On the search for a time-optimal boundary control using the method of moments for systems governed by the diffusion-wave equation

Cover Page

Cite item

Full Text

Abstract

For a system described by a one-dimensional, inhomogeneous diffusion-wave equation on a segment, two types of optimal boundary control problems are considered: the problem of finding a control with a minimum norm for a given control time and the problem of finding a control that brings the system to a given state in a minimum time under a given constraint on the norm of the control. Various ways of specifying conditions on the final state are considered. The finite-dimensional l-problem of moments is analyzed, to which the optimal control problem can be reduced. We show that under the conditions of well-posedness and solvability of this problem, the problem of finding a control with a minimum norm always has a solution, while the problem of finding a control with a minimum transition time may not have a solution.

Full Text

1. Введение. Задачи оптимального управления системами с распределёнными параметрами в настоящее время представляют значительный исследовательский интерес и имеют важные приложения. Относительно новое направление развития исследований в этой области составляют задачи для систем дробного порядка, в частности, для систем, поведение которых описывается уравнениями параболического или гиперболического типа с дробной производной по времени.

В настоящее время имеется ряд публикаций, посвящённых поиску оптимального управления для систем дробного порядка с распределёнными параметрами, которые описываются обобщённым уравнением диффузии или диффузионно MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ волновым уравнением (см., например, [4–6, 10–14] и ссылки в них). В данной работе исследована задача оптимального управления с ограничением на норму управления для линейного неоднородного диффузионно-волнового уравнения. Рассматривается граничное управление, определяемое существенно ограниченными функциями, на отрезке. Анализируется конечномерная l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@  -проблема моментов, к которой ранее на основе приближённого решения диффузионно-волнового уравнения была сведена поставленная задача оптимального управления (см. [4, 5, 11, 12]). Показано, что при выполнении требований корректности и разрешимости полученной проблемы моментов и существовании решения данной проблемы, имеющего минимальную норму при заданной величине времени управления, задаваемое ограничение на норму управления для рассматриваемой задачи не всегда может быть выполнено, в отличие от аналогичной задачи для уравнения диффузии целого порядка.

2. Постановка задачи. Рассматриваются системы, состояние которых описывается диффузионно-волновым уравнением, имеющим вид

0 C D t α Q(x,t)= x w(x) Q(x,t) x q(x)Q(x,t),α(0,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGdbaaaOGaamiramaaDaaaleaacaWG0baabaGaeqyS degaaOGaamyuaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaadaWadaqaaiaadEha caaIOaGaamiEaiaaiMcadaWcaaqaaiabgkGi2kaadgfacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadIhaaaaacaGLBbGa ayzxaaGaeyOeI0IaamyCaiaaiIcacaWG4bGaaGykaiaadgfacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaMf8UaeqySdeMaeyic I4SaaGikaiaaicdacaaISaGaaGOmaiaaiMcacaaISaaaaa@65B5@  (1)

где Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ADA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  состояние системы, w(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaaaa@3951@  и q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaaaa@394B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые функции, 0 C D t α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGdbaaaOGaamiramaaDaaaleaacaWG0baabaGaeqyS degaaaaa@3B3A@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ левосторонний оператор дробного дифференцирования по времени, t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgw MiZkaaicdaaaa@396C@ , x[0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadYeacaaIDbaaaa@3C81@ , (x,t)Ω=[0,L]×[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamiDaiaaiMcacqGHiiIZcqqHPoWvcaaI9aGaaG4waiaa icdacaaISaGaamitaiaai2facqGHxdaTcaaIBbGaaGimaiaaiYcacq GHEisPcaaIPaaaaa@487A@ . Оператор дробного дифференцирования понимается в смысле определения Капуто (см. [?, ~2.4]):

0 C D t α Q(x,t )= 0 RL D t α Q(x,t) k=0 [α] k Q(x,0+) t k t k k! , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGdbaaaOGaamiramaaDaaaleaacaWG0baabaGaeqyS degaaOGaamyuaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypam aaDaaaleaacaaIWaaabaGaamOuaiaadYeaaaGccaWGebWaa0baaSqa aiaadshaaeaacqaHXoqyaaGcdaWadaqaaiaadgfacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiabgkHiTmaaqahabeWcbaGaam4Aaiaai2da caaIWaaabaGaaG4waiabeg7aHjaai2faa0GaeyyeIuoakmaalaaaba GaeyOaIy7aaWbaaSqabeaacaWGRbaaaOGaamyuaiaaiIcacaWG4bGa aGilaiaaicdacqGHRaWkcaaIPaaabaGaeyOaIyRaamiDamaaCaaale qabaGaam4AaaaaaaGcdaWcaaqaaiaadshadaahaaWcbeqaaiaadUga aaaakeaacaWGRbGaaGyiaaaaaiaawUfacaGLDbaacaaISaaaaa@6740@  (2)

где 0 RL D t α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGsbGaamitaaaakiaadseadaqhaaWcbaGaamiDaaqa aiabeg7aHbaaaaa@3C1A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  левосторонний оператор дробного дифференцирования Римана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля,

0 RL D t α Q(x,t)= 1 Γ(1{α}) [α]+1 τ [α]+1 0 t Q(x,τ)dτ (tτ) {α} . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaai aaicdaaeaacaWGsbGaamitaaaakiaadseadaqhaaWcbaGaamiDaaqa aiabeg7aHbaakiaadgfacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aai2dadaWcaaqaaiaaigdaaeaacqqHtoWrcaaIOaGaaGymaiabgkHi TiaaiUhacqaHXoqycaaI9bGaaGykaaaadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaG4waiabeg7aHjaai2facqGHRaWkcaaIXaaaaaGcbaGa eyOaIyRaeqiXdq3aaWbaaSqabeaacaaIBbGaeqySdeMaaGyxaiabgU caRiaaigdaaaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGH RiI8aOWaaSaaaeaacaWGrbGaaGikaiaadIhacaaISaGaeqiXdqNaaG ykaiaadsgacqaHepaDaeaacaaIOaGaamiDaiabgkHiTiabes8a0jaa iMcadaahaaWcbeqaaiaaiUhacqaHXoqycaaI9baaaaaakiaai6caaa a@701E@

Следует отметить, что определение (2) для дифференцируемых функций эквивалентно определению дробной производной, основанному на свёртке первой производной функции с дробно-степенной функцией. Такое определение впервые было предложено А. Н. Герасимовым в [?], а впоследствии MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  в работах М. Капуто [7] и М. М. Джрбашяна [3].

Предполагается, что функция Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacaWG4bGaaGilaiaadshacaaIPaaaaa@3ADA@  дифференцируема по времени (в случае α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaicdacaaISaGaaGymaiaaiMcaaaa@3CA6@  достаточно требовать суммируемости данной функции по времени) при t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgw MiZkaaicdaaaa@396C@  и дважды дифференцируема по пространственной переменной на отрезке [0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamitaiaai2faaaa@3A00@ . Функции w(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AD3@  и q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaaaa@394B@  считаются непрерывными на отрезке [0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamitaiaai2faaaa@3A00@ .

Начальные условия для уравнения (1) ставятся в следующем виде:

k Q(x,0+) t k = φ k (x),x[0,L],k=0,,[α]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaadUgaaaGccaWGrbGaaGikaiaadIhacaaI SaGaaGimaiabgUcaRiaaiMcaaeaacqGHciITcaWG0bWaaWbaaSqabe aacaWGRbaaaaaakiaai2dacqaHgpGAdaahaaWcbeqaaiaadUgaaaGc caaIOaGaamiEaiaaiMcacaaISaGaaGzbVlaadIhacqGHiiIZcaaIBb GaaGimaiaaiYcacaWGmbGaaGyxaiaaiYcacaaMf8Uaam4Aaiaai2da caaIWaGaaGilaiablAciljaaiYcacaaIBbGaeqySdeMaaGyxaiaai6 caaaa@5BE5@  (3)

Граничные условия для уравнения (1):

b i Q(x,t) x + a i Q(x,t) x= x i = u i (t),t0,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGIbWaaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacqGHciITcaWGrbGa aGikaiaadIhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG4baaai abgUcaRiaadggadaWgaaWcbaGaamyAaaqabaGccaWGrbGaaGikaiaa dIhacaaISaGaamiDaiaaiMcaaiaawUfacaGLDbaadaWgaaWcbaGaam iEaiaai2dacaWG4bWaaWbaaeqabaGaamyAaaaaaeqaaOGaaGypaiaa dwhadaahaaWcbeqaaiaadMgaaaGccaaIOaGaamiDaiaaiMcacaaISa GaaGzbVlaadshacqGHLjYScaaIWaGaaGilaiaaywW7caWGPbGaaGyp aiaaigdacaaISaGaaGOmaiaaiYcaaaa@6067@  (4)

где a i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGPbaabeaaaaa@37F3@  и b i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaaaaa@37F4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициенты, b 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaaIXaaabeaakiabgsMiJkaaicdaaaa@3A3A@ , b 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaaIYaaabeaakiabgwMiZkaaicdaaaa@3A4C@ ; x 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGymaaaakiaai2dacaaIWaaaaa@3963@ , x 2 =L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaakiaai2dacaWGmbaaaa@397B@ . Граничные управления u 1,2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGymaiaaiYcacaaIYaaaaOGaaGikaiaadshacaaIPaaa aa@3BAF@  считаются элементами пространства L [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacqGHEisPaeqaaOGaaG4waiaaicdacaaISaGaamivaiaai2fa aaa@3C80@  и могут быть объединены в вектор U(t)=( u 1 (t), u 2 (t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamyDamaaCaaaleqabaGaaGym aaaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG1bWaaWbaaSqabeaaca aIYaaaaOGaaGikaiaadshacaaIPaGaaGykaaaa@44A2@ .

Будем считать целью оптимального управления достижение системой желаемого состояния в заданный момент времени T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Это условие может быть формально выражено виде ограничения как на состояние, так и на его производную:

Q(x,T)= Q * (x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacaWG4bGaaGilaiaadsfacaaIPaGaaGypaiaadgfadaahaaWcbeqa aiaaiQcaaaGccaaIOaGaamiEaiaaiMcacaaISaaaaa@405A@  (5)

Q(x,T) t =A(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGrbGaaGikaiaadIhacaaISaGaamivaiaaiMcaaeaacqGH ciITcaWG0baaaiaai2dacaWGbbGaaGikaiaadIhacaaIPaGaaGilaa aa@4334@  (6)

x[0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadYeacaaIDbaaaa@3C81@ , A(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaaaa@391B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданная функция. Возможно и одновременно задавать условия на состояние и его производную по времени (см. [11]).

Задачу оптимального управления поставим в двух разновидностях следующим образом (см. [1]). Найти такие управления u 1,2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGymaiaaiYcacaaIYaaaaOGaaGikaiaadshacaaIPaaa aa@3BAF@ , что система, описываемая уравнением (1) с начальными условиями (3) и граничными условиями (4), достигнет при t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaWGubaaaa@388C@  желаемого состояния, определяемого условиями (5) и/или (6) и при этом будет выполнено одно из условий: [ (a)]

  1. норма управления U(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG0bGaaGykaaaa@392B@  будет минимальной при заданном T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  (задача А);
  2. время перехода в желаемое состояние будет минимальным при заданном ограничении на норму управления U(t)l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyvaiaaiIcacaWG0bGaaGykaiab=vIi qjabgsMiJkaadYgaaaa@42A5@  ( l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданное число) (задача Б).
  3. l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@  -Проблема моментов для диффузионно-волнового уравнения.

Ранее было показано, что поставленная выше задача оптимального управления для уравнения типа уравнения (1) сводится к следующей проблеме моментов (см. [4, 5, 11, 12]). Пусть задана система функций g n (t) L p [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiabgIGiolaadYea daWgaaWcbaGabmiCayaafaaabeaakiaaiUfacaaIWaGaaGilaiaads facaaIDbaaaa@4207@  и набор чисел c n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaaaaa@37FA@ , хотя бы одно из которых отлично от нуля. Пусть также задано число l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@ . Необходимо найти такую функцию W(t) L p (0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaamiCaaqabaGc caaIOaGaaGimaiaaiYcacaWGubGaaGyxaaaa@408F@  ( 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai+ cacaWGWbGaey4kaSIaaGymaiaai+caceWGWbGbauaacaaI9aGaaGym aaaa@3D35@  ), что выполняются следующие соотношения:

0 T g n (τ)W(τ)dτ= c n ,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam4zamaaBaaaleaacaWG UbaabeaakiaaiIcacqaHepaDcaaIPaGaam4vaiaaiIcacqaHepaDca aIPaGaamizaiabes8a0jaai2dacaWGJbWaaSbaaSqaaiaad6gaaeqa aOGaaGilaiaaywW7cqWIMaYscaaISaaaaa@4CE1@  (7)

W(t)l, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4vaiaaiIcacaWG0bGaaGykaiab=vIi qjabgsMiJkaadYgacaaISaaaaa@435D@  (8)

где W(τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacqaHepaDcaaIPaaaaa@39F9@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ функция, содержащая в общем случае линейную комбинацию граничных управлений. В рассматриваемом в данной работе случае существенно ограниченных управлений p =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaafa GaaGypaiaaigdaaaa@3876@ , p= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacqGHEisPaaa@3920@  и проблема моментов (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (8) корректна и разрешима для α>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaicdaaaa@3914@ .

Следует отметить, что в [4, 5, 11, 12], вообще говоря, рассматривались более частные или, наоборот, более общие случаи уравнения (1) и граничных условий (4). Так, в [4] рассматривалось уравнение (1) при α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaicdacaaISaGaaGymaiaaiMcaaaa@3CA6@ , q(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3ACC@ , w(x)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaiaai2dacaaIXaaaaa@3AD3@ , а в граничных условиях вместо управлений u i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamyAaaaakiaaiIcacaWG0bGaaGykaaaa@3A70@  задавалась сумма этих управлений с некоторыми известными функциями. В [5, 11, 12] использовались такие же граничные условия, а уравнение (1) рассматривалось при α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@ ; кроме того, в левой части вместо дробной производной состояния стояло произведение её на некоторую функцию r(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG4bGaaGykaaaa@394C@ . Также в [12]] желаемое состояние задавалось условием вида (6) при A(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3A9C@ . Тем не менее, проводя рассуждения аналогично работам [4, 5, 11, 12], можно убедиться, что рассматриваемая в данной работе задача оптимального управления для уравнения (1) с начальными условиями (3), граничными условиями (4) и условиями, определяющими желаемое состояние (5) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (6), также сводится к l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E4@  -проблеме моментов (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (8). Теми же остаются и условия корректности и разрешимости получаемой проблемы моментов (поскольку вышеописанные отклонения не влияют на вид функций g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@ , а сказываются только на формулах для моментов и функции W(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaaaa@392D@  ).

Далее рассматриваем 4 случая, отличающиеся заданием параметров в уравнении (1) и способом задания желаемого состояния: [ (i)]

  1. в уравнении (1) α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaicdacaaISaGaaGymaiaaiMcaaaa@3CA6@  и желаемое состояние задаётся условием (5);
  2. в уравнении (1) α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  и желаемое состояние задаётся условием (5);
  3. в уравнении (1) α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  и желаемое состояние задаётся условием (6);
  4. в уравнении (1) α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  и желаемое состояние задаётся условием (5) и (6).

Для вышеперечисленных случаев ранее была обоснована корректность и разрешимость проблемы моментов, а также были получены явные выражения для моментов и функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  (см. [?, ?, ?, ?]). Для случая (1) эти выражения имеют вид

2 g n (t,T)= E α,α [ λ n (Tt) α ] (Tt) 1α ,α(0,1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadE gadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiYcacaWGubGa aGykaiaai2dadaWcaaqaaiaadweadaWgaaWcbaGaeqySdeMaaGilai abeg7aHbqabaGccaaIBbGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6ga aeqaaOGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaaCaaaleqaba GaeqySdegaaOGaaGyxaaqaaiaaiIcacaWGubGaeyOeI0IaamiDaiaa iMcadaahaaWcbeqaaiaaigdacqGHsislcqaHXoqyaaaaaOGaaGilai aaywW7cqaHXoqycqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGyk aiaaiYcaaaa@5F5B@  (9)

c n (T)= Q n * φ n 0 E α ( λ n T α ),α(0,1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaai2dacaWGrbWa a0baaSqaaiaad6gaaeaacaaIQaaaaOGaeyOeI0IaeqOXdO2aa0baaS qaaiaad6gaaeaacaaIWaaaaOGaamyramaaBaaaleaacqaHXoqyaeqa aOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaWGUbaabeaakiaads fadaahaaWcbeqaaiabeg7aHbaakiaaiMcacaaISaGaaGzbVlabeg7a HjabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaGaaGOlaaaa@5677@  (10)

Здесь и далее λ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38C6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  собственные числа соответствующей задачи Штурма" MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля для уравнения (1), а выражение Φ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaad6gaaeqaaaaa@388C@  означает коэффициент разложения функции Φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhacaaIPaaaaa@39CF@  по системе собственных функций соответствующей задачи Штурма" MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Лиувилля для уравнения (1) (см. [4, 5, 11, 12]).

В случае (2) аналогичные выражения имеют вид

g n (t,T)= E α,α [ λ n (Tt) α ] (Tt) 1α ,α(1,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaGa aGypamaalaaabaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySde gabeaakiaaiUfacqGHsislcqaH7oaBdaWgaaWcbaGaamOBaaqabaGc caaIOaGaamivaiabgkHiTiaadshacaaIPaWaaWbaaSqabeaacqaHXo qyaaGccaaIDbaabaGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaa CaaaleqabaGaaGymaiabgkHiTiabeg7aHbaaaaGccaaISaGaaGzbVl abeg7aHjabgIGiolaaiIcacaaIXaGaaGilaiaaikdacaaIPaGaaGil aaaa@5EA1@  (11)

c n (T)= Q n * φ n 0 E α ( λ n T α ) φ n 1 T E α,2 ( λ n T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaai2dacaWGrbWa a0baaSqaaiaad6gaaeaacaaIQaaaaOGaeyOeI0IaeqOXdO2aa0baaS qaaiaad6gaaeaacaaIWaaaaOGaamyramaaBaaaleaacqaHXoqyaeqa aOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaWGUbaabeaakiaads fadaahaaWcbeqaaiabeg7aHbaakiaaiMcacqGHsislcqaHgpGAdaqh aaWcbaGaamOBaaqaaiaaigdaaaGccaWGubGaamyramaaBaaaleaacq aHXoqycaaISaGaaGOmaaqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaG ykaiaai6caaaa@5ED7@  (12)

В случае (3) имеем формулы

g n (t,T)= E α,α1 [ λ n (Tt) α ] (Tt) 2α ,α(1,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaGa aGypamaalaaabaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySde MaeyOeI0IaaGymaaqabaGccaaIBbGaeyOeI0Iaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaaCa aaleqabaGaeqySdegaaOGaaGyxaaqaaiaaiIcacaWGubGaeyOeI0Ia amiDaiaaiMcadaahaaWcbeqaaiaaikdacqGHsislcqaHXoqyaaaaaO GaaGilaiaaywW7cqaHXoqycqGHiiIZcaaIOaGaaGymaiaaiYcacaaI YaGaaGykaiaaiYcaaaa@604A@  (13)

c n (T)= A n + λ n T α1 φ n 0 E α,α ( λ n T α ) φ n 1 T E α ( λ n T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaiaai2dacaWGbbWa aSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaad6 gaaeqaaOGaamivamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaa kiabeA8aQnaaDaaaleaacaWGUbaabaGaaGimaaaakiaadweadaWgaa WcbaGaeqySdeMaaGilaiabeg7aHbqabaGccaaIOaGaeyOeI0Iaeq4U dW2aaSbaaSqaaiaad6gaaeqaaOGaamivamaaCaaaleqabaGaeqySde gaaOGaaGykaiabgkHiTiabeA8aQnaaDaaaleaacaWGUbaabaGaaGym aaaakiaadsfacaWGfbWaaSbaaSqaaiabeg7aHbqabaGccaaIOaGaey OeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamivamaaCaaaleqa baGaeqySdegaaOGaaGykaiaai6caaaa@661E@  (14)

Наконец, в случае (4) будут справедливы выражения

g 2n1 (t,T)= E α,α [ λ n (Tt) α ] (Tt) 1α , g 2n (t,T)= E α,α1 [ λ n (Tt) α ] (Tt) 2α ,α(1,2), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaaqaaiaadEgadaWgaaWcbaGaaGOmaiaad6gacqGHsislcaaIXaaa beaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaGaaGypamaalaaaba GaamyramaaBaaaleaacqaHXoqycaaISaGaeqySdegabeaakiaaiUfa cqGHsislcqaH7oaBdaWgaaWcbaGaamOBaaqabaGccaaIOaGaamivai abgkHiTiaadshacaaIPaWaaWbaaSqabeaacqaHXoqyaaGccaaIDbaa baGaaGikaiaadsfacqGHsislcaWG0bGaaGykamaaCaaaleqabaGaaG ymaiabgkHiTiabeg7aHbaaaaGccaaISaaabaaabaGaam4zamaaBaaa leaacaaIYaGaamOBaaqabaGccaaIOaGaamiDaiaaiYcacaWGubGaaG ykaiaai2dadaWcaaqaaiaadweadaWgaaWcbaGaeqySdeMaaGilaiab eg7aHjabgkHiTiaaigdaaeqaaOGaaG4waiabgkHiTiabeU7aSnaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaeyOeI0IaamiDaiaaiMca daahaaWcbeqaaiabeg7aHbaakiaai2faaeaacaaIOaGaamivaiabgk HiTiaadshacaaIPaWaaWbaaSqabeaacaaIYaGaeyOeI0IaeqySdega aaaakiaaiYcacaaMf8UaeqySdeMaeyicI4SaaGikaiaaigdacaaISa GaaGOmaiaaiMcacaaISaaaaaaa@832E@  (15)

c 2n1 (T)= Q n * φ n 0 E α ( λ n T α ) φ n 1 T E α,2 ( λ n T α ), c 2n (T)= A n + λ n T α1 φ n 0 E α,α ( λ n T α ) φ n 1 T E α ( λ n T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaaqaaiaadogadaWgaaWcbaGaaGOmaiaad6gacqGHsislcaaIXaaa beaakiaaiIcacaWGubGaaGykaiaai2dacaWGrbWaa0baaSqaaiaad6 gaaeaacaaIQaaaaOGaeyOeI0IaeqOXdO2aa0baaSqaaiaad6gaaeaa caaIWaaaaOGaamyramaaBaaaleaacqaHXoqyaeqaaOGaaGikaiabgk HiTiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadsfadaahaaWcbeqa aiabeg7aHbaakiaaiMcacqGHsislcqaHgpGAdaqhaaWcbaGaamOBaa qaaiaaigdaaaGccaWGubGaamyramaaBaaaleaacqaHXoqycaaISaGa aGOmaaqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaGykaiaaiYcaaeaa aeaacaWGJbWaaSbaaSqaaiaaikdacaWGUbaabeaakiaaiIcacaWGub GaaGykaiaai2dacaWGbbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamivamaaCaaaleqabaGaeq ySdeMaeyOeI0IaaGymaaaakiabeA8aQnaaDaaaleaacaWGUbaabaGa aGimaaaakiaadweadaWgaaWcbaGaeqySdeMaaGilaiabeg7aHbqaba GccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamiv amaaCaaaleqabaGaeqySdegaaOGaaGykaiabgkHiTiabeA8aQnaaDa aaleaacaWGUbaabaGaaGymaaaakiaadsfacaWGfbWaaSbaaSqaaiab eg7aHbqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaae qaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaGykaiaai6caaaaa aa@922F@  (16)

4. Основные результаты. В [4, 5, 11, 12] была обоснована корректность и разрешимость конечномерной проблемы моментов, получаемой в случаях (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4). При выполнении соответствующих условий удаётся решить проблему моментов, получив тем самым решение задачи А, т.е. управление из класса допустимых, имеющее наименьшую норму. Для решения задачи Б в общем случае необходимо найти решение неравенства

Λ N (T)l, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaGaeyizImQaamiB aiaaiYcaaaa@3E0B@  (17)

где Λ N (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaa@3AAF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  норма оптимального управления, найденного в результате решения задачи А, зависящая от параметра T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Решением задачи Б считается наименьшее действительное положительное число T * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGOkaaaaaaa@37AD@ , для которого справедливо неравенство (17) (см. [1, гл. 3]). Значение Λ N (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaa@3AAF@  при этом может быть вычислено по формуле

Λ N (T)= 1 min ξ i ,i=1,,N ρ ξ (T) = 1 ρ ξ * (T) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaGaaGypamaalaaa baGaaGymaaqaamaawafabeWcbaGaeqOVdG3aaSbaaeaacaWGPbaabe aacaaISaGaaGjbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaI SaGaamOtaaqabOqaaiGac2gacaGGPbGaaiOBaaaacqaHbpGCdaWgaa WcbaGaeqOVdGhabeaakiaaiIcacaWGubGaaGykaaaacaaI9aWaaSaa aeaacaaIXaaabaGaeqyWdi3aaSbaaSqaaiabe67a4naaCaaabeqaai aaiQcaaaaabeaakiaaiIcacaWGubGaaGykaaaacaaISaaaaa@5989@  (18)

(см. [1, гл. 3]), где

ρ ξ = 0 T i=1 N1 ξ i g i (t) c i (T) c N (T) g N (t) + 1 c N (T) g N (t) dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGa amivaaqdcqGHRiI8aOWaaqWaaeaadaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccqaH+oaE daWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadEgadaWgaaWcbaGaam yAaaqabaGccaaIOaGaamiDaiaaiMcacqGHsisldaWcaaqaaiaadoga daWgaaWcbaGaamyAaaqabaGccaaIOaGaamivaiaaiMcaaeaacaWGJb WaaSbaaSqaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaiaadEga daWgaaWcbaGaamOtaaqabaGccaaIOaGaamiDaiaaiMcaaiaawIcaca GLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGJbWaaSbaaSqaaiaa d6eaaeqaaOGaaGikaiaadsfacaaIPaaaaiaadEgadaWgaaWcbaGaam OtaaqabaGccaaIOaGaamiDaiaaiMcaaiaawEa7caGLiWoacaWGKbGa amiDaiaaiYcaaaa@6C42@  (19)

ξ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadMgaaeqaaaaa@38D0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые числа, ξ i * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aa0 baaSqaaiaadMgaaeaacaaIQaaaaaaa@3985@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  числа, при которых достигается минимум функции ρ ξ (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccaaIOaGaamivaiaaiMcaaaa@3BEA@  по ξ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadMgaaeqaaaaa@38D0@ . Учитывая (18), можно переписать условие (17) в виде

ρ ξ * (T) 1 l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4naaCaaabeqaaiaaiQcaaaaabeaakiaaiIcacaWG ubGaaGykaiabgwMiZoaalaaabaGaaGymaaqaaiaadYgaaaGaaGOlaa aa@40FA@  (20)

Функция (19) неотрицательна и непрерывно зависит от аргумента T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Если подынтегральная функция в выражении (19) не зависит от T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , то функция ρ ξ * (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4naaCaaabeqaaiaaiQcaaaaabeaakiaaiIcacaWG ubGaaGykaaaa@3CC0@  монотонно возрастает с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Аналогичная тенденция проявляется и в случае, если функции g i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A61@  не зависят от параметра T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , а моменты зависят достаточно слабо. Именно такая ситуация имеет место для систем целого порядка, описываемых обычным уравнением диффузии. Для них всегда можно подобрать такое значение T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , что условие (20) окажется выполненным для любого заданного l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@  (см. [1, гл. 4]).

В случае же, когда подынтегральная функция в выражении (19) также зависит от аргумента T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , как это имеет место для рассматриваемых систем дробного порядка, функция ρ ξ * (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4naaCaaabeqaaiaaiQcaaaaabeaakiaaiIcacaWG ubGaaGykaaaa@3CC0@  уже может не быть монотонно возрастающей по T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Более того, ниже будет показано, что данная функция ограничена.

Теорема 1. Пусть функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  и моменты c n (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaa@3A42@  определяются либо формулами (9) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (10), либо формулами (11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (12) (что соответствует рассмотрению вышеперечисленных случаев (1) и (2)) и при этом c N (T)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiabgcMi5kaaicda aaa@3CA3@  для заданного N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Тогда значение функции (19) при любом фиксированном N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  будет ограничено, а при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  справедлива следующая оценка:

lim T ρ ξ * (T) i=1 N1 | ξ i | 1 λ i + Q i * Q N * λ N + 1 | Q N * | λ N . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGubGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiabeg8aYnaaBaaaleaacqaH+oaEdaahaaqabeaacaaIQaaaaaqaba GccaaIOaGaamivaiaaiMcacqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccaaI8b GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGiFamaabmaabaWaaSaa aeaacaaIXaaabaGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaaaakiabgU caRmaaemaabaWaaSaaaeaacaWGrbWaa0baaSqaaiaadMgaaeaacaaI QaaaaaGcbaGaamyuamaaDaaaleaacaWGobaabaGaaGOkaaaakiabeU 7aSnaaBaaaleaacaWGobaabeaaaaaakiaawEa7caGLiWoaaiaawIca caGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI8bGaamyuamaaDa aaleaacaWGobaabaGaaGOkaaaakiaaiYhacqaH7oaBdaWgaaWcbaGa amOtaaqabaaaaOGaaGOlaaaa@6D2D@  (21)

Доказательство. Для функции (19) справедлива следующая оценка:

ρ ξ i=1 N1 | ξ i | 0 T g i (t)dt+ c i (T) c N (T) 0 T g N (t)dt + 1 | c N (T)| 0 T g N (t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccaaI8b GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGiFamaabmaabaWaa8qC aeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam4zamaaBaaale aacaWGPbaabeaakiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaey4k aSYaaqWaaeaadaWcaaqaaiaadogadaWgaaWcbaGaamyAaaqabaGcca aIOaGaamivaiaaiMcaaeaacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGa aGikaiaadsfacaaIPaaaaaGaay5bSlaawIa7amaapehabeWcbaGaaG imaaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGaamOtaaqa baGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaaGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGymaaqaaiaaiYhacaWGJbWaaSbaaSqaaiaa d6eaaeqaaOGaaGikaiaadsfacaaIPaGaaGiFaaaadaWdXbqabSqaai aaicdaaeaacaWGubaaniabgUIiYdGccaWGNbWaaSbaaSqaaiaad6ea aeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshacaaISaaaaa@7D0F@  (22)

где учтено, что функции g i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A61@  неотрицательны на интервале (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@ . Используя формулы (9) или (11) и представление функции Миттаг MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Леффлера в виде равномерно и абсолютно сходящегося степенного ряда

E α,β (t)= k=0 t k Γ(αk+β) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacqaHXoqycaaISaGaeqOSdigabeaakiaaiIcacaWG0bGaaGyk aiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiabg6HiLc qdcqGHris5aOWaaSaaaeaacaWG0bWaaWbaaSqabeaacaWGRbaaaaGc baGaeu4KdCKaaGikaiabeg7aHjaadUgacqGHRaWkcqaHYoGycaaIPa aaaaaa@4E4C@  (23)

(см. [9, § 1.8]), можно вычислить интегралы в формуле (22) и получить следующую оценку:

ρ ξ i=1 N1 | ξ i | 1 E α ( λ i T α ) λ i + c i (T) c N (T) 1 E α ( λ N T α ) λ N + 1 | c N (T)| 1 E α ( λ N T α ) λ N . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacqGHsislcaaIXaaaniabggHiLdGccaaI8b GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGiFamaabmaabaWaaSaa aeaacaaIXaGaeyOeI0IaamyramaaBaaaleaacqaHXoqyaeqaaOGaaG ikaiabgkHiTiabeU7aSnaaBaaaleaacaWGPbaabeaakiaadsfadaah aaWcbeqaaiabeg7aHbaakiaaiMcaaeaacqaH7oaBdaWgaaWcbaGaam yAaaqabaaaaOGaey4kaSYaaqWaaeaadaWcaaqaaiaadogadaWgaaWc baGaamyAaaqabaGccaaIOaGaamivaiaaiMcaaeaacaWGJbWaaSbaaS qaaiaad6eaaeqaaOGaaGikaiaadsfacaaIPaaaaaGaay5bSlaawIa7 amaalaaabaGaaGymaiabgkHiTiaadweadaWgaaWcbaGaeqySdegabe aakiaaiIcacqGHsislcqaH7oaBdaWgaaWcbaGaamOtaaqabaGccaWG ubWaaWbaaSqabeaacqaHXoqyaaGccaaIPaaabaGaeq4UdW2aaSbaaS qaaiaad6eaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGa aGymaaqaaiaaiYhacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGaaGikai aadsfacaaIPaGaaGiFaaaadaWcaaqaaiaaigdacqGHsislcaWGfbWa aSbaaSqaaiabeg7aHbqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSbaaS qaaiaad6eaaeqaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaGyk aaqaaiabeU7aSnaaBaaaleaacaWGobaabeaaaaGccaaIUaaaaa@8AEE@  (24)

Функции Миттаг MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Леффлера в (24) монотонно убывают с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , стремясь к нулю (см. [9, § 1.8]). Моменты, определяемые формулой (10), также содержат однопараметрические функции Миттаг MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Леффлера, убывающие с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ . Моменты, определяемые формулой (12), содержат, кроме того, слагаемые вида φ n 1 T E α,2 ( λ n T α ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aa0 baaSqaaiaad6gaaeaacaaIXaaaaOGaamivaiaadweadaWgaaWcbaGa eqySdeMaaGilaiaaikdaaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBa aaleaacaWGUbaabeaakiaadsfadaahaaWcbeqaaiabeg7aHbaakiaa iMcaaaa@465D@ . Для оценки их поведения можно воспользоваться асимптотикой

E α,β (z)= k=1 p z k Γ(βαk) +O |z | 1p ,z, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacqaHXoqycaaISaGaeqOSdigabeaakiaaiIcacaWG6bGaaGyk aiaai2dacqGHsisldaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaai aadchaa0GaeyyeIuoakmaalaaabaGaamOEamaaCaaaleqabaGaeyOe I0Iaam4AaaaaaOqaaiabfo5ahjaaiIcacqaHYoGycqGHsislcqaHXo qycaWGRbGaaGykaaaacqGHRaWkcaWGpbWaaeWaaeaacaaI8bGaamOE aiaaiYhadaahaaWcbeqaaiabgkHiTiaaigdacqGHsislcaWGWbaaaa GccaGLOaGaayzkaaGaaGilaiaaywW7caWG6bGaeyOKH4QaeyOeI0Ia eyOhIuQaaGilaaaa@6211@  (25)

где p=[2/α] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacaaIBbGaaGOmaiaai+cacqaHXoqycaaIDbaaaa@3C8F@  (см. [?]. Учитывая, что α>1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaigdaaaa@3915@  в случае (2), из формулы (25) можно получить следующее соотношение:

T E α,2 ( λ n T α ) k=1 p T 1αk T 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw eadaWgaaWcbaGaeqySdeMaaGilaiaaikdaaeqaaOGaaGikaiabgkHi TiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadsfadaahaaWcbeqaai abeg7aHbaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWF8iIodaae WbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaadchaa0GaeyyeIuoaki aadsfadaahaaWcbeqaaiaaigdacqGHsislcqaHXoqycaWGRbaaaOWa a4ajaSqaaiaaysW7caWGubGaeyOKH4QaeyOhIuQaaGjbVdqabOGaay PKHaGaaGimaiaai6caaaa@5DCA@  (26)

Тогда из формул (10) и (12) получим, что c i (T) Q i * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGPbaabeaakiaaiIcacaWGubGaaGykaiabgkziUkaadgfa daqhaaWcbaGaamyAaaqaaiaaiQcaaaaaaa@3ECF@  при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@ , i=1,,N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGobaaaa@3BC4@ . Подставляя полученные оценки в формулу (24), получим оценку (21).

Кроме того, из формулы (24) с учётом выражений (10) и (12) следует, что при фиксированном T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , 0<T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGubGaaGipaiabg6HiLcaa@3A83@ , выражение в правой части формулы (24) определено и ограничено сверху. Теорема доказана.

Теорема 2. Пусть функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  и моменты c n (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaa@3A42@  определяются формулами (13) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (14) (что соответствует рассмотрению вышеописанного случая (3)) и при этом c N (T)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiabgcMi5kaaicda aaa@3CA3@  для заданного N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Тогда значение функции (19) при любом фиксированном N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  будет ограничено, а при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  будет справедлива следующая оценка:

lim T ρ ξ * (T)r(T),r(T) T 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGubGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiabeg8aYnaaBaaaleaacqaH+oaEdaahaaqabeaacaaIQaaaaaqaba GccaaIOaGaamivaiaaiMcacqGHKjYOcaWGYbGaaGikaiaadsfacaaI PaGaaGilaiaaywW7caWGYbGaaGikaiaadsfacaaIPaWaa4ajaSqaai aadsfacqGHsgIRcqGHEisPaeqakiaawkziaiaaicdacaaIUaaaaa@55EF@  (27)

Доказательство. Воспользуемся, как и выше, оценкой (22), обозначив правую часть этой формулы r(T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWGubGaaGykaaaa@3928@ , и вычислим присутствующие в ней интегралы с учётом формулы (13). Для этого воспользуемся представлением (23) и, проведя необходимые вычисления, получим:

r(T)= T α1 i=1 N1 | ξ i | E α,α ( λ i T α )+ c i (T) c N (T) E α,α ( λ N T α ) + T α1 | c N (T)| E α,α ( λ N T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWGubGaaGykaiaai2dacaWGubWaaWbaaSqabeaacqaHXoqycqGH sislcaaIXaaaaOWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaaca WGobGaeyOeI0IaaGymaaqdcqGHris5aOGaaGiFaiabe67a4naaBaaa leaacaWGPbaabeaakiaaiYhadaqadaqaaiaadweadaWgaaWcbaGaeq ySdeMaaGilaiabeg7aHbqabaGccaaIOaGaeyOeI0Iaeq4UdW2aaSba aSqaaiaadMgaaeqaaOGaamivamaaCaaaleqabaGaeqySdegaaOGaaG ykaiabgUcaRmaaemaabaWaaSaaaeaacaWGJbWaaSbaaSqaaiaadMga aeqaaOGaaGikaiaadsfacaaIPaaabaGaam4yamaaBaaaleaacaWGob aabeaakiaaiIcacaWGubGaaGykaaaaaiaawEa7caGLiWoacaWGfbWa aSbaaSqaaiabeg7aHjaaiYcacqaHXoqyaeqaaOGaaGikaiabgkHiTi abeU7aSnaaBaaaleaacaWGobaabeaakiaadsfadaahaaWcbeqaaiab eg7aHbaakiaaiMcaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaads fadaahaaWcbeqaaiabeg7aHjabgkHiTiaaigdaaaaakeaacaaI8bGa am4yamaaBaaaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiaaiY haaaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySdegabeaakiaa iIcacqGHsislcqaH7oaBdaWgaaWcbaGaamOtaaqabaGccaWGubWaaW baaSqabeaacqaHXoqyaaGccaaIPaGaaGOlaaaa@8AF4@  (28)

Каждое из слагаемых в полученном выражении (с учётом выражений (14)) определено и ограничено сверху при любом фиксированном положительном значении T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiY dacqGHEisPaaa@3903@ . Воспользовавшись асимптотикой (25), можно показать, что при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  каждое из слагаемых в формуле (28) стремится к нулю. Теорема доказана.

Теорема 3. Пусть функции g n (t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGilaiaadsfacaaIPaaa aa@3BF5@  и моменты c n (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGUbaabeaakiaaiIcacaWGubGaaGykaaaa@3A42@  определяются формулами (15) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (16) (что соответствует рассмотрению вышеописанного случая (4)) и при этом c N (T)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGobaabeaakiaaiIcacaWGubGaaGykaiabgcMi5kaaicda aaa@3CA3@  для заданного N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@ . Тогда значение функции (19) при любом фиксированном N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  будет ограничено, а при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@  будет справедлива следующая оценка:

lim T ρ ξ * (T) i=1 N/2 | ξ 2i1 | λ 2i1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGubGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiabeg8aYnaaBaaaleaacqaH+oaEdaahaaqabeaacaaIQaaaaaqaba GccaaIOaGaamivaiaaiMcacqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacaaIVaGaaGOmaaqdcqGHris5aOWaaSaaae aacaaI8bGaeqOVdG3aaSbaaSqaaiaaikdacaWGPbGaeyOeI0IaaGym aaqabaGccaaI8baabaGaeq4UdW2aaSbaaSqaaiaaikdacaWGPbGaey OeI0IaaGymaaqabaaaaOGaaGOlaaaa@5A60@  (29)

Доказательство. Аналогично доказательствам теорем 1 и 2 используем оценку (22). Примем во внимание, что в данном случае количество моментов и функций g i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A61@  и, соответственно, число N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@  чётное (что обусловлено двумя условиями, определяющими желаемое состояние). Поэтому перепишем формулу (22)в виде

ρ ξ i=1 N/2 | ξ 2i1 | 0 T g 2i1 (t)dt+ c 2i1 (T) c N (T) 0 T g N (t)dt + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacaaIVaGaaGOmaaqdcqGHris5aOGaaGiFai abe67a4naaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigdaaeqaaOGa aGiFamaabmaabaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaam4zamaaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigdaaeqa aOGaaGikaiaadshacaaIPaGaamizaiaadshacqGHRaWkdaabdaqaam aalaaabaGaam4yamaaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigda aeqaaOGaaGikaiaadsfacaaIPaaabaGaam4yamaaBaaaleaacaWGob aabeaakiaaiIcacaWGubGaaGykaaaaaiaawEa7caGLiWoadaWdXbqa bSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWGNbWaaSbaaSqaai aad6eaaeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshaaiaawIca caGLPaaacqGHRaWkaaa@7210@

+ i=1 N/21 | ξ 2i | 0 T g 2i (t)dt+ c 2i (T) c N (T) 0 T g N (t)dt + 1 | c N (T)| 0 T g N (t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGobGaaG4laiaaikda cqGHsislcaaIXaaaniabggHiLdGccaaI8bGaeqOVdG3aaSbaaSqaai aaikdacaWGPbaabeaakiaaiYhadaqadaqaamaapehabeWcbaGaaGim aaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGaaGOmaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshacqGHRaWkdaab daqaamaalaaabaGaam4yamaaBaaaleaacaaIYaGaamyAaaqabaGcca aIOaGaamivaiaaiMcaaeaacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGa aGikaiaadsfacaaIPaaaaaGaay5bSlaawIa7amaapehabeWcbaGaaG imaaqaaiaadsfaa0Gaey4kIipakiaadEgadaWgaaWcbaGaamOtaaqa baGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaaGaayjkaiaawMcaai abgUcaRmaalaaabaGaaGymaaqaaiaaiYhacaWGJbWaaSbaaSqaaiaa d6eaaeqaaOGaaGikaiaadsfacaaIPaGaaGiFaaaadaWdXbqabSqaai aaicdaaeaacaWGubaaniabgUIiYdGccaWGNbWaaSbaaSqaaiaad6ea aeqaaOGaaGikaiaadshacaaIPaGaamizaiaadshacaaIUaaaaa@7C2E@  (30)

Пользуясь формулами (15) и представлением (23), проведём, как и выше, вычисления интегралов в формуле (30). В результате будем иметь:

ρ ξ i=1 N/2 | ξ 2i1 | 1 E α ( λ 2i1 T α ) λ 2i1 + c 2i1 (T) c N (T) T α1 E α,α ( λ N T α ) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaGccqGHKjYOdaaeWbqabSqaaiaadMgacaaI 9aGaaGymaaqaaiaad6eacaaIVaGaaGOmaaqdcqGHris5aOGaaGiFai abe67a4naaBaaaleaacaaIYaGaamyAaiabgkHiTiaaigdaaeqaaOGa aGiFamaabmaabaWaaSaaaeaacaaIXaGaeyOeI0IaamyramaaBaaale aacqaHXoqyaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaaI YaGaamyAaiabgkHiTiaaigdaaeqaaOGaamivamaaCaaaleqabaGaeq ySdegaaOGaaGykaaqaaiabeU7aSnaaBaaaleaacaaIYaGaamyAaiab gkHiTiaaigdaaeqaaaaakiabgUcaRmaaemaabaWaaSaaaeaacaWGJb WaaSbaaSqaaiaaikdacaWGPbGaeyOeI0IaaGymaaqabaGccaaIOaGa amivaiaaiMcaaeaacaWGJbWaaSbaaSqaaiaad6eaaeqaaOGaaGikai aadsfacaaIPaaaaaGaay5bSlaawIa7aiaadsfadaahaaWcbeqaaiab eg7aHjabgkHiTiaaigdaaaGccaWGfbWaaSbaaSqaaiabeg7aHjaaiY cacqaHXoqyaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaacaWG obaabeaakiaadsfadaahaaWcbeqaaiabeg7aHbaakiaaiMcaaiaawI cacaGLPaaacqGHRaWkaaa@7FF2@

+ T α1 i=1 N/21 | ξ 2i | E α,α ( λ 2i T α )+ c 2i (T) c N (T) E α,α ( λ N T α ) + T α1 | c N (T)| E α,α ( λ N T α ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam ivamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaakmaaqahabeWc baGaamyAaiaai2dacaaIXaaabaGaamOtaiaai+cacaaIYaGaeyOeI0 IaaGymaaqdcqGHris5aOGaaGiFaiabe67a4naaBaaaleaacaaIYaGa amyAaaqabaGccaaI8bWaaeWaaeaacaWGfbWaaSbaaSqaaiabeg7aHj aaiYcacqaHXoqyaeqaaOGaaGikaiabgkHiTiabeU7aSnaaBaaaleaa caaIYaGaamyAaaqabaGccaWGubWaaWbaaSqabeaacqaHXoqyaaGcca aIPaGaey4kaSYaaqWaaeaadaWcaaqaaiaadogadaWgaaWcbaGaaGOm aiaadMgaaeqaaOGaaGikaiaadsfacaaIPaaabaGaam4yamaaBaaale aacaWGobaabeaakiaaiIcacaWGubGaaGykaaaaaiaawEa7caGLiWoa caWGfbWaaSbaaSqaaiabeg7aHjaaiYcacqaHXoqyaeqaaOGaaGikai abgkHiTiabeU7aSnaaBaaaleaacaWGobaabeaakiaadsfadaahaaWc beqaaiabeg7aHbaakiaaiMcaaiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiaadsfadaahaaWcbeqaaiabeg7aHjabgkHiTiaaigdaaaaakeaa caaI8bGaam4yamaaBaaaleaacaWGobaabeaakiaaiIcacaWGubGaaG ykaiaaiYhaaaGaamyramaaBaaaleaacqaHXoqycaaISaGaeqySdega beaakiaaiIcacqGHsislcqaH7oaBdaWgaaWcbaGaamOtaaqabaGcca WGubWaaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGOlaaaa@8B83@  (31)

Все слагаемые, входящие в правую часть неравенства (31) (с учётом формул (16)) при конечном положительном T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  и α(1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey icI4SaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaa@3CA8@  определены и ограничены. При T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@ , пользуясь асимптотикой (25), можно, по аналогии с доказательствами теорем 1 и 2, убедиться, что последнее слагаемое и вторая сумма в формуле (31) сходятся к нулю, а первая сумма даст оценку (29). Теорема доказана.

Следствие. Из доказанных выше теорем 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ 3 следует, что величина ρ ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabe67a4bqabaaaaa@39A2@  не увеличивается монотонно с ростом T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , а ограничена сверху на интервале (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaamivaiaaiMcaaaa@39A1@  при любом конечном T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai6 dacaaIWaaaaa@384E@  и при T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgk ziUkabg6HiLcaa@3A2A@ . Поэтому всегда можно указать такое число l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai6 dacaaIWaaaaa@3866@ , что неравенство (20) не будет выполнено. Следовательно, в этом случае задача Б не будет иметь решения, в то время как задача А будет иметь решение.

5. Заключение. В работе рассмотрено использование метода моментов для исследования задач оптимального граничного управления системами дробного порядка с распределёнными параметрами, поведение которых описывается диффузионно MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ волновым уравнением. Проанализировано несколько способов задания желаемого состояния и получены оценки на величину функционала, обратно пропорционального норме оптимального управления. Показано, что ограниченность данного функционала может приводить к ситуациям, когда задача поиска управления с минимальной нормой разрешима, а задача построения управления с максимальным быстродействием при заданном ограничении на норму управления не разрешима в силу невозможности выполнить упомянутое ограничение. Это отличает рассмотренные системы дробного порядка от их аналогов, описываемых обычным уравнением диффузии или волновым уравнением (см. [1]).

×

About the authors

S. S. Postnov

Институт проблем управления им. В. А. Трапезникова РАН

Author for correspondence.
Email: postnov.sergey@inbox.ru
Russian Federation, Москва

References

  1. Бутковский А. Г. Теория оптимального управления системами с распределенными параметрами. —М.: Наука, 1965.
  2. Герасимов А. Н. Обобщение линейных законов деформирования и его применение к задачам внутреннего трения// Прикл. мат. мех. — 1948. — 12,, № 3. — С. 251–260.
  3. Джрбашян М. М., Нерсесян А. Б. Дробные производные и задача Коши для дифференциальных уравнений дробного порядка// Изв. АН АрмССР. Мат. — 1968. — 3, № 1. — С. 3–29.
  4. Кубышкин В. А., Постнов С. C. Оптимальное по быстродействию граничное управление для систем,тописываемых уравнением диффузии дробного порядка// Автомат. телемех. — 2018. — № 5. — С. 137–152.
  5. Постнов С. C. Оптимальное управление для систем, моделируемых диффузионно-волновым уравнением// Владикавказ. мат. ж. — 2022. — 24, № 3. — С. 108–119.
  6. Azamov A. A., Bakhramov J. A., Akhmedov O. S. On the Chernous’ko time-optimal problem for the equation of heat conductivity in a rod// Ural Math. J. — 2019. — 5, № 1. — P. 13-–23.
  7. Caputo M. Linear models of dissipation whose Q is almost frequency independent, II// Geophys. J. Roy. Astron. Soc. — 1967. — 13. — P. 529–539.
  8. Gorenflo R., Kilbas A. A., Mainardi F. et al. Mittag–Leffler Functions, Related Topics and Applications. — Berlin: Springer, 2014.
  9. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Amsterdam: Elsevier, 2006.
  10. Mophou G. M. Optimal control of fractional diffusion equation// Comp. Math. Appl. — 2010. — 61, № 1.— P. 68–78.
  11. Postnov S. Optimal damping problem with additional terminal state condition in diffusion-wave processes//Proc. 2 Int. Conf. on Control Systems,MathematicalModeling, Automation and Energy Efficiency.—IEEE, 2021. — P. 1–5.
  12. Postnov S. Optimal damping problem for diffusion-wave equation// in: Stability and Control Processes (Smirnov N., Golovkina A., eds.). — Cham: Springer, 2022. — P. 127–135.
  13. Tang Q., Ma Q. Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives// Adv. Differ. Equations. — 2015. — 2015. — 283.
  14. Zhou Z., Gong W. Finite element approximation of optimal control problems governed by time fractional diffusion equation// Comp. Math. Appl. — 2016. — 71, № 1. — P. 301–318.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Postnov S.S.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».