOEaiaaiMcacqGHsislcqqHyoqucaaIOaGaaGimai aaiMcacaaIVaGaaGOmaaaaaaa@43EA@

является G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  -канонической и обладает свойством

X * (z)=X(z) z 2ϰ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaiQcaaeqaaO GaaGikaiaadQhacaaIPaGaaGypaiaadIfacaaIOaGaamOEaiaaiMca caWG6bWaaWbaaSqabeaacqGHsislcaaIYaWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiqGacqWFWpq+aaGccaaIUaaaaa@4983@

Теорема 4. В условиях леммы 3 все решения задачи (8) в классе H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFdcpraaGaaGyk aaaa@3FDE@  описываются формулой

ϕ(z)=Ig(z)+X(z)p(z),p P 2ϰ 0 ,Ig(z) X(z) πi T g(t) G(t) X + (t) dt tz , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcaca aI9aGaamysaiaadEgacaaIOaGaamOEaiaaiMcacqGHRaWkcaWGybGa aGikaiaadQhacaaIPaGaamiCaiaaiIcacaWG6bGaaGykaiaaiYcaca aMf8UaamiCaiabgIGiolaadcfadaqhaaWcbaGaeyOeI0IaaGOmamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8h8dKpaba GaaGimaaaakiaaiYcacaaMf8UaamysaiaadEgacaaIOaGaamOEaiaa iMcacqGHHjIUdaWcaaqaaiaadIfacaaIOaGaamOEaiaaiMcaaeaacq aHapaCcaWGPbaaamaapebabeWcbaWefv3ySLgznfgDOjdarCqr1ngB PrginfgDObcv39gaiuaacqGFtcpvaeqaniabgUIiYdGcdaWcaaqaai aadEgacaaIOaGaamiDaiaaiMcaaeaacaWGhbGaaGikaiaadshacaaI PaGaamiwamaaCaaaleqabaGaey4kaScaaOGaaGikaiaadshacaaIPa aaamaalaaabaGaamizaiaadshaaeaacaWG0bGaeyOeI0IaamOEaaaa caaISaaaaa@8312@  (10)

где функция g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  удовлетворяет условиям ортогональности

T g(t) G(t) X + (t) q(t)dt=0,q P 2ϰ2 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdraqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae83KWtfabeqdcqGHRiI8aOWa aSaaaeaacaWGNbGaaGikaiaadshacaaIPaaabaGaam4raiaaiIcaca WG0bGaaGykaiaadIfadaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG 0bGaaGykaaaacaWGXbGaaGikaiaadshacaaIPaGaamizaiaadshaca aI9aGaaGimaiaaiYcacaaMf8UaamyCaiabgIGiolaadcfadaqhaaWc baGaaGOmamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacfi Gae4h8dKVaeyOeI0IaaGOmaaqaaiaaicdaaaGccaaISaaaaa@66FB@  (11) где P k 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaa0baaSqaaiaadUgaaeaaca aIWaaaaaaa@3469@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  класс многочленов степени k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@ .

Доказательство. Как уже отмечалось, при дополнительном условии ϕ= ϕ * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaI9aGaeqy1dy2aaSbaaS qaaiaaiQcaaeqaaaaa@36F4@  задача (8) эквивалентна задаче (9). Последняя представляет собой задачу линейного сопряжения по отношению к G ˜ = G ¯ /G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaiaai2 dacqGHsisldaqdaaqaaiaadEeaaaGaaG4laiaadEeaaaa@3761@  и g=f/G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaadAgacaaIVaGaam 4raaaa@35E0@ . Следовательно, мы приходим к теореме 4.

Очевидно, при ϰ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=b=a5labgsMiJkaaicdaaaa@4028@  размерность пространства P 2ϰ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaa0baaSqaaiabgkHiTiaaik datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=b=a 5dqaaiaaicdaaaaaaa@411E@  над полем MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C74@  равна 2ϰ+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqGacqWFWpq+cqGHRaWkcaaIXaaa aa@40FF@ . Аналогично, при ϰ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=b=a5labgwMiZkaaicdaaaa@4039@  размерность пространства P 2ϰ2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaa0baaSqaaiaaikdatuuDJX wAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=b=a5labgkHi TiaaikdaaeaacaaIWaaaaaaa@41DA@  равна 2ϰ1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqGacqWFWpq+cqGHsislcaaIXaaaaa@401D@ . Во всех случаях индекс задачи (8) равен 2ϰ+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqGacqWFWpq+cqGHRaWkcaaIXaaa aa@40FF@  и, в частности, всегда отличен от нуля.

Остановимся еще на граничном значении функции

A(z)=Θ(z)Θ(0)/2,zD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadQhacaaIPaGaaG ypaiabfI5arjaaiIcacaWG6bGaaGykaiabgkHiTiabfI5arjaaiIca caaIWaGaaGykaiaai+cacaaIYaGaaGilaiaaywW7caWG6bGaeyicI4 8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFdcpr caaISaaaaa@50DC@

фигурирующей в представлении канонической функции X(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybGaaGikaiaadQhacaaIPaaaaa@34FE@ . В явном виде

A(z)= πi 2 1 π T θ(t)dt tz + i 2π T θ(t) d 1 t,A(0)= πi 2 1 2π T θ(t) d 1 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadQhacaaIPaGaaG ypamaalaaabaGaeqiWdaNaamyAaaqaaiaaikdaaaGaeyOeI0YaaSaa aeaacaaIXaaabaGaeqiWdahaamaapebabeWcbaWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFtcpvaeqaniabgUIiYdGc daWcaaqaaiabeI7aXjaaiIcacaWG0bGaaGykaiaadsgacaWG0baaba GaamiDaiabgkHiTiaadQhaaaGaey4kaSYaaSaaaeaacaWGPbaabaGa aGOmaiabec8aWbaadaWdraqabSqaaiab=nj8ubqab0Gaey4kIipaki abeI7aXjaaiIcacaWG0bGaaGykaiaadsgadaWgaaWcbaGaaGymaaqa baGccaWG0bGaaGilaiaaywW7caWGbbGaaGikaiaaicdacaaIPaGaaG ypamaalaaabaGaeqiWdaNaamyAaaqaaiaaikdaaaGaeyOeI0YaaSaa aeaacaaIXaaabaGaaGOmaiabec8aWbaadaWdraqabSqaaiab=nj8ub qab0Gaey4kIipakiabeI7aXjaaiIcacaWG0bGaaGykaiaadsgadaWg aaWcbaGaaGymaaqabaGccaWG0bGaaGOlaaaa@7CF1@

По формуле Сохоцкого MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Племеля отсюда

A + ( t 0 )= πi 2 ia( t 0 ) 1 π T θ(t)dt t t 0 + i 2π T θ(t) d 1 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaWbaaSqabeaacqGHRaWkaa GccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aWa aSaaaeaacqaHapaCcaWGPbaabaGaaGOmaaaacqGHsislcaWGPbGaam yyaiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiabgkHi TmaalaaabaGaaGymaaqaaiabec8aWbaadaWdraqabSqaamrr1ngBPr wtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae83KWtfabeqdcqGH RiI8aOWaaSaaaeaacqaH4oqCcaaIOaGaamiDaiaaiMcacaWGKbGaam iDaaqaaiaadshacqGHsislcaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa kiabgUcaRmaalaaabaGaamyAaaqaaiaaikdacqaHapaCaaWaa8qeae qaleaacqWFtcpvaeqaniabgUIiYdGccqaH4oqCcaaIOaGaamiDaiaa iMcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamiDaiaai6caaaa@6CFD@

Полагая e 2iβ = t 0 /t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacaaIYaGaam yAaiabek7aIbaakiaai2dacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aG4laiaadshaaaa@3A8B@ , можем записать

dt t t 0 = i d 1 t 1 e 2iβ = ictgβ 2 d 1 t, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadsgacaWG0baabaGaam iDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaaaaOGaaGypamaa laaabaGaamyAaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG0baaba GaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaaikdacaWGPbGaeqOS digaaaaakiaai2dadaWcaaqaaiaadMgacqGHsislciGGJbGaaiiDai aacEgacqaHYoGyaeaacaaIYaaaaiaadsgadaWgaaWcbaGaaGymaaqa baGccaWG0bGaaGilaaaa@4D8E@

так что

A + ( t 0 )= πi 2 ia( t 0 )+ 1 2π T [θ(t)ctgβ] d 1 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaWbaaSqabeaacqGHRaWkaa GccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aWa aSaaaeaacqaHapaCcaWGPbaabaGaaGOmaaaacqGHsislcaWGPbGaam yyaiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiabgUca RmaalaaabaGaaGymaaqaaiaaikdacqaHapaCaaWaa8qeaeqaleaatu uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=nj8ubqa b0Gaey4kIipakiaaiUfacqaH4oqCcaaIOaGaamiDaiaaiMcaciGGJb GaaiiDaiaacEgacqaHYoGycaaIDbGaamizamaaBaaaleaacaaIXaaa beaakiaadshacaaIUaaaaa@6148@

Следовательно, функцию A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3283@  можем однозначно определить по условиям

Im A + = π 2 θ,ReA(0)= 1 2π T θ(t) d 1 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamyBaiaadgeadaahaaWcbe qaaiabgUcaRaaakiaai2dadaWcaaqaaiabec8aWbqaaiaaikdaaaGa eyOeI0IaeqiUdeNaaGilaiaaywW7caWGsbGaamyzaiaadgeacaaIOa GaaGimaiaaiMcacaaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOm aiabec8aWbaadaWdraqabSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKb stHrhAGq1DVbaceaGae83KWtfabeqdcqGHRiI8aOGaeqiUdeNaaGik aiaadshacaaIPaGaamizamaaBaaaleaacaaIXaaabeaakiaadshaca aIUaaaaa@5CE3@  (12)

Доказательство завершено.

Обратимся к общему случаю односвязной области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ . Пусть простой контур Γ=D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaI9aGaeyOaIyRaamiraa aa@361B@  принадлежит классу C 1,μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaGaaG ilaiabeY7aTbaaaaa@35D9@ ; тогда по теореме Келлога конформное отображение w=ω(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiabeM8a3jaaiIcaca WG6bGaaGykaaaa@37B1@  этой области на единичный круг D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=ni8ebaa@3D9B@  принадлежит классу C 1,μ ( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaGaaG ilaiabeY7aTbaakiaaiIcadaqdaaqaaiaadseaaaGaaGykaaaa@3822@  или, что равносильно, его производная удовлетворяет условию ω H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHjpWDgaqbaiabgIGiolaadIeaca aIOaWaa0aaaeaacaWGebaaaiaaiMcaaaa@3826@ . Зафиксируем точку z 0 D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaeyicI4Saamiraaaa@35F9@ ; по условию ω( z 0 )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamOEamaaBaaale aacaaIWaaabeaakiaaiMcacaaI9aGaaGimaaaa@385F@ .

Теорема 5. Пусть ϰ=In d Γ G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=b=a5laai2dacaWGjbGaamOBaiaadsgadaWg aaWcbaGaeu4KdCeabeaakiaadEeaaaa@4394@ , так что θ(t)=argG(t)ϰargtH(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCcaaIOaGaamiDaiaaiMcaca aI9aGaciyyaiaackhacaGGNbGaam4raiaaiIcacaWG0bGaaGykaiab gkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8 h8dKVaciyyaiaackhacaGGNbGaamiDaiabgIGiolaadIeacaaIOaGa eu4KdCKaaGykaaaa@5252@ , и пусть X(z)= e Θ(z)Θ(0)/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybGaaGikaiaadQhacaaIPaGaaG ypaiaadwgadaahaaWcbeqaaiabfI5arjaaiIcacaWG6bGaaGykaiab gkHiTiabfI5arjaaiIcacaaIWaGaaGykaiaai+cacaaIYaaaaaaa@40AF@ , где функция ΘH( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHyoqucqGHiiIZcaWGibGaaGikam aanaaabaGaamiraaaacaaIPaaaaa@37C4@  определяется как решение задачи Дирихле

Im Θ 1 2 Θ(0) + = π 2 θ,ReΘ( z 0 )= 1 2π Γ θ(t)| ω (t)| d 1 t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamyBamaabmaabaGaeuiMde LaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqqHyoqucaaIOaGa aGimaiaaiMcaaiaawIcacaGLPaaadaahaaWcbeqaaiabgUcaRaaaki aai2dadaWcaaqaaiabec8aWbqaaiaaikdaaaGaeyOeI0IaeqiUdeNa aGilaiaaywW7caWGsbGaamyzaiabfI5arjaaiIcacaWG6bWaaSbaaS qaaiaaicdaaeqaaOGaaGykaiaai2dacqGHsisldaWcaaqaaiaaigda aeaacaaIYaGaeqiWdahaamaapebabeWcbaGaeu4KdCeabeqdcqGHRi I8aOGaeqiUdeNaaGikaiaadshacaaIPaGaaGiFaiqbeM8a3zaafaGa aGikaiaadshacaaIPaGaaGiFaiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG0bGaaGOlaaaa@62BA@  (13)

Тогда все решения задачи (8) в классе H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C9@  описываются формулой

ϕ(z)= X(z) πi Γ g(t) G(t) X + (t) ω (t)dt ω(t)ω(z) +X(z)p[ω(z)],p P 2ϰ 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcaca aI9aWaaSaaaeaacaWGybGaaGikaiaadQhacaaIPaaabaGaeqiWdaNa amyAaaaadaWdraqabSqaaiabfo5ahbqab0Gaey4kIipakmaalaaaba Gaam4zaiaaiIcacaWG0bGaaGykaaqaaiaadEeacaaIOaGaamiDaiaa iMcacaWGybWaaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiM caaaWaaSaaaeaacuaHjpWDgaqbaiaaiIcacaWG0bGaaGykaiaadsga caWG0baabaGaeqyYdCNaaGikaiaadshacaaIPaGaeyOeI0IaeqyYdC NaaGikaiaadQhacaaIPaaaaiabgUcaRiaadIfacaaIOaGaamOEaiaa iMcacaWGWbGaaG4waiabeM8a3jaaiIcacaWG6bGaaGykaiaai2faca aISaGaaGzbVlaadchacqGHiiIZcaWGqbWaa0baaSqaaiabgkHiTiaa ikdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=b =a5dqaaiaaicdaaaGccaaISaaaaa@7A66@  (14)

где функция g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  удовлетворяет условиям ортогональности

Γ g(t) G(t) X + (t) q[ω(t)] ω (t)dt=0,q P 2ϰ2 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdraqabSqaaiabfo5ahbqab0Gaey 4kIipakmaalaaabaGaam4zaiaaiIcacaWG0bGaaGykaaqaaiaadEea caaIOaGaamiDaiaaiMcacaWGybWaaWbaaSqabeaacqGHRaWkaaGcca aIOaGaamiDaiaaiMcaaaGaamyCaiaaiUfacqaHjpWDcaaIOaGaamiD aiaaiMcacaaIDbGafqyYdCNbauaacaaIOaGaamiDaiaaiMcacaWGKb GaamiDaiaai2dacaaIWaGaaGilaiaaywW7caWGXbGaeyicI4Saamiu amaaDaaaleaacaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiqGacqWFWpq+cqGHsislcaaIYaaabaGaaGimaaaakiaai6ca aaa@6436@  (15)

Доказательство почти очевидно.

4. Решение задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@ Решения задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  рассмотрим в двух случаях: (a) область D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  является единичным кругом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=nj8ubaa@3DBB@ ; (b) D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольная конечная область, ограниченная гладким замкнутым контуром Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWraaa@3325@ .

Случай (a). Рассмотрим задачу R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  в случае единичного круга T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=nj8ubaa@3DBB@ ; тогда l={z:|z|=R<1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbGaaGypaiaaiUhacaWG6bGaaG OoaiaaiYhacaWG6bGaaGiFaiaai2dacaWGsbGaaGipaiaaigdacaaI 9baaaa@3D6E@ . Рассмотрим задачу (B). Пусть G 1 (t)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaaigdaaaa@375A@ , g 1 (t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaaicdaaaa@3779@  для всех tl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaamiBaaaa@352B@ . Тогда она примет вид

( e Ω u )| l + =( e Ω u )| l , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyzamaaCaaaleqabaGaey OeI0IaeuyQdCfaaOGaamyDaiaaiMcacaaI8bWaa0baaSqaaiaadYga aeaacqGHRaWkaaGccaaI9aGaaGikaiaadwgadaahaaWcbeqaaiabgk HiTiabfM6axbaakiaadwhacaaIPaGaaGiFamaaDaaaleaacaWGSbaa baGaeyOeI0caaOGaaGilaaaa@455B@

где Ω(z)=2 a ln||z|R|+(T A 0 )(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaIOaGaamOEaiaaiMcaca aI9aGaaGOmaiaadggadaWgaaWcbaGaey4fIOcabeaakiGacYgacaGG UbGaaGiFaiaaiYhacaWG6bGaaGiFaiabgkHiTiaadkfacaaI8bGaey 4kaSIaaGikaiaadsfacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGaaGyk aiaaiIcacaWG6bGaaGykaaaa@4936@ . Из формулы u= e Ω [ϕ+T( e Ω f)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwgadaahaaWcbe qaaiabfM6axbaakiaaiUfacqaHvpGzcqGHRaWkcaWGubGaaGikaiaa dwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAgacaaIPaGaaG yxaaaa@4168@  теоремы 1 видно, что аналитическая функция ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@  определяется по u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  однозначно и восстанавливается по формуле

ϕ= e Ω uT e Ω f. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaI9aGaamyzamaaCaaale qabaGaeyOeI0IaeuyQdCfaaOGaamyDaiabgkHiTiaadsfacaWGLbWa aWbaaSqabeaacqGHsislcqqHPoWvaaGccaWGMbGaaGOlaaaa@3FE7@

Соответствие между решением e Ω uH( T ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq qHPoWvaaGccaWG1bGaeyicI4SaamisaiaaiIcadaqdaaqaamrr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae83KWtfaaiaaiM caaaa@4618@  уравнения (2) и аналитический в T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=nj8ubaa@3DBB@  функцией ϕH( T ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcqGHiiIZcaWGibGaaGikam aanaaabaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFtcpvaaGaaGykaaaa@434A@  является взаимно однозначным. Так как f 0 = e Ω f L p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAga cqGHiiIZcaWGmbWaaWbaaSqabeaacaWGWbaaaaaa@3C5D@ , p>2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaikdaaaa@3436@ , то (T f 0 ) ± (t)H( T ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamivaiaadAgadaWgaaWcba GaaGimaaqabaGccaaIPaWaaWbaaSqabeaacqGHXcqSaaGccaaIOaGa amiDaiaaiMcacqGHiiIZcaWGibGaaGikamaanaaabaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFtcpvaaGaaGykaaaa @4A1E@  и (T f 0 ) + (t)=(T f 0 ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamivaiaadAgadaWgaaWcba GaaGimaaqabaGccaaIPaWaaWbaaSqabeaacqGHRaWkaaGccaaIOaGa amiDaiaaiMcacaaI9aGaaGikaiaadsfacaWGMbWaaSbaaSqaaiaaic daaeqaaOGaaGykamaaCaaaleqabaGaeyOeI0caaOGaaGikaiaadsha caaIPaaaaa@41AF@ , tl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaamiBaaaa@352B@ . Следовательно, задача (B>0) в данном случае сводится к эквивалентной задаче: ϕ + (t)= ϕ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgUcaRa aakiaaiIcacaWG0bGaaGykaiaai2dacqaHvpGzdaahaaWcbeqaaiab gkHiTaaakiaaiIcacaWG0bGaaGykaaaa@3D0D@ , tl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaamiBaaaa@352B@ , где через ϕ + (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgUcaRa aakiaaiIcacaWG0bGaaGykaaaa@36FC@  и ϕ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgkHiTa aakiaaiIcacaWG0bGaaGykaaaa@3707@  соответственно обозначены предельные значения функций ϕ + (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgUcaRa aakiaaiIcacaWG6bGaaGykaaaa@3702@  и ϕ (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgkHiTa aakiaaiIcacaWG6bGaaGykaaaa@370D@  соответственно из областей D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaa aa@336D@  и D 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaa aa@336E@ .

Известно, что условие ϕ + = ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgUcaRa aakiaai2dacqaHvpGzdaahaaWcbeqaaiabgkHiTaaaaaa@3847@  на l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32AE@  определяет аналитическую функция в области D 1 D 2 l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaO GaeyOkIGSaamiramaaBaaaleaacaaIYaaabeaakiabgQIiilaadYga aaa@3963@ . Этот факт позволяет нам переходить к изучению краевой задачи A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3283@  и перевести ее к краевой задаче Гильберта со следующими данными:

Re G 0 ϕ | Γ = g 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaadEeadaWgaaWcba GaaGimaaqabaGccqaHvpGzcaaI8bWaaSbaaSqaaiabfo5ahbqabaGc caaI9aGaam4zamaaBaaaleaacaaIWaaabeaakiaaiYcaaaa@3CFF@

с коэффициентом G 0 =G( e Ω )| Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadEeacaaIOaGaamyzamaaCaaaleqabaGaeuyQdCfaaOGa aGykaiaaiYhadaWgaaWcbaGaeu4KdCeabeaaaaa@3BBA@  и правой частью

g 0 =fRe G( e Ω T e Ω f )| Γ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadAgacqGHsislcaWGsbGaamyzamaadmaabaGaam4raiaa iIcacaWGLbWaaWbaaSqabeaacqqHPoWvaaGccaWGubGaamyzamaaCa aaleqabaGaeyOeI0IaeuyQdCfaaOGaamOzaiaaiMcacaaI8bWaaSba aSqaaiabfo5ahbqabaaakiaawUfacaGLDbaacaaISaaaaa@4785@

и сформулировать ее решение в виде теоремы 5 в рассмотренном случае (a).

Переходим к второму случаю, когда G 1 (t)1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaeyiyIKRaaGymaaaa@385A@ , g 1 (t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaeyiyIKRaaGimaaaa@3879@  для всех tl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaamiBaaaa@352B@ .

Теорема 6. При выполнении условий теоремы 1 задача R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  является фредгольмовой в классе

{u: e Ω uH( D ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyDaiaaiQdacaWGLbWaaW baaSqabeaacqGHsislcqqHPoWvaaGccaWG1bGaeyicI4Saamisaiaa iIcadaqdaaqaaiaadseaaaGaaGykaiaai2haaaa@3EAD@  (16)

и ее индекс равен

IndR=12ϰ,ϰ= 1 2π argG(t )| Γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamOBaiaadsgacaWGsbGaaG ypaiaaigdacqGHsislcaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiqGacqWFWpq+caaISaGaaGzbVlab=b=a5laai2dada WcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaaiGacggacaGGYbGaai4z aiaadEeacaaIOaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiabfo5ahb qabaGccaaIUaaaaa@5673@

Более точно, все решения задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  в классе H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C9@  описываются формулой

u= e Ω [ϕ+T( e Ω f)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwgadaahaaWcbe qaaiabfM6axbaakiaaiUfacqaHvpGzcqGHRaWkcaWGubGaaGikaiaa dwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAgacaaIPaGaaG yxaiaaiYcaaaa@421E@

где функция ϕ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcaaa a@35E9@  определяется по формуле

ϕ(z)= X(z) πi l g 1 * (t) G(t) X + (t) dt tz +X(z)p(z),p P 2ϰ 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcaca aI9aWaaSaaaeaacaWGybGaaGikaiaadQhacaaIPaaabaGaeqiWdaNa amyAaaaadaWdraqabSqaaiaadYgaaeqaniabgUIiYdGcdaWcaaqaai aadEgadaqhaaWcbaGaaGymaaqaaiaaiQcaaaGccaaIOaGaamiDaiaa iMcaaeaacaWGhbGaaGikaiaadshacaaIPaGaamiwamaaCaaaleqaba Gaey4kaScaaOGaaGikaiaadshacaaIPaaaamaalaaabaGaamizaiaa dshaaeaacaWG0bGaeyOeI0IaamOEaaaacqGHRaWkcaWGybGaaGikai aadQhacaaIPaGaamiCaiaaiIcacaWG6bGaaGykaiaaiYcacaaMf8Ua amiCaiabgIGiolaadcfadaqhaaWcbaGaeyOeI0IaaGOmamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8h8dKpabaGaaGim aaaakiaaiYcaaaa@6D61@  (17)

где каноническая функция X MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybaaaa@329A@  фигурирует в теореме 4 и функция g 1 * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaa0baaSqaaiaaigdaaeaaca aIQaaaaaaa@3445@  удовлетворяет условиям ортогональности

Γ g 1 * (t) G(t) X + (t) p(t)dt=0,p P 2ϰ2 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdraqabSqaaiabfo5ahbqab0Gaey 4kIipakmaalaaabaGaam4zamaaDaaaleaacaaIXaaabaGaaGOkaaaa kiaaiIcacaWG0bGaaGykaaqaaiaadEeacaaIOaGaamiDaiaaiMcaca WGybWaaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiMcaaaGa amiCaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGypaiaaicdaca aISaGaaGzbVlaadchacqGHiiIZcaWGqbWaa0baaSqaaiaaikdatuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=b=a5labgk HiTiaaikdaaeaacaaIWaaaaOGaaGilaaaa@5E08@  (18)

причем g 1 * =gRe[α e Ω (T f 0 )| Γ ]Re[G X 1 ψ ]| Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaa0baaSqaaiaaigdaaeaaca aIQaaaaOGaaGypaiaadEgacqGHsislcaWGsbGaamyzaiaaiUfacqaH XoqycaWGLbWaaWbaaSqabeaacqqHPoWvaaGccaaIOaGaamivaiaadA gadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGiFamaaBaaaleaacqqH toWraeqaaOGaaGyxaiabgkHiTiaadkfacaWGLbGaaG4waiaadEeaca WGybWaaSbaaSqaaiaaigdaaeqaaOGaeqiYdKNaaGyxaiaaiYhadaWg aaWcbaGaeu4KdCeabeaaaaa@5103@ ,

ψ(z)= 1 2πi l g 2 (t) X 1 + (t)(tz) dt, g 2 = g 1 (1 G 1 )(T f 0 )| l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadMgaaaWaa8qe aeqaleaacaWGSbaabeqdcqGHRiI8aOWaaSaaaeaacaWGNbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaaabaGaamiwamaaDaaa leaacaaIXaaabaGaey4kaScaaOGaaGikaiaadshacaaIPaGaaGikai aadshacqGHsislcaWG6bGaaGykaaaacaWGKbGaamiDaiaaiYcacaaM f8Uaam4zamaaBaaaleaacaaIYaaabeaakiaai2dacaWGNbWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaaGikaiaaigdacqGHsislcaWGhbWa aSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiIcacaWGubGaamOzamaaBa aaleaacaaIWaaabeaakiaaiMcacaaI8bWaaSbaaSqaaiaadYgaaeqa aOGaaGOlaaaa@60F0@

По теореме 1 общее решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  уравнения (2) в классе (16) представимо в виде

u= e Ω [ϕ+T( e Ω f)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwgadaahaaWcbe qaaiabfM6axbaakiaaiUfacqaHvpGzcqGHRaWkcaWGubGaaGikaiaa dwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAgacaaIPaGaaG yxaiaaiYcaaaa@421E@

где аналитическая в D\l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaiixaiaadYgaaaa@3457@  функция ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@  принадлежит H( D 1 D 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiaadseadaWgaaWcba GaaGymaaqabaGccqGHQicYcaWGebWaaSbaaSqaaiaaikdaaeqaaOGa aGykaaaa@3904@ . Кроме того, в силу леммы 1, имеем ΩH(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcqGHiiIZcaWGibGaaGikai abfo5ahjaaiMcaaaa@3869@ . Поэтому, подставляя данное представление в (A) и (A), в результате для ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@  получим краевую задачу

Re G 0 ϕ | Γ = g 0 ,( ϕ + G 1 ϕ )| l = g 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaadEeadaWgaaWcba GaaGimaaqabaGccqaHvpGzcaaI8bWaaSbaaSqaaiabfo5ahbqabaGc caaI9aGaam4zamaaBaaaleaacaaIWaaabeaakiaaiYcacaaMf8UaaG ikaiabew9aMnaaCaaaleqabaGaey4kaScaaOGaeyOeI0Iaam4ramaa BaaaleaacaaIXaaabeaakiabew9aMnaaCaaaleqabaGaeyOeI0caaO GaaGykaiaaiYhadaWgaaWcbaGaamiBaaqabaGccaaI9aGaam4zamaa BaaaleaacaaIYaaabeaakiaaiYcaaaa@4DF1@  (19)

с коэффициентом G 0 =G( e Ω )| Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadEeacaaIOaGaamyzamaaCaaaleqabaGaeuyQdCfaaOGa aGykaiaaiYhadaWgaaWcbaGaeu4KdCeabeaaaaa@3BBA@  и правыми частями

g 0 =fRe[G( e Ω T f 0 )| Γ ], g 2 = g 1 (1 G 1 (t) f 0 | l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadAgacqGHsislcaWGsbGaamyzaiaaiUfacaWGhbGaaGik aiaadwgadaahaaWcbeqaaiabfM6axbaakiaadsfacaWGMbWaaSbaaS qaaiaaicdaaeqaaOGaaGykaiaaiYhadaWgaaWcbaGaeu4KdCeabeaa kiaai2facaaISaGaaGzbVlaadEgadaWgaaWcbaGaaGOmaaqabaGcca aI9aGaam4zamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaiIcacaaI XaGaeyOeI0Iaam4ramaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0b GaaGykaiaadAgadaWgaaWcbaGaaGimaaqabaGccaaI8bWaaSbaaSqa aiaadYgaaeqaaOGaaGOlaaaa@56E5@

Заметим, что

1 2π arg G 0 | Γ = 1 2π argG | Γ =ϰ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaeq iWdahaaiGacggacaGGYbGaai4zaiaadEeadaWgaaWcbaGaaGimaaqa baGccaaI8bWaaSbaaSqaaiabfo5ahbqabaGccaaI9aWaaSaaaeaaca aIXaaabaGaaGOmaiabec8aWbaaciGGHbGaaiOCaiaacEgacaWGhbGa aGiFamaaBaaaleaacqqHtoWraeqaaOGaaGypamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbaceiGae8h8dKVaaGOlaaaa@53E7@  (20)

Согласно хорошо известным свойствам интеграла типа Коши (см. [6]) функция

X 1 (z)=exp 1 2πi l ln G 1 (t)(t)dt tz ,z D 0 = D 1 D 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadQhacaaIPaGaaGypaiGacwgacaGG4bGaaiiCamaabmaa baWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadMgaaaWaa8qeae qaleaacaWGSbaabeqdcqGHRiI8aOWaaSaaaeaaciGGSbGaaiOBaiaa dEeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaIOa GaamiDaiaaiMcacaWGKbGaamiDaaqaaiaadshacqGHsislcaWG6baa aaGaayjkaiaawMcaaiaaiYcacaaMf8UaamOEaiabgIGiolaadseada WgaaWcbaGaaGimaaqabaGccaaI9aGaamiramaaBaaaleaacaaIXaaa beaakiabgQIiilaadseadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@5C98@  (21)

принадлежит классу H( D ¯ j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@35EE@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ , причем ее граничные значения ln X 1 ± H(l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGSbGaaiOBaiaadIfadaqhaaWcba GaaGymaaqaaiabgglaXcaakiabgIGiolaadIeacaaIOaGaamiBaiaa iMcaaaa@3C05@  на окружности l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32AE@  удовлетворяет краевому условию X 1 + = G 1 X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaa0baaSqaaiaaigdaaeaacq GHRaWkaaGccaaI9aGaam4ramaaBaaaleaacaaIXaaabeaakiaadIfa daqhaaWcbaGaaGymaaqaaiabgkHiTaaaaaa@39A4@ . Поэтому второе краевое условие в (19) можно записать в виде

ϕ + X 1 + ϕ 1 X 1 = g 2 X 1 + . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabew9aMnaaCaaaleqaba Gaey4kaScaaaGcbaGaamiwamaaDaaaleaacaaIXaaabaGaey4kaSca aaaakiabgkHiTmaalaaabaGaeqy1dy2aa0baaSqaaiaaigdaaeaacq GHsislaaaakeaacaWGybWaa0baaSqaaiaaigdaaeaacqGHsislaaaa aOGaaGypamaalaaabaGaam4zamaaBaaaleaacaaIYaaabeaaaOqaai aadIfadaqhaaWcbaGaaGymaaqaaiabgUcaRaaaaaGccaaIUaaaaa@44DD@

Функция

ψ(z)= 1 2πi l g 2 (t) X 1 + (t)(tz) dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadMgaaaWaa8qe aeqaleaacaWGSbaabeqdcqGHRiI8aOWaaSaaaeaacaWGNbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaaabaGaamiwamaaDaaa leaacaaIXaaabaGaey4kaScaaOGaaGikaiaadshacaaIPaGaaGikai aadshacqGHsislcaWG6bGaaGykaaaacaWGKbGaamiDaaaa@4D75@

принадлежит классу H( D ¯ j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@35EE@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ , и удовлетворяет краевому условию

ψ + (t) ψ (t)= g 2 (t) X 1 + (t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaahaaWcbeqaaiabgUcaRa aakiaaiIcacaWG0bGaaGykaiabgkHiTiabeI8a5naaCaaaleqabaGa eyOeI0caaOGaaGikaiaadshacaaIPaGaaGypamaalaaabaGaam4zam aaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaaqaaiaadIfa daqhaaWcbaGaaGymaaqaaiabgUcaRaaakiaaiIcacaWG0bGaaGykaa aacaaIUaaaaa@4819@

Следовательно, разность

ϕ 1 (z)= ϕ(z) X 1 (z) ψ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamOEaiaaiMcacaaI9aWaaSaaaeaacqaHvpGzcaaIOaGa amOEaiaaiMcaaeaacaWGybWaaSbaaSqaaiaaigdaaeqaaOGaaGikai aadQhacaaIPaaaaiabgkHiTiabeI8a5jaaiIcacaWG6bGaaGykaaaa @452E@  (22)

аналитична в области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  и принадлежит классу H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C9@ . В результате подстановки (22) в первое условие (18) приводит к эквивалентной задаче Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Гильберта

Re( α 1 ϕ 1 )| Γ = f 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaaiIcacqaHXoqyda WgaaWcbaGaaGymaaqabaGccqaHvpGzdaWgaaWcbaGaaGymaaqabaGc caaIPaGaaGiFamaaBaaaleaacqqHtoWraeqaaOGaaGypaiaadAgada WgaaWcbaGaaGymaaqabaGccaaISaaaaa@4029@

где α 1 = G 0 X 1 | Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaaGymaaqaba GccaaI9aGaam4ramaaBaaaleaacaaIWaaabeaakiaadIfadaWgaaWc baGaaGymaaqabaGccaaI8bWaaSbaaSqaaiabfo5ahbqabaaaaa@3B38@  и f 1 = f 0 Re[ G 0 X 1 ψ ]| Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadAgadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGsbGa amyzaiaaiUfacaWGhbWaaSbaaSqaaiaaicdaaeqaaOGaamiwamaaBa aaleaacaaIXaaabeaakiabeI8a5jaai2facaaI8bWaaSbaaSqaaiab fo5ahbqabaaaaa@42A7@ . Нетрудно видеть, что равенство (19) сохраняется и для G 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaa aa@3370@ . Положим

g 1 * =gRe G( e Ω T e Ω f )| Γ Re[G X 1 ψ ]| Γ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaa0baaSqaaiaaigdaaeaaca aIQaaaaOGaaGypaiaadEgacqGHsislcaWGsbGaamyzamaadmaabaGa am4raiaaiIcacaWGLbWaaWbaaSqabeaacqqHPoWvaaGccaWGubGaam yzamaaCaaaleqabaGaeyOeI0IaeuyQdCfaaOGaamOzaiaaiMcacaaI 8bWaaSbaaSqaaiabfo5ahbqabaaakiaawUfacaGLDbaacqGHsislca WGsbGaamyzaiaaiUfacaWGhbGaamiwamaaBaaaleaacaaIXaaabeaa kiabeI8a5jaai2facaaI8bWaaSbaaSqaaiabfo5ahbqabaGccaaISa aaaa@53C2@  (23)

где

ψ(z)= 1 2πi l g 2 (t) X 1 + (t)(tz) dt, g 2 = g 1 (1 G 1 (t))[T( e Ω f )]| l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaadMgaaaWaa8qe aeqaleaacaWGSbaabeqdcqGHRiI8aOWaaSaaaeaacaWGNbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaaabaGaamiwamaaDaaa leaacaaIXaaabaGaey4kaScaaOGaaGikaiaadshacaaIPaGaaGikai aadshacqGHsislcaWG6bGaaGykaaaacaWGKbGaamiDaiaaiYcacaaM f8Uaam4zamaaBaaaleaacaaIYaaabeaakiaai2dacaWGNbWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaaGikaiaaigdacqGHsislcaWGhbWa aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiaaiU facaWGubGaaGikaiaadwgadaahaaWcbeqaaiabgkHiTiabfM6axbaa kiaadAgacaaIPaGaaGyxaiaaiYhadaWgaaWcbaGaamiBaaqabaGcca aIUaaaaa@67C6@

Обратимся к общему случаю односвязной области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ . Пусть простой контур Γ C 1,μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaGaaGilaiabeY7aTbaaaaa@38C5@ ; тогда по теореме Келлога конформное отображение w=ω(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGypaiabeM8a3jaaiIcaca WG6bGaaGykaaaa@37B1@  этой области на единичный круг D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=ni8ebaa@3D9B@  принадлежит классу C 1,μ ( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaGaaG ilaiabeY7aTbaakiaaiIcadaqdaaqaaiaadseaaaGaaGykaaaa@3822@  . Зафиксируем точку z 0 D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaeyicI4Saamiraaaa@35F9@  по условию ω( z 0 )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaIOaGaamOEamaaBaaale aacaaIWaaabeaakiaaiMcacaaI9aGaaGimaaaa@385F@ . Следовательно, имеет место следующее утверждение.

Теорема 7. При выполнении условий теоремы 1 задача R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  является фредгольмовой в классе

{u: e Ω uH( D ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyDaiaaiQdacaWGLbWaaW baaSqabeaacqGHsislcqqHPoWvaaGccaWG1bGaeyicI4Saamisaiaa iIcadaqdaaqaaiaadseaaaGaaGykaiaai2haaaa@3EAD@

и ее индекс

IndR=12ϰ,ϰ= 1 2π argG(t )| Γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamOBaiaadsgacaWGsbGaaG ypaiaaigdacqGHsislcaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiqGacqWFWpq+caaISaGaaGzbVlab=b=a5laai2dada WcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaaiGacggacaGGYbGaai4z aiaadEeacaaIOaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiabfo5ahb qabaGccaaIUaaaaa@5673@

Более точно, в обозначениях теоремы 6 и (21), (23) все решения задачи R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  в классе H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C9@  описываются формулой

u= e Ω (ϕ+T f 0 ),ϕ(z)= X 1 (z) X(z) πi Γ g 1 * (t) G(t) X + (t) ω (t)dt ω(t)ω(z) +ψ(z)+X(z)p[ω(z)] , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwgadaahaaWcbe qaaiabfM6axbaakiaaiIcacqaHvpGzcqGHRaWkcaWGubGaamOzamaa BaaaleaacaaIWaaabeaakiaaiMcacaaISaGaaGzbVlabew9aMjaaiI cacaWG6bGaaGykaiaai2dacaWGybWaaSbaaSqaaiaaigdaaeqaaOGa aGikaiaadQhacaaIPaWaamWaaeaadaWcaaqaaiaadIfacaaIOaGaam OEaiaaiMcaaeaacqaHapaCcaWGPbaaamaapebabeWcbaGaeu4KdCea beqdcqGHRiI8aOWaaSaaaeaacaWGNbWaa0baaSqaaiaaigdaaeaaca aIQaaaaOGaaGikaiaadshacaaIPaaabaGaam4raiaaiIcacaWG0bGa aGykaiaadIfadaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaG ykaaaadaWcaaqaaiqbeM8a3zaafaGaaGikaiaadshacaaIPaGaamiz aiaadshaaeaacqaHjpWDcaaIOaGaamiDaiaaiMcacqGHsislcqaHjp WDcaaIOaGaamOEaiaaiMcaaaGaey4kaSIaeqiYdKNaaGikaiaadQha caaIPaGaey4kaSIaamiwaiaaiIcacaWG6bGaaGykaiaadchacaaIBb GaeqyYdCNaaGikaiaadQhacaaIPaGaaGyxaaGaay5waiaaw2faaiaa iYcaaaa@8093@

где p P 2ϰ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaeyicI4SaamiuamaaDaaale aacqGHsislcaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiqGacqWFWpq+aeaacaaIWaaaaaaa@4397@ , а функции q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@ , g 1 * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaa0baaSqaaiaaigdaaeaaca aIQaaaaaaa@3445@  удовлетворяет условиям ортогональности

Γ g 1 * (t) G(t) X + (t) q[ω(t)] ω (t)dt=0,q P 2ϰ2 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdraqabSqaaiabfo5ahbqab0Gaey 4kIipakmaalaaabaGaam4zamaaDaaaleaacaaIXaaabaGaaGOkaaaa kiaaiIcacaWG0bGaaGykaaqaaiaadEeacaaIOaGaamiDaiaaiMcaca WGybWaaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiMcaaaGa amyCaiaaiUfacqaHjpWDcaaIOaGaamiDaiaaiMcacaaIDbGafqyYdC NbauaacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiaai2dacaaIWaGa aGilaiaaywW7caWGXbGaeyicI4SaamiuamaaDaaaleaacaaIYaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWFWpq+cqGH sislcaaIYaaabaGaaGimaaaakiaai6caaaa@65DC@

5. Краевая задача для уравнения (1). Теперь рассмотрим выше рассмотренную задачу для общего уравнения (1).

Задача R 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaa aa@337B@ Найти регулярное решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  уравнения (1) в классе

e Ω uH( D j ¯ ),j=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq qHPoWvaaGccaWG1bGaeyicI4SaamisaiaaiIcadaqdaaqaaiaadsea daWgaaWcbaGaamOAaaqabaaaaOGaaGykaiaaiYcacaaMf8UaamOAai aai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@42E5@

по краевым условиям

ReG(t)u | Γ =g(t),tΓ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaadEeacaaIOaGaam iDaiaaiMcacaWG1bGaaGiFamaaBaaaleaacqqHtoWraeqaaOGaaGyp aiaadEgacaaIOaGaamiDaiaaiMcacaaISaGaaGzbVlaadshacqGHii IZcqqHtoWrcaaI7aaaaa@4545@

( e Ω u) + (t)=( e Ω u ) (t),tl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyzamaaCaaaleqabaGaey OeI0IaeuyQdCfaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgUcaRaaa kiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamyzamaaCaaaleqaba GaeyOeI0IaeuyQdCfaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgkHi TaaakiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiol aadYgacaaISaaaaa@4BDB@

где знаки + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkaaa@329F@  и MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislaaa@32AA@  указывают на граничные значения со стороны D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaa aa@336D@  и D 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaikdaaeqaaa aa@336E@ .

Эту задачу рассматриваем при следующих требованиях на ее данные: [ (i)]

(i) e Ω f L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaWbaaSqabeaacqGHsislcq qHPoWvaaGccaWGMbGaeyicI4SaamitamaaCaaaleqabaGaamiCaaaa kiaaiIcacaWGebGaaGykaaaa@3BF3@ ;

>(ii>) коэффициент G(t)H(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiaadshacaaIPaGaey icI4SaamisaiaaiIcacqqHtoWrcaaIPaaaaa@3A05@  всюду отличен от нуля;

>(iii>) правая часть краевого условия удовлетворяет условию g(t)H(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadshacaaIPaGaey icI4SaamisaiaaiIcacqqHtoWrcaaIPaaaaa@3A25@ .

Для решения этой задачи используем теорему 3 об интегральном представлении решений уравнения (1).

Теорема 8. Пусть выполнены условия теоремы 3 и f 0 = e Ω f L p (D) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiabfM6axbaakiaadAga cqGHiiIZcaWGmbWaaWbaaSqabeaacaWGWbaaaOGaaGikaiaadseaca aIPaaaaa@3E95@ , p>2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGOpaiaaikdaaaa@3436@ . Тогда задача R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3294@  является фредгольмовой в классе {u, e Ω uH( D ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyDaiaaiYcacaWGLbWaaW baaSqabeaacqGHsislcqqHPoWvaaGccaWG1bGaeyicI4Saamisaiaa iIcadaqdaaqaaiaadseaaaGaaGykaiaai2haaaa@3E9F@  и ее индекс равен 12ϰ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaeyOeI0IaaGOmamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8h8dKpaaa@401D@ . Другими словами, однородная задача имеет конечное число m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  линейно независимых решений, неоднородная задача разрешима при выполнении некоторого числа m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGTbGbauaaaaa@32BB@  условий ортогональности на правую часть f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  уравнения (1) и правой части g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  задачи R 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaaGymaaqabaaaaa@32A4@ , причем m m =12ϰ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaeyOeI0IabmyBayaafaGaaG ypaiaaigdacqGHsislcaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiqGacqWFWpq+aaa@43C1@ .

Доказательство. Подставляя представление (7) в задачу R 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaaGymaaqabaaaaa@32A4@ , для аналитической функции ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@  вместе с дополнительными условиями

Re D (ϕ+T f 0 )(ζ) h j (ζ) d 2 ζ=0,1jn, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzamaapebabeWcbaGaam iraaqab0Gaey4kIipakiaaiIcacqaHvpGzcqGHRaWkcaWGubGaamOz amaaBaaaleaacaaIWaaabeaakiaaiMcacaaIOaGaeqOTdONaaGykai aadIgadaWgaaWcbaGaamOAaaqabaGccaaIOaGaeqOTdONaaGykaiaa dsgadaWgaaWcbaGaaGOmaaqabaGccqaH2oGEcaaI9aGaaGimaiaaiY cacaaMf8UaaGymaiabgsMiJkaadQgacqGHKjYOcaWGUbGaaGilaaaa @538F@

получим краевую задачу

Re G 0 (ϕ+Rϕ )| Γ + 1 n ξ j Re( G 0 φ j )| Γ = g 0 , [(1+P)ϕ] + [(1+P)ϕ] = g 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbGaamyzaiaadEeadaWgaaWcba GaaGimaaqabaGccaaIOaGaeqy1dyMaey4kaSIaamOuaiabew9aMjaa iMcacaaI8bWaaSbaaSqaaiabfo5ahbqabaGccqGHRaWkdaaeWbqabS qaaiaaigdaaeaacaWGUbaaniabggHiLdGccqaH+oaEdaWgaaWcbaGa amOAaaqabaGccaWGsbGaamyzaiaaiIcacaWGhbWaaSbaaSqaaiaaic daaeqaaOGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaOGaaGykaiaaiYha daWgaaWcbaGaeu4KdCeabeaakiaai2dacaWGNbWaaSbaaSqaaiaaic daaeqaaOGaaGilaiaaywW7caaIBbGaaGikaiaaigdacqGHRaWkcaWG qbGaaGykaiabew9aMjaai2fadaahaaWcbeqaaiabgUcaRaaakiabgk HiTiaaiUfacaaIOaGaaGymaiabgUcaRiaadcfacaaIPaGaeqy1dyMa aGyxamaaCaaaleqabaGaeyOeI0caaOGaaGypaiaadEgadaWgaaWcba GaaGymaaqabaaaaa@6A3A@  (24)

с коэффициентом G 0 =G e h | Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadEeacaWGLbWaaWbaaSqabeaacaWGObaaaOGaaGiFamaa BaaaleaacqqHtoWraeqaaaaa@39B4@  и правыми частями

g 0 =gRe[ G 0 ( f 0 +P f 0 )]| Γ , g 1 =[(1+P) f 0 ] + [(1+P) f 0 ] . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadEgacqGHsislcaWGsbGaamyzaiaaiUfacaWGhbWaaSba aSqaaiaaicdaaeqaaOGaaGikaiaadAgadaWgaaWcbaGaaGimaaqaba GccqGHRaWkcaWGqbGaamOzamaaBaaaleaacaaIWaaabeaakiaaiMca caaIDbGaaGiFamaaBaaaleaacqqHtoWraeqaaOGaaGilaiaaywW7ca WGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaiUfacaaIOaGaaGym aiabgUcaRiaadcfacaaIPaGaamOzamaaBaaaleaacaaIWaaabeaaki aai2fadaahaaWcbeqaaiabgUcaRaaakiabgkHiTiaaiUfacaaIOaGa aGymaiabgUcaRiaadcfacaaIPaGaamOzamaaBaaaleaacaaIWaaabe aakiaai2fadaahaaWcbeqaaiabgkHiTaaakiaai6caaaa@5CBE@

Неизвестными в этой задаче вместе с ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@  являются и вещественные числа ξ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaamOAaaqaba aaaa@349B@ .

Из теоремы 3 следует, что для достаточно малого ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcaaI+aGaaGimaaaa@34E6@  оператор P:C( D ¯ ) C ε ( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGOoaiaadoeacaaIOaWaa0 aaaeaacaWGebaaaiaaiMcacqGHsgIRcaWGdbWaaWbaaSqabeaacqaH 1oqzaaGccaaIOaWaa0aaaeaacaWGebaaaiaaiMcaaaa@3D2F@  ограничен, функция f 0 H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaicdaaeqaaO GaeyicI4SaamisaiaaiIcadaqdaaqaaiaadseaaaGaaGykaaaa@3828@ , а функция ϕ(z)H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzcaaIOaGaamOEaiaaiMcacq GHiiIZcaWGibGaaGikamaanaaabaGaamiraaaacaaIPaaaaa@3A79@  аналитична в области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ . Отсюда следует, что второе условие задачи (24) эквивалентно к ϕ + (t)= ϕ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaahaaWcbeqaaiabgUcaRa aakiaaiIcacaWG0bGaaGykaiaai2dacqaHvpGzdaahaaWcbeqaaiab gkHiTaaakiaaiIcacaWG0bGaaGykaaaa@3D0D@ , tl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaamiBaaaa@352B@ . Это позволяет нам записать соотношения (24) в следующем операторном виде:

R 0 ϕ+ P 0 ϕ+ 1 n ξ j φ j 0 = g 0 ,Re D ϕ(ζ) h j (ζ) d 2 ζ= η j ,1jn, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaWbaaSqabeaacaaIWaaaaO Gaeqy1dyMaey4kaSIaamiuamaaCaaaleqabaGaaGimaaaakiabew9a MjabgUcaRmaaqahabeWcbaGaaGymaaqaaiaad6gaa0GaeyyeIuoaki abe67a4naaBaaaleaacaWGQbaabeaakiabeA8aQnaaDaaaleaacaWG QbaabaGaaGimaaaakiaai2dacaWGNbWaaWbaaSqabeaacaaIWaaaaO GaaGilaiaaywW7caWGsbGaamyzamaapebabeWcbaGaamiraaqab0Ga ey4kIipakiabew9aMjaaiIcacqaH2oGEcaaIPaGaamiAamaaBaaale aacaWGQbaabeaakiaaiIcacqaH2oGEcaaIPaGaamizamaaBaaaleaa caaIYaaabeaakiabeA7a6jaai2dacqaH3oaAdaWgaaWcbaGaamOAaa qabaGccaaISaGaaGzbVlaaigdacqGHKjYOcaWGQbGaeyizImQaamOB aiaaiYcaaaa@68F5@  (25)

где

R 0 ϕ=Re G 0 ϕ | Γ , P 0 ϕ=Re G 0 (Pϕ )| Γ , φ j 0 =Re G 0 φ j | Γ , g 0 = g 0 , η j =Re D f 0 (ζ) h j (ζ) d 2 ζ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaWbaaSqabeaacaaIWaaaaO Gaeqy1dyMaaGypaiaadkfacaWGLbGaam4ramaaBaaaleaacaaIWaaa beaakiabew9aMjaaiYhadaWgaaWcbaGaeu4KdCeabeaakiaaiYcaca aMf8UaamiuamaaCaaaleqabaGaaGimaaaakiabew9aMjaai2dacaWG sbGaamyzaiaadEeadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiuai abew9aMjaaiMcacaaI8bWaaSbaaSqaaiabfo5ahbqabaGccaaISaGa aGzbVlabeA8aQnaaDaaaleaacaWGQbaabaGaaGimaaaakiaai2daca WGsbGaamyzaiaadEeadaWgaaWcbaGaaGimaaqabaGccqaHgpGAdaWg aaWcbaGaamOAaaqabaGccaaI8bWaaSbaaSqaaiabfo5ahbqabaGcca aISaGaaGzbVlaadEgadaahaaWcbeqaaiaaicdaaaGccaaI9aGaam4z amaaBaaaleaacaaIWaaabeaakiaaiYcacaaMf8Uaeq4TdG2aaSbaaS qaaiaadQgaaeqaaOGaaGypaiabgkHiTiaadkfacaWGLbWaa8qeaeqa leaacaWGebaabeqdcqGHRiI8aOGaamOzamaaBaaaleaacaaIWaaabe aakiaaiIcacqaH2oGEcaaIPaGaamiAamaaBaaaleaacaWGQbaabeaa kiaaiIcacqaH2oGEcaaIPaGaamizamaaBaaaleaacaaIYaaabeaaki abeA7a6jaai6caaaa@7F11@

Обозначим X MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybaaaa@329A@  банахово пространство функций ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzaaa@3385@ , которые аналитичны в D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  и принадлежат H( D ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikamaanaaabaGaamiraa aacaaIPaaaaa@34C9@ . Пусть Y 0 =H(Γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaWbaaSqabeaacaaIWaaaaO GaaGypaiaadIeacaaIOaGaeu4KdCKaaGykaaaa@37ED@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  пространство вещественных функций. Тогда при достаточно малом показателе Гельдера μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  оператор R 0 :X Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaWbaaSqabeaacaaIWaaaaO GaaGOoaiaadIfacqGHsgIRcaWGzbWaaWbaaSqabeaacaaIWaaaaaaa @38D8@  ограничен, а с учетом теоремы 3 оператор P 0 :X Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbWaaWbaaSqabeaacaaIWaaaaO GaaGOoaiaadIfacqGHsgIRcaWGzbWaaWbaaSqabeaacaaIWaaaaaaa @38D6@  компактен. Как видно из теоремы 8, оператор R 0 :X Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaWbaaSqabeaacaaIWaaaaO GaaGOoaiaadIfacqGHsgIRcaWGzbWaaWbaaSqabeaacaaIWaaaaaaa @38D8@  фредгольмов и его индекс равен 12ϰ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaeyOeI0IaaGOmamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8h8dKpaaa@401D@ , поэтому на основании известных свойств (см. [7, 10]) фредгольмовых операторов это же верно и для оператора N=( R 0 + P 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobGaaGypaiaaiIcacaWGsbWaaW baaSqabeaacaaIWaaaaOGaey4kaSIaamiuamaaCaaaleqabaGaaGim aaaakiaaiMcaaaa@392C@ . С другой стороны, оператор системы (25) можно рассматривать как ограниченный оператор N ˜ :X× n Y 0 × n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad6eaaiaawoWaaiaaiQ dacaWGybGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiqaacqWFDeIudaahaaWcbeqaaiaad6gaaaGccqGHsgIRcaWGzb WaaWbaaSqabeaacaaIWaaaaOGaey41aqRae8xhHi1aaWbaaSqabeaa caWGUbaaaaaa@4AF3@ , главная часть которого совпадает с N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3290@ . Поэтому (см. [7, 10]) оператор N ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad6eaaiaawoWaaaaa@3352@  также фредгольмов и его индекс Ind N ˜ =IndN=12ϰ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamOBaiaadsgadaaiaaqaai aad6eaaiaawoWaaiaai2dacaWGjbGaamOBaiaadsgacaWGobGaaGyp aiaaigdacqGHsislcaaIYaWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiqGacqWFWpq+aaa@4967@ . Остается заметить (см. [6]), что система (25) эквивалентна исходной задаче R 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWgaaWcbaGaaGymaaqabaaaaa@32A4@ .

×

Об авторах

Абдурауф Бабаджанович Расулов

Национальный исследовательский университет «Московский энергетический институт»

Автор, ответственный за переписку.
Email: rasulzoda55@gmail.com
Россия, Москва

Юрий Сергеевич Федоров

Национальный исследовательский университет «Московский энергетический институт»

Email: FedorovYS@mpei.ru
Россия, Москва

Анна Марксовна Сергеева

Национальный исследовательский университет «Московский энергетический институт»

Email: hmelevs@ya.ru
Россия, Москва

Список литературы

  1. Берс Л., Джон Ф., Шехтер М. Уравнения с частными производными. — М.: Мир, 1966.
  2. Бицадзе А. В. Некоторые классы уравнений в частных производных. — М.: Наука, 1981.
  3. Векуа И. Н. Обобщенные аналитические функции. — М.: Физматгиз, 1959.
  4. Гахов Ф. Д. Краевые задачи. — М.: Наука, 1977.
  5. Михайлов Л. Г. Новые классы особых интегральных уравнений и их применение к дифференциальным уравнениям с сингулярными коэффициентами. — Душанбе, 1963.
  6. Мусхелишвили Н. И. Сингулярные интегральные уравнения. — М.: Наука, 1968.
  7. Пале Р. Семинар по теореме Атьи—Зингера об индексе. — М.: Мир, 1970.
  8. Раджабов Н. Р. Введение в теорию дифференциальных уравнений в частных производных со сверх-сингулярными коэффициентами. — Душанбе: Изд-во ТГУ, 1992.
  9. Солдатов А. П. Кpаевая задача линейного сопpяжения теоpии функций// Изв. АH СССР. Сеp. мат. — 1979. — 43, № 1. — С. 184–202.
  10. Солдатов А. П. Сингулярные интегральные операторы и эллиптические краевые задачи. I// Совр. мат. Фундам. напр. — 2017. — 63, № 1. — С. 1–189.
  11. Усманов З. Д. Обобщенные системы Коши—Римана с сингулярной точкой. — Душанбе: Изд-во АН Тадж. ССР, 1993.
  12. Abdymanapov S. A., Tungatarov A. B. Some classes of elliptic systems in the plane with singular coefficients. — Almaty: Nauka, 2005.
  13. Begehr H., Dao-Qing Dai. On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity// J. Differ. Equations. — 2004. — 196. — P. 67–90.
  14. Meziani A. Representation of solutions of a singular CR equation in the plane// Complex Var. Ellipt. Equations. — 2008. — 53. — P. 1111–1130.
  15. Rasulov A. B. Representation of the general solution of an equation of the Cauchy–Riemann type with a supersingular circle and a singular point// Differ. Equations. — 2017. — 53. — P. 809–817.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Расулов А.Б., Федоров Ю.С., Сергеева А.М., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).