Kac–Siegert formula for oscillatory random processes

Cover Page

Cite item

Full Text

Abstract

Abstract. A general scheme for calculating the characteristic functions of random variables represented by quadratic functionals of the trajectories of elementary Gaussian processes based on the Feynman—Kac method is described. This scheme is applied to the oscillatory random process x~t, tR. The characteristic function Q(iλ,t) of the random variable Jtx(~s)=0t(dx(~s)/ds)2ds of its random trajectories x~(t) is calculated.

Full Text

1. Введение. Системы стохастических линейных дифференциальных уравнений с постоянными коэффициентами являются основой математического моделирования, когда возникает необходимость использования случайных функций при описании процессов изменения случайных величин со временем (см., например, [14, 25, 26]). Статистические характеристики случайных процессов, порождаемых совокупностями решений систем такого типа и связанными с ними распределениями вероятностей, используются также в математической статистике при анализе временных рядов (см., например, [12, 22]).

Обозначим посредством t, t + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaSbaaSqaaiabgUcaRaqabaaaaa@4436@ , случайную вектор-функцию, которая принимает значения в R n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaamOBaaaaaaa@37EA@ , nN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giolaad6eaaaa@393D@ . Здесь и далее знак тильда, поставленный над символом математического объекта, указывает на его случайный характер с точки зрения теории вероятностей. В общем виде стохастические системы указанного типа записываются следующим образом в терминах стохастического дифференциала dt по многомерному винеровскому процессу null, t t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgw MiZkaadshadaWgaaWcbaGaaGimaaqabaaaaa@3A91@ :

dx~(t) = A x~(t)dt + S dw~(t), (1.1)

 где A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  и S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  вещественные n×n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgE na0kaad6gaaaa@39F0@  -матрицы, причем матрица S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@  симметрична, S T =S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaamivaaaakiaai2dacaWGtbaaaa@397A@  и неотрицательно определена, а null  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  случайная вектор-функция, компонентами которой являются n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@  экземпляров таких статистически независимых стандартных винеровских процессов (см., например, [8]), что

E w j (s) w k (t)= δ jk min{s,t}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaayI W7caWG3bWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadohacaaIPaGa am4DamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaai2 dacqaH0oazdaWgaaWcbaGaamOAaiaadUgaaeqaaOGaciyBaiaacMga caGGUbGaaG4EaiaadohacaaISaGaamiDaiaai2hacaaISaaaaa@4E06@  (1.2)

 где, здесь и далее, E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraaaa@36BB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  функционал математического ожидания по мере рассматриваемого случайного процесса, без конкретизации того, какой процесс имеется в виду, что не должно вызвать недоразумений; δ jk MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadQgacaWGRbaabeaaaaa@39A3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  символ Кронекера, j,k{1,...,n} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaaiY cacaWGRbGaeyicI4SaaG4EaiaaigdacaaISaGaaGOlaiaai6cacaaI UaGaaGilaiaad6gacaaI9baaaa@415A@ . Допустимы различные определения стохастического дифференциала null (см., например, [26]). Использование того или иного определения тесно связано с той конкретной задачей, которая решается в рамках формализма стохастических дифференциальных уравнений. Наиболее употребительными в математике являются дифференциал в смысле Ито (см., например, [7]) и дифференциал в смысле Стратоновича [29]. В рандомизированных задачах математической физики, по-видимому, наиболее адекватным является дифференциал Стратоновича, в связи с известной теоремой Вонга-Закаи [30] (см. также [17]), согласно которой стохастическому уравнению с дифференциалом Стратоновича удовлетворяют траектории всякого случайного процесса с непрерывным временем, который является предельным в среднем квадратичном для последовательности случайных процессов null, mN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Giolaad6eaaaa@393C@ , траектории каждого из которых подчинены дифференциальному уравнению

x˙(m) (t) = f(x(m), t) + g(x(m), t)φ(m)(t),

где каждый стационарный случайный процесс φ n (t),tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeoccm Gae8NXdO2aaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaGa aGilaiaadshacqGHiiIZcaWGsbGaeyOkJepaaa@42CC@  непрерывен с вероятностью 1, а вся последовательность этих процессов сходится в смысле сходимости соответствующих характеристических функционалов к предельному характеристическому функционалу, который для любой финитной непрерывной вектор-функции u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacaWG0bGaaGykaaaa@3951@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaadkfaaaa@3947@  со значениями в R n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaamOBaaaaaaa@37EA@  определяет обобщенный стационарный случайный процесс φ(t),tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeoccm Gae8NXdOMaaGikaiaadshacaaIPaGaaGilaiaadshacqGHiiIZcaWG sbGaeyOkJepaaa@41A3@  так, что при m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A43@  имеет место

Eexp(i ( φ (m) (t),u(t))dtexp( 1 2 u 2 (t)dt)Eexp(i (u(t), φ ˜ (t))dt). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiGacw gacaGG4bGaaiiCaiaaiIcacaWGPbWaa8qCaeqaleaacqGHsislcqGH EisPaeaacqGHEisPa0Gaey4kIipakiaaiIcaiiWacqWFgpGAdaahaa WcbeqaaiaaiIcacaWGTbGaaGykaaaakiaaiIcacaWG0bGaaGykaiaa iYcacaqI1bGaaGikaiaadshacaaIPaGaaGykaiaadsgacaWG0bGaey OKH4QaciyzaiaacIhacaGGWbGaaGikaiabgkHiTmaalaaabaGaaGym aaqaaiaaikdaaaWaa8qCaeqaleaacqGHsislcqGHEisPaeaacqGHEi sPa0Gaey4kIipakiaajwhadaahaaWcbeqaaiaaikdaaaGccaaIOaGa amiDaiaaiMcacaWGKbGaamiDaiaaiMcacqGHHjIUcaqGfbGaciyzai aacIhacaGGWbGaaGikaiaadMgadaWdXbqabSqaaiabgkHiTiabg6Hi Lcqaaiabg6HiLcqdcqGHRiI8aOGaaGikaiaajwhacaaIOaGaamiDai aaiMcacaaISaGaf8NXdOMbaGaacaaIOaGaamiDaiaaiMcacaaIPaGa amizaiaadshacaaIPaGaaGOlaaaa@7ED6@  (1.3)

Здесь и далее, (,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgw SixlaaiYcacqGHflY1caaIPaaaaa@3CA2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  скалярное произведение в R n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaamOBaaaaaaa@37EA@ . Этот предельный обобщенный случайный процесс φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeoccm Gae8NXdOMaaGikaiaadshacaaIPaaaaa@3BCF@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@  называется «белым шумом» (стационарным с единичной интенсивностью). Заметим, что в задачах, связанных со стохастическими системами с постоянными коэффициентами, не возникает различия в получаемых результатах при использовании того или иного конкретного типа дифференциала. В этом случае различия проявляются только лишь при проведении доказательств математических утверждений и конкретных вычислений. В частности, такое положение имеет место при решении задачи, которому посвящена настоящая работа.

В связи с вышесказанным, на протяжении статьи, мы, при необходимости проведения явных вычислений, используем стохастический дифференциал Стратоновича. В этом случае уравнение (1.1) допустимо записать в форме обычного дифференциального уравнения

ddtx~(t)=Ax~(t)+Sφ(~t), (1.4)

где φ(~t)=dω~(t)/dt=φ~j(t),j,n. Так как траектории t стандартного винеровского процесса c единичной дисперсией, исходящие из точки x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaiaai2 dacaaIWaaaaa@3877@  с началом отсчета времени в момент t= t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3992@ , с вероятностью 1 всюду непрерывны, но нигде не дифференцируемы (см. [15]), то производную dω~(t)/dt=φ(t) в уравнении (1.4) нужно понимать в обобщенном смысле.

Так как винеровский процесс гауссовский (см., например, [18]) и его корреляционная функция (1.2) зависит от разности |st| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaado hacqGHsislcaWG0bGaaGiFaaaa@3ADD@ , то обобщенную случайную вектор-функцию φ ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGaf8NXdO MbaGaacaaIOaGaamiDaiaaiMcaaaa@3A25@ , нужно трактовать как обобщенный случайный стационарный гауссовский векторнозначный процесс с нулевым средним значением. Компонентами φ j (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3B33@ , j=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGUbaaaa@3BE5@  его векторных значений являются статистически независимые гауссовские случайные процессы, для которых выполняется E φ ˜ j (s) φ ˜ k (t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaayI W7cuaHgpGAgaacamaaBaaaleaacaWGQbaabeaakiaaiIcacaWGZbGa aGykaiqbeA8aQzaaiaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaads hacaaIPaGaaGypaiaaicdaaaa@446B@  при jk MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgc Mi5kaadUgaaaa@3999@  и каждый из которых имеет нулевое среднее значение E φ ˜ j (t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiqbeA 8aQzaaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaGa aGypaiaaicdaaaa@3D8B@ , j=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGUbaaaa@3BE5@ . Корреляционная функция каждой фиксированной компоненты равна E φ ˜ j (s) φ ˜ j (t)=δ(st) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiqbeA 8aQzaaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadohacaaIPaGa fqOXdOMbaGaadaWgaaWcbaGaamOAaaqabaGccaaIOaGaamiDaiaaiM cacaaI9aGaeqiTdqMaaGikaiaadohacqGHsislcaWG0bGaaGykaaaa @4807@ , т.е. каждая из компонент φ j (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3B33@ , j=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGUbaaaa@3BE5@  является скалярным обобщенным процессом «белого шума». Здесь δ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ikaiaadshacaaIPaaaaa@39F6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  т.н. обобщенная функция Дирака (см., например, [13]). Если дифференциальное уравнение (1.4) понимается по Стратоновичу, то его можно формально проинтегрировать в смысле Римана

x~(t)=e(tt0)Ax~(t0)+t0texp(A(ts))S dω~(s), (1.5)

где интеграл следует понимать как стохастический интеграл Стратоновича. Таким образом, отображение, описываемое формулой (1.5), индуцирует случайный процесс x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@ , так как оно определяет класс траекторий этого процесса на основе класса траекторий векторнозначного винеровского процесса ω~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  вместе со структурой измеримости на пространстве всех локально непрерывных вектор-функций на [ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@3B9B@ . Формула (1.5) также полностью определяет распределение вероятностей случайного процесса x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  на σ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37B6@  -алгебре измеримых множеств в пространстве непрерывных функций при учете распределения вероятностей Pr{x~(t0)<x0} случайного вектора x~(t0)  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  т.н. распределения вероятностей входа в процесс [7] при учете статистической независимости случайного вектора x~(t0) от процесса ω~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@ . Поэтому во всех формулах, в которых вычисляется математическое ожидание E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraaaa@36BB@  по распределению вероятностей случайного процесса x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@ , можно считать, что оно вычисляется по произведению распределений вероятностей порождающего его случайного процесса ω~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  и распределению вероятностей случайного вектора x~(t0). Можно также считать, что вычисление этого математического ожидания по процессу x~(t), tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@ , эквивалентным образом, выполняется на основе распределения вероятностей случайного вектора x~(t0) и характеристического функционала обобщенного гауссовского случайного процесса φ ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeoccm Gaf8NXdOMbaGaacaaIOaGaamiDaiaaiMcaaaa@3BDE@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@ , определяемого формулой (1.3), из которой следует

E φ ˜ j (t)=0,E φ ˜ j (s) φ ˜ jk (t)= δ jk δ(st),j,k{1,...,n}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaayI W7cuaHgpGAgaacamaaBaaaleaacaWGQbaabeaakiaaiIcacaWG0bGa aGykaiaai2dacaaIWaGaaGilaiaaywW7caqGfbGaaGjcVlqbeA8aQz aaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadohacaaIPaGafqOX dOMbaGaadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaaGikaiaadshaca aIPaGaaGypaiabes7aKnaaBaaaleaacaWGQbGaam4AaaqabaGccqaH 0oazcaaIOaGaam4CaiabgkHiTiaadshacaaIPaGaaGilaiaaywW7ca WGQbGaaGilaiaadUgacqGHiiIZcaaI7bGaaGymaiaaiYcacaaIUaGa aGOlaiaai6cacaaISaGaamOBaiaai2hacaaISaaaaa@6810@

а также правило усреднения произведений φ j 1 ( t 1 )... φ j 1 ( t m ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadQgadaWgaaqaaiaaigdaaeqaaaqabaGccaaIOaGaamiD amaaBaaaleaacaaIXaaabeaakiaaiMcacaaIUaGaaGOlaiaai6cacq aHgpGAdaWgaaWcbaGaamOAamaaBaaabaGaaGymaaqabaaabeaakiaa iIcacaWG0bWaaSbaaSqaaiaad2gaaeqaaOGaaGykaaaa@466C@  при попарно неравных друг другу значениях t 1 ,..., t m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaaabeaakiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGa amiDamaaBaaaleaacaWGTbaabeaaaaa@3D88@ , mN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgI Giolaad6eaaaa@393C@  (т.н. правило Вика [27]).

В настоящей работе мы рассматриваем т.н. осцилляторный случайный процесс x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUabm iEayaaiaGaaGikaiaadshacaaIPaaaaa@3B16@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@ , который порождается двумерным x~(t)=x~1(t),x~2(t) гауссовским марковским в случайным процессом на любом полуинтервале [ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@3B9B@ . Процесс x~(t), t[t0,) определяется формулой (1.5) при n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3869@  с соответствующей ему 2×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgE na0kaaikdaaaa@3982@  -матрицей A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  такой, что он обладает при t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgkziUkabgkHiTiabg6HiLcaa@3C27@  предельным по мере случайным процессом, который является стационарным, гауссовским процессом с нулевым средним значением и который мы далее будем обозначать тем же самым символом x~(t), tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@ . Целью работы является получение формулы для характеристической функции

Q(iλ,t)=Eexp(iλJt[x~(s)]) (1.6)

распределения вероятностей случайной величины, которая представляется значениями квадратичного зависящего от параметра t>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@386E@  функционала

J t [ x ˜ (s)]= 0 t ( d x ˜ dt ) 2 (s)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWG0baabeaakiaaiUfaceWG4bGbaGaacaaIOaGaam4Caiaa iMcacaaIDbGaaGypamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey 4kIipakiaaiIcadaWcaaqaaiaadsgaceWG4bGbaGaaaeaacaWGKbGa amiDaaaacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadohaca aIPaGaamizaiaadohacaaISaaaaa@4D47@  (1.7)

определенного на пространстве непрерывно дифференцируемых с вероятностью 1 функций x(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaaaa@394E@ , t R + =[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfadaWgaaWcbaGaey4kaScabeaakiaai2dacaaIBbGaaGim aiaaiYcacqGHEisPcaaIPaaaaa@3F9F@ . Эта формула аналогична формуле Каца-Зигерта [20], которая имеет место при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@  для стационарного марковского гауссовского случайного процесса Орнштейна-Уленбека, траектории x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia GaaGikaiaadshacaaIPaaaaa@395D@  которого подчинены стохастическому уравнению Ланжевена x ˜ ˙ (t)+2β x ˜ (t)= σ 1/2 φ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaiy aacaGaaGikaiaadshacaaIPaGaey4kaSIaaGOmaiabek7aIjqadIha gaacaiaaiIcacaWG0bGaaGykaiaai2dacqaHdpWCdaahaaWcbeqaai aaigdacaaIVaGaaGOmaaaakiabeA8aQjaaiIcacaWG0bGaaGykaaaa @491A@  c β>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG Opaiaaicdaaaa@3916@ . В этом случае характеристическая функция Q(iλ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqGHsislcaWGPbGaeq4UdWMaaGilaiaadshacaaIPaaaaa@3D6C@  случайной величины

J t [ x ˜ (s)]= 0 t x ˜ 2 (s)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWG0baabeaakiaaiUfaceWG4bGbaGaacaaIOaGaam4Caiaa iMcacaaIDbGaaGypamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey 4kIipakiqadIhagaacamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG ZbGaaGykaiaadsgacaWGZbGaaGilaaaa@4907@

дается формулой

Q(λ,t)= 4βr e 2βt (β+r) 2 e 2rt (βr) 2 e 2rt 1/2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcacaaI9aWaaeWaaeaadaWcaaqa aiaaisdacqaHYoGycaWGYbGaamyzamaaCaaaleqabaGaaGOmaiabek 7aIjaadshaaaaakeaacaaIOaGaeqOSdiMaey4kaSIaamOCaiaaiMca daahaaWcbeqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaaIYaGaam OCaiaadshaaaGccqGHsislcaaIOaGaeqOSdiMaeyOeI0IaamOCaiaa iMcadaahaaWcbeqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacqGHsi slcaaIYaGaamOCaiaadshaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIXaGaaG4laiaaikdaaaGccaaISaaaaa@5DFE@  (1.8)

r=( β 2 +λσ /2) 1/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaaIOaGaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeq4U dWMaeq4WdmNaaG4laiaaikdacaaIPaWaaWbaaSqabeaacaaIXaGaaG 4laiaaikdaaaaaaa@43D5@ , которая находит различные применения в задачах статистической радиотехники [20, 28], в задачах статистики фотоотсчетов в квантовой оптике [23] и других областях физики [5]. Для решения задач такого типа разработаны различные методы. Основополагающим в этом отношении является метод, которым впервые была решена задача для функционала J t [ w ˜ (s)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWG0baabeaakiaaiUfaceWG3bGbaGaacaaIOaGaam4Caiaa iMcacaaIDbaaaa@3D25@  от траекторий винеровского процесса [19]. Этот метод, который впоследствии получил название метода Фейнмана-Каца-Дынкина, существенно использует марковость случайного процесса, по мере которого производится усреднение. Более общий подход к решению таких задач основан на т.н. методе Карунена-Лоэва (см. [21, 24]), использующий только лишь гауссовость случайного процесса x~(t), t[a,b]R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWGHbGaaGilaiaadkgacaaIDbGaeyOGIWSaamOuaiab gQYiXdaa@415C@ . Он позволяет находить математические ожидания для более сложных квадратичных функционалов от траекторий процесса (см. [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ 4]).

2. Осцилляторный случайный процесс. Траектории осцилляторного случайного процесса x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUabm iEayaaiaGaaGikaiaadshacaaIPaaaaa@3B16@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@  подчинены стохастическому дифференциальному уравнению

d 2 d t 2 x ˜ +2β d dt x ˜ + ω 2 x ˜ = σ 1/2 φ ˜ (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamizaiaadshadaahaaWc beqaaiaaikdaaaaaaOGaaGjcVlqadIhagaacaiabgUcaRiaaikdacq aHYoGydaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaacaaMi8UabmiE ayaaiaGaey4kaSIaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGabmiEay aaiaGaaGypaiabeo8aZnaaCaaaleqabaGaaGymaiaai+cacaaIYaaa aOGafqOXdOMbaGaacaaIOaGaamiDaiaaiMcacaaISaaaaa@5487@  (2.1)

где φ ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOXdOMbaG aacaaIOaGaamiDaiaaiMcaaaa@3A1D@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaadkfaaaa@3947@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  одномерный белый шум. Введя двухкомпонентный случайный процесс

x~(t)=x~1(t),x~2(t),x~1(t)x~(˙t)/ω,x~2(t)=(t)

и, аналогично, двухкомпонентный обобщенный случайный процесс φ ˜ (t)= φ ˜ (t),0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGaf8NXdO MbaGaacaaIOaGaamiDaiaaiMcacaaI9aGaeyykJeUafqOXdOMbaGaa caaIOaGaamiDaiaaiMcacaaISaGaaGimaiabgQYiXdaa@4409@ , уравнение (2.1) представим в виде системы уравнений (1.4) первого порядка с n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3869@  и матрицами

A= 2β ω ω 0 ,S= σ 1/2 ω V,V= 1 0 0 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaai2 dadaqadaqaauaabeqaciaaaeaacqGHsislcaaIYaGaeqOSdigabaGa eyOeI0IaeqyYdChabaGaeqyYdChabaGaaGimaaaaaiaawIcacaGLPa aacaaISaGaaGzbVlaadofacaaI9aWaaSaaaeaacqaHdpWCdaahaaWc beqaaiaaigdacaaIVaGaaGOmaaaaaOqaaiabeM8a3baacaWGwbGaaG ilaiaaywW7caWGwbGaaGypamaabmaabaqbaeqabiGaaaqaaiaaigda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaGaaG Olaaaa@5589@  (2.2)

Стохастическое дифференциальное уравнение (1.4) определяет случайный процесс x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  на каждом полуинтервале [ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@3B9B@ , где двумерный «белый шум» φ ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmGaf8NXdO MbaGaacaaIOaGaamiDaiaaiMcaaaa@3A25@  обладает корреляционной функцией E φ ˜ j 1 ( t 1 ) φ ˜ j 2 ( t 2 )= δ j 1 ,1 δ j 2 ,1 δ( t 1 t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaayI W7cuaHgpGAgaacamaaBaaaleaacaWGQbWaaSbaaeaacaaIXaaabeaa aeqaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaIPaGafq OXdOMbaGaadaWgaaWcbaGaamOAamaaBaaabaGaaGOmaaqabaaabeaa kiaaiIcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgQYiXl aai2dacqaH0oazdaWgaaWcbaGaamOAamaaBaaabaGaaGymaaqabaGa aGilaiaaigdaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQgadaWgaaqaai aaikdaaeqaaiaaiYcacaaIXaaabeaakiabes7aKjaaiIcacaWG0bWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaaIYa aabeaakiaaiMcaaaa@5B12@ . Тогда для него справедлива формула (1.5). Следовательно, траектории этого случайного процесса определены при t 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgsMiJkaaicdaaaa@3A4B@  и, с вероятностью 1, всюду на [ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeyOhIuQaaGykaaaa@3B9B@  непрерывны. В частности, с вероятностью 1, всюду непрерывна его первая компонента x ˜ 1 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaaaaa@3A4E@ . Поэтому траектории x ˜ 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaaaaa@3A4F@  с вероятностью 1 всюду непрерывно дифференцируемы при t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@ . Пусть t 0 <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiaaiYdacaaIWaaaaa@395C@  и при каждом значении t>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@386E@  с вероятностью 1 определено значение функционала (1.7). Вся совокупность этих значений определяет случайную величину с распределением вероятностей, индуцированным распределением вероятностей случайного процесса x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@ .

Определение 2.1. Случайный векторнозначный процесс z~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  со значениями из R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@  называется гауссовским, если его характеристический функционал определяется формулой

Eexp(it0(u,z~(t)dt)=exp(it0(u(t),z0(t))dt12t0dtt0Cjk(s,t)uj(s)uk(t)ds). (2.3)

где u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacaWG0bGaaGykaaaa@3951@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  произвольная непрерывная финитная вектор-функция со значениями из R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@ .

Гауссовский процесс полностью определяется математическим ожиданием z0(t)=Ez~(t), вычисляемым по распределению вероятностей этого процесса, и его корреляционной функцией C jk (s,t)=E( z ˜ j (s) ( z 0 ) j (s))( z ˜ k (t) ( z 0 ) k (t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGQbGaam4AaaqabaGccaaIOaGaam4CaiaaiYcacaWG0bGa aGykaiaai2dacaqGfbGaaGjcVlaaiIcaceWG6bGbaGaadaWgaaWcba GaamOAaaqabaGccaaIOaGaam4CaiaaiMcacqGHsislcaaIOaGaaKOE amaaBaaaleaacaaIWaaabeaakiaaiMcadaWgaaWcbaGaamOAaaqaba GccaaIOaGaam4CaiaaiMcacaaIPaGaaGikaiqadQhagaacamaaBaaa leaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiabgkHiTiaaiIcaca qI6bWaaSbaaSqaaiaaicdaaeqaaOGaaGykamaaBaaaleaacaWGRbaa beaakiaaiIcacaWG0bGaaGykaiaaiMcaaaa@5B7C@ .

Матричное ядро C jk (s,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGQbGaam4AaaqabaGccaaIOaGaam4CaiaaiYcacaWG0bGa aGykaaaa@3CDC@  в (2.3) обладает свойством симметрии C jk (s,t)= C kj (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGQbGaam4AaaqabaGccaaIOaGaam4CaiaaiYcacaWG0bGa aGykaiaai2dacaWGdbWaaSbaaSqaaiaadUgacaWGQbaabeaakiaaiI cacaWG0bGaaGilaiaadohacaaIPaaaaa@448C@  и положительной определенностью, т.е. для любой непрерывной финитной вектор-функции u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacaWG0bGaaGykaaaa@3951@  имеет место

E [ t 0 u j (t)( z ˜ j (t) ( z 0 ) j (t))] 2 dt= t 0 dt t 0 C jk (s,t) u j (s) u k (t)ds>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaayI W7caaIBbWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaa cqGHEisPa0Gaey4kIipakiaadwhadaWgaaWcbaGaamOAaaqabaGcca aIOaGaamiDaiaaiMcacaaIOaGabmOEayaaiaWaaSbaaSqaaiaadQga aeqaaOGaaGikaiaadshacaaIPaGaeyOeI0IaaGikaiaajQhadaWgaa WcbaGaaGimaaqabaGccaaIPaWaaSbaaSqaaiaadQgaaeqaaOGaaGik aiaadshacaaIPaGaaGykaiaai2fadaahaaWcbeqaaiaaikdaaaGcca WGKbGaamiDaiaai2dadaWdXbqabSqaaiaadshadaWgaaqaaiaaicda aeqaaaqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaadshadaWdXbqabS qaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiabg6HiLcqdcqGHRiI8 aOGaam4qamaaBaaaleaacaWGQbGaam4AaaqabaGccaaIOaGaam4Cai aaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamOAaaqabaGccaaI OaGaam4CaiaaiMcacaWG1bWaaSbaaSqaaiaadUgaaeqaaOGaaGikai aadshacaaIPaGaamizaiaadohacaaI+aGaaGimaiaai6caaaa@76FC@

Согласно данному определению, обобщенный процесс φ ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeoccm Gaf8NXdOMbaGaacaaIOaGaamiDaiaaiMcaaaa@3BDE@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@  гауссовский, с характеристическим функционалом (1.3). Он является пределом характеристических функционалов гауссовских процессов.

Ввиду формулы (1.5), которая справедлива для траекторий процесса x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@ , он является линейным преобразованием гауссовского случайного процесса φ ˜ (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOXdOMbaG aacaaIOaGaam4CaiaaiMcaaaa@3A1C@ , s( t 0 0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI GiolaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGim aiaaiYcacqGHEisPcaaIPaaaaa@3F8B@ . Поэтому имеет место

Теорема 2.1. Для любого t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaaaaa@37D2@  и любого вектора x 0 = x 1 ( t 0 )= x ˙ ( t 0 )/ω, x 2 ( t 0 )=x( t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEamaaBa aaleaacaaIWaaabeaakiaai2dacqGHPms4caWG4bWaaSbaaSqaaiaa igdaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa GaaGypaiqadIhagaGaaiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqa aOGaaGykaiaai+cacqaHjpWDcaaISaGaamiEamaaBaaaleaacaaIYa aabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaa i2dacaWG4bGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa GaeyOkJepaaa@5412@  случайный процесс x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  гауссовский.

Доказательство. Поставим в определение характеристического функционала выражение для траекторий (1.5). Так как E φ ˜ (s)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaayI W7iiWacuWFgpGAgaacaiaaiIcacaWGZbGaaGykaiaai2dacaaIWaaa aa@3DFE@ , то

Eexp(it0(u(t),x~(t))dt)=

=exp(i t 0 ( e (t t 0 )A x 0 ,u(t))dt)Eexp(i t 0 dt t 0 t (u(t), e A(ts) S φ ˜ (s))ds). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGacw gacaGG4bGaaiiCaiaaiIcacaWGPbWaa8qCaeqaleaacaWG0bWaaSba aeaacaaIWaaabeaaaeaacqGHEisPa0Gaey4kIipakiaaiIcacaWGLb WaaWbaaSqabeaacaaIOaGaamiDaiabgkHiTiaadshadaWgaaqaaiaa icdaaeqaaiaaiMcacaWGbbaaaOGaaKiEamaaBaaaleaacaaIWaaabe aakiaaiYcacaqI1bGaaGikaiaadshacaaIPaGaaGykaiaadsgacaWG 0bGaaGykaiaabweaciGGLbGaaiiEaiaacchacaaIOaGaamyAamaape habeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeyOhIukaniab gUIiYdGccaWGKbGaamiDamaapehabeWcbaGaamiDamaaBaaabaGaaG imaaqabaaabaGaamiDaaqdcqGHRiI8aOGaaGikaiaajwhacaaIOaGa amiDaiaaiMcacaaISaGaamyzamaaCaaaleqabaGaamyqaiaaiIcaca WG0bGaeyOeI0Iaam4CaiaaiMcaaaGccaaMi8Uaam4uaGGadiqb=z8a QzaaiaGaaGikaiaadohacaaIPaGaaGykaiaadsgacaWGZbGaaGykai aai6cacaaMf8UaaGzbVdaa@7CB9@  (2.4)

Далее, вводя функцию

v(s)= s S e A T (ts) u(t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKODaiaaiI cacaWGZbGaaGykaiaai2dadaWdXbqabSqaaiaadohaaeaacqGHEisP a0Gaey4kIipakiaadofacaWGLbWaaWbaaSqabeaacaWGbbWaaWbaae qabaGaamivaaaacaaIOaGaamiDaiabgkHiTiaadohacaaIPaaaaOGa aKyDaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGilaaaa@4CE8@

вычислим математическое ожидание

Eexp(i t 0 dt t 0 t (u(t), e A(ts) S φ ˜ (s))ds)=Eexp(i t 0 dt t 0 t (S e A T (ts) u(t), φ ˜ (s))ds)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiGacw gacaGG4bGaaiiCaiaaiIcacaWGPbWaa8qCaeqaleaacaWG0bWaaSba aeaacaaIWaaabeaaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWG0b Waa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baa niabgUIiYdGccaaIOaGaaKyDaiaaiIcacaWG0bGaaGykaiaaiYcaca WGLbWaaWbaaSqabeaacaWGbbGaaGikaiaadshacqGHsislcaWGZbGa aGykaaaakiaayIW7caWGtbaccmGaf8NXdOMbaGaacaaIOaGaam4Cai aaiMcacaaIPaGaamizaiaadohacaaIPaGaaGypaiaabweaciGGLbGa aiiEaiaacchacaaIOaGaamyAamaapehabeWcbaGaamiDamaaBaaaba GaaGimaaqabaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamiDamaa pehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcq GHRiI8aOGaaGikaiaadofacaWGLbWaaWbaaSqabeaacaWGbbWaaWba aeqabaGaamivaaaacaaIOaGaamiDaiabgkHiTiaadohacaaIPaaaaO GaaKyDaiaaiIcacaWG0bGaaGykaiaaiYcacuWFgpGAgaacaiaaiIca caWGZbGaaGykaiaaiMcacaWGKbGaam4CaiaaiMcacaaI9aaaaa@84BE@

=Eexp(i t 0 ds s (S e A T (ts) u(t), φ ˜ (s))dt)=Eexp(i t 0 (v(s), φ ˜ (s))ds)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaabw eaciGGLbGaaiiEaiaacchacaaIOaGaamyAamaapehabeWcbaGaamiD amaaBaaabaGaaGimaaqabaaabaGaeyOhIukaniabgUIiYdGccaWGKb Gaam4CamaapehabeWcbaGaam4Caaqaaiabg6HiLcqdcqGHRiI8aOGa aGikaiaadofacaWGLbWaaWbaaSqabeaacaWGbbWaaWbaaeqabaGaam ivaaaacaaIOaGaamiDaiabgkHiTiaadohacaaIPaaaaOGaaKyDaiaa iIcacaWG0bGaaGykaiaaiYcaiiWacuWFgpGAgaacaiaaiIcacaWGZb GaaGykaiaaiMcacaWGKbGaamiDaiaaiMcacaaI9aGaaeyraiGacwga caGG4bGaaiiCaiaaiIcacaWGPbWaa8qCaeqaleaacaWG0bWaaSbaae aacaaIWaaabeaaaeaacqGHEisPa0Gaey4kIipakiaaiIcacaqI2bGa aGikaiaadohacaaIPaGaaGilaiqb=z8aQzaaiaGaaGikaiaadohaca aIPaGaaGykaiaadsgacaWGZbGaaGykaiaai2daaaa@756B@

=exp( 1 2 t 0 v 2 (s)ds)=exp( 1 2 t 0 ( s S e A T (ts) u(t)dt) 2 ds). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGacw gacaGG4bGaaiiCaiaaiIcacqGHsisldaWcaaqaaiaaigdaaeaacaaI YaaaamaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaey OhIukaniabgUIiYdGccaqI2bWaaWbaaSqabeaacaaIYaaaaOGaaGik aiaadohacaaIPaGaamizaiaadohacaaIPaGaaGypaiGacwgacaGG4b GaaiiCaiaaiIcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaa pehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeyOhIukani abgUIiYdGccaaIOaWaa8qCaeqaleaacaWGZbaabaGaeyOhIukaniab gUIiYdGccaWGtbGaamyzamaaCaaaleqabaGaamyqamaaCaaabeqaai aadsfaaaGaaGikaiaadshacqGHsislcaWGZbGaaGykaaaakiaajwha caaIOaGaamiDaiaaiMcacaWGKbGaamiDaiaaiMcadaahaaWcbeqaai aaikdaaaGccaWGKbGaam4CaiaaiMcacaaIUaGaaGzbVlaaywW7aaa@70B4@  (2.5)

Интеграл в показателе экспоненты преобразуем, используя симметрию матрицы S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@ , так, что получающееся в процессе преобразований подинтегральное выражение принимает вид

1 2 t 0 ( s S e A T (ts) u(t)dt) 2 ds= t 0 ds s [S e A T ( t 1 s) u( t 1 )] j d t 1 t 1 [S e A T ( t 2 s) u( t 2 )] j d t 2 = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWdXbqabSqaaiaadshadaWgaaqaaiaaicda aeqaaaqaaiabg6HiLcqdcqGHRiI8aOGaaGikamaapehabeWcbaGaam 4Caaqaaiabg6HiLcqdcqGHRiI8aOGaam4uaiaadwgadaahaaWcbeqa aiaadgeadaahaaqabeaacaWGubaaaiaaiIcacaWG0bGaeyOeI0Iaam 4CaiaaiMcaaaGccaqI1bGaaGikaiaadshacaaIPaGaamizaiaadsha caaIPaWaaWbaaSqabeaacaaIYaaaaOGaamizaiaadohacaaI9aWaa8 qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacqGHEisPa0Ga ey4kIipakiaadsgacaWGZbWaa8qCaeqaleaacaWGZbaabaGaeyOhIu kaniabgUIiYdGccaaIBbGaam4uaiaadwgadaahaaWcbeqaaiaadgea daahaaqabeaacaWGubaaaiaaiIcacaWG0bWaaSbaaeaacaaIXaaabe aacqGHsislcaWGZbGaaGykaaaakiaajwhacaaIOaGaamiDamaaBaaa leaacaaIXaaabeaakiaaiMcacaaIDbWaaSbaaSqaaiaadQgaaeqaaO GaamizaiaadshadaWgaaWcbaGaaGymaaqabaGcdaWdXbqabSqaaiaa dshadaWgaaqaaiaaigdaaeqaaaqaaiabg6HiLcqdcqGHRiI8aOGaaG 4waiaadofacaWGLbWaaWbaaSqabeaacaWGbbWaaWbaaeqabaGaamiv aaaacaaIOaGaamiDamaaBaaabaGaaGOmaaqabaGaeyOeI0Iaam4Cai aaiMcaaaGccaqI1bGaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGc caaIPaGaaGyxamaaBaaaleaacaWGQbaabeaakiaadsgacaWG0bWaaS baaSqaaiaaikdaaeqaaOGaaGypaaaa@8D20@

= t 0 d t 1 t 0 t 1 [S e A T ( t 1 s) u( t 1 )] j ds t 1 [S e A T ( t 2 s) u( t 2 )] j d t 2 = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeyOhIukaniab gUIiYdGccaWGKbGaamiDamaaBaaaleaacaaIXaaabeaakmaapehabe WcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaaaniabgUIiYdGccaaIBbGaam4uaiaadwgadaahaaWcbe qaaiaadgeadaahaaqabeaacaWGubaaaiaaiIcacaWG0bWaaSbaaeaa caaIXaaabeaacqGHsislcaWGZbGaaGykaaaakiaajwhacaaIOaGaam iDamaaBaaaleaacaaIXaaabeaakiaaiMcacaaIDbWaaSbaaSqaaiaa dQgaaeqaaOGaamizaiaadohadaWdXbqabSqaaiaadshadaWgaaqaai aaigdaaeqaaaqaaiabg6HiLcqdcqGHRiI8aOGaaG4waiaadofacaWG LbWaaWbaaSqabeaacaWGbbWaaWbaaeqabaGaamivaaaacaaIOaGaam iDamaaBaaabaGaaGOmaaqabaGaeyOeI0Iaam4CaiaaiMcaaaGccaqI 1bGaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGyxam aaBaaaleaacaWGQbaabeaakiaadsgacaWG0bWaaSbaaSqaaiaaikda aeqaaOGaaGypaaaa@70CD@

= t 0 d t 1 t 1 d t 2 t 0 t 1 [S e A T ( t 2 s) u( t 2 )] j [S e A T ( t 1 s) u( t 1 )] j ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeyOhIukaniab gUIiYdGccaWGKbGaamiDamaaBaaaleaacaaIXaaabeaakmaapehabe WcbaGaamiDamaaBaaabaGaaGymaaqabaaabaGaeyOhIukaniabgUIi YdGccaWGKbGaamiDamaaBaaaleaacaaIYaaabeaakmaapehabeWcba GaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGym aaqabaaaniabgUIiYdGccaaIBbGaam4uaiaadwgadaahaaWcbeqaai aadgeadaahaaqabeaacaWGubaaaiaaiIcacaWG0bWaaSbaaeaacaaI YaaabeaacqGHsislcaWGZbGaaGykaaaakiaajwhacaaIOaGaamiDam aaBaaaleaacaaIYaaabeaakiaaiMcacaaIDbWaaSbaaSqaaiaadQga aeqaaOGaaG4waiaadofacaWGLbWaaWbaaSqabeaacaWGbbWaaWbaae qabaGaamivaaaacaaIOaGaamiDamaaBaaabaGaaGymaaqabaGaeyOe I0Iaam4CaiaaiMcaaaGccaqI1bGaaGikaiaadshadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGyxamaaBaaaleaacaWGQbaabeaakiaadsga caWGZbGaaGypaaaa@70CD@

= t 0 d t 1 t 1 d t 2 t 0 t 1 (S e A T ( t 2 s) u( t 2 ),S e A T ( t 1 s) u( t 1 ))ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaeyOhIukaniab gUIiYdGccaWGKbGaamiDamaaBaaaleaacaaIXaaabeaakmaapehabe WcbaGaamiDamaaBaaabaGaaGymaaqabaaabaGaeyOhIukaniabgUIi YdGccaWGKbGaamiDamaaBaaaleaacaaIYaaabeaakmaapehabeWcba GaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGym aaqabaaaniabgUIiYdGccaaIOaGaam4uaiaadwgadaahaaWcbeqaai aadgeadaahaaqabeaacaWGubaaaiaaiIcacaWG0bWaaSbaaeaacaaI YaaabeaacqGHsislcaWGZbGaaGykaaaakiaajwhacaaIOaGaamiDam aaBaaaleaacaaIYaaabeaakiaaiMcacaaISaGaam4uaiaadwgadaah aaWcbeqaaiaadgeadaahaaqabeaacaWGubaaaiaaiIcacaWG0bWaaS baaeaacaaIXaaabeaacqGHsislcaWGZbGaaGykaaaakiaajwhacaaI OaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiMcacaaIPaGaamizai aadohacaaI9aaaaa@6D06@

= 1 2 t 0 d t 1 t 0 ([ t 0 min{ t 1 , t 2 } e A( t 1 s) S 2 e A T ( t 2 s) ds]u( t 2 ),u( t 1 ))d t 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaikdaaaWaa8qCaeqaleaacaWG0bWaaSbaaeaa caaIWaaabeaaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWG0bWaaS baaSqaaiaaigdaaeqaaOWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaI WaaabeaaaeaacqGHEisPa0Gaey4kIipakiaaiIcacaaIBbWaa8qCae qaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaaciGGTbGaaiyAaiaa c6gacaaI7bGaamiDamaaBaaabaGaaGymaaqabaGaaGilaiaadshada Wgaaqaaiaaikdaaeqaaiaai2haa0Gaey4kIipakiaadwgadaahaaWc beqaaiaadgeacaaIOaGaamiDamaaBaaabaGaaGymaaqabaGaeyOeI0 Iaam4CaiaaiMcaaaGccaWGtbWaaWbaaSqabeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaamyqamaaCaaabeqaaiaadsfaaaGaaGikaiaads hadaWgaaqaaiaaikdaaeqaaiabgkHiTiaadohacaaIPaaaaOGaamiz aiaadohacaaIDbGaaKyDaiaaiIcacaWG0bWaaSbaaSqaaiaaikdaae qaaOGaaGykaiaaiYcacaqI1bGaaGikaiaadshadaWgaaWcbaGaaGym aaqabaGccaaIPaGaaGykaiaadsgacaWG0bWaaSbaaSqaaiaaikdaae qaaOGaaGOlaaaa@76D3@

Таким образом, подставляя это преобразованное выражение в (2.5), получаем‘

Eexp(i t 0 dt t 0 t (S e A T (ts) u(t), φ ˜ (s))ds)=exp( 1 2 t 0 d t 1 t 0 (C( t 1 , t 2 )u( t 2 ),u( t 1 ))d t 2 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiGacw gacaGG4bGaaiiCaiaaiIcacaWGPbWaa8qCaeqaleaacaWG0bWaaSba aeaacaaIWaaabeaaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWG0b Waa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0baa niabgUIiYdGccaaIOaGaam4uaiaadwgadaahaaWcbeqaaiaadgeada ahaaqabeaacaWGubaaaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMca aaGccaqI1bGaaGikaiaadshacaaIPaGaaGilaGGadiqb=z8aQzaaia GaaGikaiaadohacaaIPaGaaGykaiaadsgacaWGZbGaaGykaiaai2da ciGGLbGaaiiEaiaacchacaaIOaGaeyOeI0YaaSaaaeaacaaIXaaaba GaaGOmaaaadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqa aiabg6HiLcqdcqGHRiI8aOGaamizaiaadshadaWgaaWcbaGaaGymaa qabaGcdaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiab g6HiLcqdcqGHRiI8aOGaaGikaiaadoeacaaIOaGaamiDamaaBaaale aacaaIXaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGa aGykaiaajwhacaaIOaGaamiDamaaBaaaleaacaaIYaaabeaakiaaiM cacaaISaGaaKyDaiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGa aGykaiaaiMcacaWGKbGaamiDamaaBaaaleaacaaIYaaabeaakiaaiM cacaaISaaaaa@8709@

где матрица-функция C( t 1 , t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadshadaWgaaWc baGaaGOmaaqabaGccaaIPaaaaa@3CAB@  определяется матричным интегральным ядром

C j 1 , j 2 ( t 1 , t 2 )= t 0 min{ t 1 , t 2 } [ e A( t 1 s) S 2 e A T ( t 2 s) ] j 1 , j 2 ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGQbWaaSbaaeaacaaIXaaabeaacaaISaGaamOAamaaBaaa baGaaGOmaaqabaaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaigdaae qaaOGaaGilaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGyp amaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaciyBai aacMgacaGGUbGaaG4EaiaadshadaWgaaqaaiaaigdaaeqaaiaaiYca caWG0bWaaSbaaeaacaaIYaaabeaacaaI9baaniabgUIiYdGccaaIBb GaamyzamaaCaaaleqabaGaamyqaiaaiIcacaWG0bWaaSbaaeaacaaI XaaabeaacqGHsislcaWGZbGaaGykaaaakiaadofadaahaaWcbeqaai aaikdaaaGccaWGLbWaaWbaaSqabeaacaWGbbWaaWbaaeqabaGaamiv aaaacaaIOaGaamiDamaaBaaabaGaaGOmaaqabaGaeyOeI0Iaam4Cai aaiMcaaaGccaaIDbWaaSbaaSqaaiaadQgadaWgaaqaaiaaigdaaeqa aiaaiYcacaWGQbWaaSbaaeaacaaIYaaabeaaaeqaaOGaamizaiaado hacaaIUaaaaa@6937@  (2.6)

Принимая во внимание (2.4) и затем сравнивая с формулой (2.3), определяющей вид характеристического функционала гауссовского процесса, убеждаемся в справедливости утверждения теоремы, так как по построению ядро (2.6) является корреляционной функцией.

Следствие 2.1. Осцилляторный случайный процесс x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUabm iEayaaiaGaaGikaiaadshacaaIPaaaaa@3B16@ , t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  является гауссовским.

Доказательство. Процесс x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUabm iEayaaiaGaaGikaiaadshacaaIPaaaaa@3B16@ , t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@  является проекцией гауссовского векторнозначного процесса x~(t), t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacqGHQms8aaa@3FE2@ .

Предположим, что носитель функций u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacaWG0bGaaGykaaaa@3951@  в формуле (2.3) совпадает с [ t 0 ,t] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaai2faaaa@3B57@ . Перейдем в этой формуле к пределу на классе непрерывных на [ t 0 ,t] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDaiaai2faaaa@3B57@  функций таким образом, что u(s)δ(st)q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyDaiaaiI cacaWGZbGaaGykaiabgkziUkabes7aKjaaiIcacaWGZbGaeyOeI0Ia amiDaiaaiMcacaqIXbaaaa@4221@  с фиксированным вектором q R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyCaiabgI GiolaadkfadaahaaWcbeqaaiaaikdaaaaaaa@3A33@ . В этом случае формула (2.3) принимает вид

f(¯q,t;z0,t0)Eexp(i(q,z~(t)))=exp(i(q,e(tt0)Az0)12(C(t,t)q,q)), (2.7)

где матрица-функция C(t,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bGaaGilaiaadshacaaIPaaaaa@3AC8@ , согласно (2.6), определяется формулой

C(t,t)= t 0 t e A(ts) S 2 e A T (ts) ds= 0 t t 0 e sA S 2 e s A T ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bGaaGilaiaadshacaaIPaGaaGypamaapehabeWcbaGaamiD amaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcqGHRiI8aOGaamyzam aaCaaaleqabaGaamyqaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMca aaGccaWGtbWaaWbaaSqabeaacaaIYaaaaOGaamyzamaaCaaaleqaba GaamyqamaaCaaabeqaaiaadsfaaaGaaGikaiaadshacqGHsislcaWG ZbGaaGykaaaakiaadsgacaWGZbGaaGypamaapehabeWcbaGaaGimaa qaaiaadshacqGHsislcaWG0bWaaSbaaeaacaaIWaaabeaaa0Gaey4k IipakiaadwgadaahaaWcbeqaaiaadohacaWGbbaaaOGaam4uamaaCa aaleqabaGaaGOmaaaakiaadwgadaahaaWcbeqaaiaadohacaWGbbWa aWbaaeqabaGaamivaaaaaaGccaWGKbGaam4Caiaai6caaaa@6497@  (2.8)

Справедливо следующее утверждение.

Лемма 2.1. Функция f ¯ (q,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaara GaaGikaiaajghacaaISaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa aaaa@405D@ , q R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyCaiabgI GiolaadkfadaahaaWcbeqaaiaaikdaaaaaaa@3A33@  удовлетворяет условию

f ¯ (q,t; x 0 , t 0 ) t t 0 exp(i(q, x 0 )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaara GaaGikaiaajghacaaISaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa Waa4akaSqabeaacaaMe8UaamiDaiabgkziUkaadshadaWgaaqaaiaa icdaaeqaaiaaysW7aOGaayPKHaGaciyzaiaacIhacaGGWbGaaGikai aadMgacaaIOaGaaKyCaiaaiYcacaqI4bWaaSbaaSqaaiaaicdaaeqa aOGaaGykaiaaiMcaaaa@5405@

и подчинена дифференциальному уравнению

t f ¯ (q,t; x 0 , t 0 )= q,A q f ¯ (q,t; x 0 , t 0 ) 1 2 ( S 2 q,q) f ¯ (q,t; x 0 , t 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiqadAgagaqeaiaaiIcacaqIXbGa aGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dadaqadaqa aiaajghacaaISaGaamyqamaalaaabaGaeyOaIylabaGaeyOaIyRaaK yCaaaaceWGMbGbaebacaaIOaGaaKyCaiaaiYcacaWG0bGaaG4oaiaa jIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaaca aIWaaabeaakiaaiMcaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaa igdaaeaacaaIYaaaaiaaiIcacaWGtbWaaWbaaSqabeaacaaIYaaaaO GaaKyCaiaaiYcacaqIXbGaaGykaiqadAgagaqeaiaaiIcacaqIXbGa aGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai6caaaa@6AB0@  (2.9)

Доказательство. Заметим, что C(t,t) t t 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bGaaGilaiaadshacaaIPaWaa4akaSqabeaacaaMe8UaamiD aiabgkziUkaadshadaWgaaqaaiaaicdaaeqaaiaaysW7aOGaayPKHa GaaGimaaaa@44F2@  согласно (2.8) и, следовательно,

f ¯ (q,t; x 0 , t 0 ) t t 0 exp(i(q, x 0 )). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaara GaaGikaiaajghacaaISaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa Waa4akaSqabeaacaaMe8UaamiDaiabgkziUkaadshadaWgaaqaaiaa icdaaeqaaiaaysW7aOGaayPKHaGaciyzaiaacIhacaGGWbGaaGikai aadMgacaaIOaGaaKyCaiaaiYcacaqI4bWaaSbaaSqaaiaaicdaaeqa aOGaaGykaiaaiMcacaaIUaaaaa@54BD@

Из (2.7) следует, что производная по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  функции f ¯ (q,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaara GaaGikaiaajghacaaISaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa aaaa@405D@  имеет вид

t f ¯ (q,t; x 0 , t 0 )=[i(q,A e (t t 0 )A x 0 ) 1 2 ( t C(t,t)q,q)] f ¯ (q,t; x 0 , t 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiqadAgagaqeaiaaiIcacaqIXbGa aGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaaIBbGa amyAaiaaiIcacaqIXbGaaGilaiaadgeacaWGLbWaaWbaaSqabeaaca aIOaGaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMca caWGbbaaaOGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiIcadaWcaaqaaiabgkGi 2cqaaiabgkGi2kaadshaaaGaam4qaiaaiIcacaWG0bGaaGilaiaads hacaaIPaGaaKyCaiaaiYcacaqIXbGaaGykaiaai2faceWGMbGbaeba caaIOaGaaKyCaiaaiYcacaWG0bGaaG4oaiaajIhadaWgaaWcbaGaaG imaaqabaGccaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMca caaIUaaaaa@6EDC@  (2.10)

С другой стороны, вычислим градиент в пространстве R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@  векторов q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyCaaaa@36EF@ :

q f ¯ (q,t; x 0 , t 0 )=[i e (t t 0 )A x 0 C(t,t)q] f ¯ (q,t; x 0 , t 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaqIXbaaaiqadAgagaqeaiaaiIcacaqIXbGa aGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaaIBbGa amyAaiaadwgadaahaaWcbeqaaiaaiIcacaWG0bGaeyOeI0IaamiDam aaBaaabaGaaGimaaqabaGaaGykaiaadgeaaaGccaqI4bWaaSbaaSqa aiaaicdaaeqaaOGaeyOeI0Iaam4qaiaaiIcacaWG0bGaaGilaiaads hacaaIPaGaaKyCaiaai2faceWGMbGbaebacaaIOaGaaKyCaiaaiYca caWG0bGaaG4oaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaIUaaaaa@628F@

Тогда, симметризовав матрицу, определяющую квадратичную форму

(AC(t,t)q,q)= 1 2 ([AC(t,t)+C(t,t) A T ]q,q), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadg eacaWGdbGaaGikaiaadshacaaISaGaamiDaiaaiMcacaqIXbGaaGil aiaajghacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaG ikaiaaiUfacaWGbbGaam4qaiaaiIcacaWG0bGaaGilaiaadshacaaI PaGaey4kaSIaam4qaiaaiIcacaWG0bGaaGilaiaadshacaaIPaGaam yqamaaCaaaleqabaGaamivaaaakiaai2facaqIXbGaaGilaiaajgha caaIPaGaaGilaaaa@55AC@

получаем

(q,A q ) f ¯ (q,t; x 0 , t 0 )=[i(q,A e (t t 0 )A x 0 ) 1 2 ([AC(t,t)+C(t,t) A T ]q,q)] f ¯ (q,t; x 0 , t 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaajg hacaaISaGaamyqaiaayIW7daWcaaqaaiabgkGi2cqaaiabgkGi2kaa jghaaaGaaGykaiqadAgagaqeaiaaiIcacaqIXbGaaGilaiaadshaca aI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGykaiaai2dacaaIBbGaamyAaiaaiIcaca qIXbGaaGilaiaadgeacaWGLbWaaWbaaSqabeaacaaIOaGaamiDaiab gkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMcacaWGbbaaaOGaaK iEamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHsisldaWcaaqaaiaa igdaaeaacaaIYaaaaiaaiIcacaaIBbGaamyqaiaadoeacaaIOaGaam iDaiaaiYcacaWG0bGaaGykaiabgUcaRiaadoeacaaIOaGaamiDaiaa iYcacaWG0bGaaGykaiaadgeadaahaaWcbeqaaiaadsfaaaGccaaIDb GaaKyCaiaaiYcacaqIXbGaaGykaiaai2faceWGMbGbaebacaaIOaGa aKyCaiaaiYcacaWG0bGaaG4oaiaajIhadaWgaaWcbaGaaGimaaqaba GccaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaIUaaa aa@7A97@  (2.11)

Так как, согласно (2.8),

AC(t,t)+C(t,t) A T = 0 t t 0 ( d ds e sA S 2 e s A T )ds= e A(t t 0 ) S 2 e A T (t t 0 ) S 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado eacaaIOaGaamiDaiaaiYcacaWG0bGaaGykaiabgUcaRiaadoeacaaI OaGaamiDaiaaiYcacaWG0bGaaGykaiaadgeadaahaaWcbeqaaiaads faaaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiDaiabgkHiTiaa dshadaWgaaqaaiaaicdaaeqaaaqdcqGHRiI8aOGaaGikamaalaaaba GaamizaaqaaiaadsgacaWGZbaaaiaayIW7caWGLbWaaWbaaSqabeaa caWGZbGaamyqaaaakiaadofadaahaaWcbeqaaiaaikdaaaGccaWGLb WaaWbaaSqabeaacaWGZbGaamyqamaaCaaabeqaaiaadsfaaaaaaOGa aGykaiaadsgacaWGZbGaaGypaiaadwgadaahaaWcbeqaaiaadgeaca aIOaGaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMca aaGccaWGtbWaaWbaaSqabeaacaaIYaaaaOGaamyzamaaCaaaleqaba GaamyqamaaCaaabeqaaiaadsfaaaGaaGikaiaadshacqGHsislcaWG 0bWaaSbaaeaacaaIWaaabeaacaaIPaaaaOGaeyOeI0Iaam4uamaaCa aaleqabaGaaGOmaaaakiaaiYcaaaa@7006@

t C(t,t)= e A(t t 0 ) S 2 e A T (t t 0 ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaadoeacaaIOaGaamiDaiaaiYca caWG0bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacaWGbbGaaGikai aadshacqGHsislcaWG0bWaaSbaaeaacaaIWaaabeaacaaIPaaaaOGa am4uamaaCaaaleqabaGaaGOmaaaakiaadwgadaahaaWcbeqaaiaadg eadaahaaqabeaacaWGubaaaiaaiIcacaWG0bGaeyOeI0IaamiDamaa BaaabaGaaGimaaqabaGaaGykaaaakiaaiYcaaaa@50EC@

то, сравнивая (2.11) с (2.10), приходим к (2.7).

Введем плотность распределения условных вероятностей перехода f(x,t;x0,t0)=Eδ(xx~(t)) для случайного процесса t, t[ t 0 ,)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacaaI9baaaa@3F1F@  из точки x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEamaaBa aaleaacaaIWaaabeaaaaa@37DC@  в момент времени t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaaaaa@37D2@  в точку x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaaaa@36F6@  в момент времени t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ . Здесь усредняется двумерная δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@3798@  -функция на R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@ . Записывая представление этой δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@3798@  -функций в виде интеграла Фурье

δ(x)= 1 (2π) 2 R 2 exp(i(q,x))dq, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ikaiaajIhacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaiIcacaaI YaGaeqiWdaNaaGykamaaCaaaleqabaGaaGOmaaaaaaGccaaMi8+aa8 quaeqaleaacaWGsbWaaWbaaeqabaGaaGOmaaaaaeqaniabgUIiYdGc ciGGLbGaaiiEaiaacchacaaIOaGaeyOeI0IaamyAaiaaiIcacaqIXb GaaGilaiaajIhacaaIPaGaaGykaiaadsgacaqIXbGaaGilaaaa@52CE@

находим, что образ Фурье по переменной x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaaaa@36F6@  для плотности f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@  равен

R2ei(q,x)f(x,t;x0,t0)dx=Eexp(i(q,x~(t)))=f(¯q,t;x0,t0).

Следовательно, эта плотность, согласно (2.7), восстанавливается по образу следующим образом:

f(x,t; x 0 , t 0 )= 1 (2π) 2 R 2 exp(i(q, e (t t 0 )A x 0 x) 1 2 (C(t,t)q,q))dq. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2 dadaWcaaqaaiaaigdaaeaacaaIOaGaaGOmaiabec8aWjaaiMcadaah aaWcbeqaaiaaikdaaaaaaOGaaGjcVpaapefabeWcbaGaamOuamaaCa aabeqaaiaaikdaaaaabeqdcqGHRiI8aOGaciyzaiaacIhacaGGWbGa aGikaiaadMgacaaIOaGaaKyCaiaaiYcacaWGLbWaaWbaaSqabeaaca aIOaGaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMca caWGbbaaaOGaaKiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaajI hacaaIPaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIOaGa am4qaiaaiIcacaWG0bGaaGilaiaadshacaaIPaGaaKyCaiaaiYcaca qIXbGaaGykaiaaiMcacaWGKbGaaKyCaiaai6caaaa@6D71@  (2.12)

Теорема 2.2. Плотность условных вероятностей перехода f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@  является решением параболического дифференциального уравнения

t f(x,t; x 0 , t 0 )=( x ,Ax)f(x,t; x 0 , t 0 )+ 1 2 ( x , S 2 x )f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaadAgacaaIOaGaaKiEaiaaiYca caWG0bGaaG4oaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aGaaGikaiabgkHi TmaalaaabaGaeyOaIylabaGaeyOaIyRaaKiEaaaacaaISaGaamyqai aajIhacaaIPaGaamOzaiaaiIcacaqI4bGaaGilaiaadshacaaI7aGa aKiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqaai aaicdaaeqaaOGaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda aaGaaGikamaalaaabaGaeyOaIylabaGaeyOaIyRaaKiEaaaacaaISa Gaam4uamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaeyOaIylabaGa eyOaIyRaaKiEaaaacaaIPaGaamOzaiaaiIcacaqI4bGaaGilaiaads hacaaI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@7057@  (2.13)

 с начальным условием

lim t t 0 f(x,t; x 0 , t 0 )=δ(x x 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaamiDamaaBaaabaGaaGimaaqabaaabeGcbaGa ciiBaiaacMgacaGGTbaaaiaadAgacaaIOaGaaKiEaiaaiYcacaWG0b GaaG4oaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaa BaaaleaacaaIWaaabeaakiaaiMcacaaI9aGaeqiTdqMaaGikaiaajI hacqGHsislcaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai6ca aaa@50C6@

Доказательство. Тот факт, что f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@  удовлетворяет указанному начальному условию, непосредственно следует из (2.12) при учете того, что f ¯ (q,t; x 0 , t 0 )exp(i(q, x 0 )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaara GaaGikaiaajghacaaISaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPa GaeyOKH4QaciyzaiaacIhacaGGWbGaaGikaiaadMgacaaIOaGaaKyC aiaaiYcacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaaiMcaaa a@4C82@  при t t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkaadshadaWgaaWcbaGaaGimaaqabaaaaa@3AB8@ , согласно утверждению леммы.

Продифференцируем по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  плотность f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@  в (2.12) и учтем, что функция f(q,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqIXbGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@4045@  удовлетворяет уравнению (2.9):

t f(x,t; x 0 , t 0 )= 1 (2π) 2 R 2 exp(i(q,x)) t f(q,t; x 0 , t 0 )dq= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaadAgacaaIOaGaaKiEaiaaiYca caWG0bGaaG4oaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aWaaSaaaeaacaaI XaaabaGaaGikaiaaikdacqaHapaCcaaIPaWaaWbaaSqabeaacaaIYa aaaaaakmaapefabeWcbaGaamOuamaaCaaabeqaaiaaikdaaaaabeqd cqGHRiI8aOGaciyzaiaacIhacaGGWbGaaGikaiabgkHiTiaadMgaca aIOaGaaKyCaiaaiYcacaqI4bGaaGykaiaaiMcacqGHflY1daWcaaqa aiabgkGi2cqaaiabgkGi2kaadshaaaGaamOzaiaaiIcacaqIXbGaaG ilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiYca caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaadsgacaqIXbGaaG ypaaaa@6BE0@

= 1 (2π) 2 R 2 exp(i(q,x))((q,A q f ¯ (q,t; x 0 , t 0 )) 1 2 ( S 2 q,q) f ¯ (q,t; x 0 , t 0 ))dq. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaiIcacaaIYaGaeqiWdaNaaGykamaaCaaaleqa baGaaGOmaaaaaaGcdaWdrbqabSqaaiaadkfadaahaaqabeaacaaIYa aaaaqab0Gaey4kIipakiGacwgacaGG4bGaaiiCaiaaiIcacqGHsisl caWGPbGaaGikaiaajghacaaISaGaaKiEaiaaiMcacaaIPaGaaGikai aaiIcacaqIXbGaaGilaiaadgeadaWcaaqaaiabgkGi2cqaaiabgkGi 2kaajghaaaGabmOzayaaraGaaGikaiaajghacaaISaGaamiDaiaaiU dacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshadaWgaaWc baGaaGimaaqabaGccaaIPaGaaGykaiabgkHiTmaalaaabaGaaGymaa qaaiaaikdaaaGaaGikaiaadofadaahaaWcbeqaaiaaikdaaaGccaqI XbGaaGilaiaajghacaaIPaGabmOzayaaraGaaGikaiaajghacaaISa GaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGykaiaadsgacaqIXb GaaGOlaaaa@7372@  (2.14)

Первое слагаемое в (2.14) преобразуем следующим образом:

1 (2π) 2 R 2 exp(i(q,x))(q,A q f ¯ (q,t; x 0 , t 0 )) f ¯ (q,t; x 0 , t 0 )dq= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGikaiaaikdacqaHapaCcaaIPaWaaWbaaSqabeaacaaI YaaaaaaakiaayIW7daWdrbqabSqaaiaadkfadaahaaqabeaacaaIYa aaaaqab0Gaey4kIipakiGacwgacaGG4bGaaiiCaiaaiIcacqGHsisl caWGPbGaaGikaiaajghacaaISaGaaKiEaiaaiMcacaaIPaGaaGikai aajghacaaISaGaamyqamaalaaabaGaeyOaIylabaGaeyOaIyRaaKyC aaaaceWGMbGbaebacaaIOaGaaKyCaiaaiYcacaWG0bGaaG4oaiaajI hadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaI WaaabeaakiaaiMcacaaIPaGabmOzayaaraGaaGikaiaajghacaaISa GaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaa dshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaamizaiaajghacaaI9a aaaa@6A94@

= i (2π) 2 x j A jk R 2 exp(i(q,x)) q k f ¯ (q,t; x 0 , t 0 ))dq. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaamyAaaqaaiaaiIcacaaIYaGaeqiWdaNaaGykamaaCaaaleqa baGaaGOmaaaaaaGccaaMi8+aaSaaaeaacqGHciITaeaacqGHciITca WG4bWaaSbaaSqaaiaadQgaaeqaaaaakiaayIW7caWGbbWaaSbaaSqa aiaadQgacaWGRbaabeaakiaayIW7daWdrbqabSqaaiaadkfadaahaa qabeaacaaIYaaaaaqab0Gaey4kIipakiGacwgacaGG4bGaaiiCaiaa iIcacqGHsislcaWGPbGaaGikaiaajghacaaISaGaaKiEaiaaiMcaca aIPaWaaSaaaeaacqGHciITaeaacqGHciITcaWGXbWaaSbaaSqaaiaa dUgaaeqaaaaakiqadAgagaqeaiaaiIcacaqIXbGaaGilaiaadshaca aI7aGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGykaiaaiMcacaWGKbGaaKyCaiaai6caaa a@6A06@  (2.15)

Преобразование последнего интеграла по частям, с учетом стремления к нулю интеграла по поверхности шара в q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyCaaaa@36EF@  -пространстве с неограниченно возрастающим радиусом, приводит его к выражению

( x ,Ax)f(x,t; x 0 , t 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG ikamaalaaabaGaeyOaIylabaGaeyOaIyRaaKiEaaaacaaISaGaamyq aiaajIhacaaIPaGaamOzaiaaiIcacaqI4bGaaGilaiaadshacaaI7a GaaKiEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqa aiaaicdaaeqaaOGaaGykaiaai6caaaa@49B4@

Интеграл же, соответствующий второму слагаемому в (2.14), преобразуется следующим образом:

1 (2π) 2 R 2 exp(i(q,x))( S 2 q,q) f ¯ (q,t; x 0 , t 0 )dq= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGikaiaaikdacqaHapaCcaaIPaWaaWbaaSqa beaacaaIYaaaaaaakiaayIW7daWdrbqabSqaaiaadkfadaahaaqabe aacaaIYaaaaaqab0Gaey4kIipakiGacwgacaGG4bGaaiiCaiaaiIca cqGHsislcaWGPbGaaGikaiaajghacaaISaGaaKiEaiaaiMcacaaIPa GaaGikaiaadofadaahaaWcbeqaaiaaikdaaaGccaqIXbGaaGilaiaa jghacaaIPaGabmOzayaaraGaaGikaiaajghacaaISaGaamiDaiaaiU dacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshadaWgaaWc baGaaGimaaqabaGccaaIPaGaamizaiaajghacaaI9aaaaa@5F40@

= (i) (2π) 2 ( x , S 2 R 2 qexp(i(q,x)) f ¯ (q,t; x 0 , t 0 )dq)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGikaiabgkHiTiaadMgacaaIPaaabaGaaGikaiaaikdacqaH apaCcaaIPaWaaWbaaSqabeaacaaIYaaaaaaakiaayIW7caaIOaWaaS aaaeaacqGHciITaeaacqGHciITcaqI4baaaiaaiYcacaWGtbWaaWba aSqabeaacaaIYaaaaOWaa8quaeqaleaacaWGsbWaaWbaaeqabaGaaG OmaaaaaeqaniabgUIiYdGccaqIXbGaciyzaiaacIhacaGGWbGaaGik aiabgkHiTiaadMgacaaIOaGaaKyCaiaaiYcacaqI4bGaaGykaiaaiM caceWGMbGbaebacaaIOaGaaKyCaiaaiYcacaWG0bGaaG4oaiaajIha daWgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiMcacaWGKbGaaKyCaiaaiMcacaaI9aaaaa@6482@

= 1 (2π) 2 ( x , S 2 x ) R 2 exp(i(q,x)) f ¯ (q,t; x 0 , t 0 )dq=( x , S 2 x )f(x,t; x 0 , t 0 )dq. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaiIcacaaIYaGaeqiWdaNaaGykamaaCaaaleqa baGaaGOmaaaaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITca qI4baaaiaaiYcacaWGtbWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaa cqGHciITaeaacqGHciITcaqI4baaaiaaiMcadaWdrbqabSqaaiaadk fadaahaaqabeaacaaIYaaaaaqab0Gaey4kIipakiGacwgacaGG4bGa aiiCaiaaiIcacqGHsislcaWGPbGaaGikaiaajghacaaISaGaaKiEai aaiMcacaaIPaGabmOzayaaraGaaGikaiaajghacaaISaGaamiDaiaa iUdacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshadaWgaa WcbaGaaGimaaqabaGccaaIPaGaamizaiaajghacaaI9aGaaGikamaa laaabaGaeyOaIylabaGaeyOaIyRaaKiEaaaacaaISaGaam4uamaaCa aaleqabaGaaGOmaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaaKiE aaaacaaIPaGaamOzaiaaiIcacaqI4bGaaGilaiaadshacaaI7aGaaK iEamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGykaiaadsgacaqIXbGaaGOlaaaa@7BE9@

Подставив это выражение вместе с выражением (2.15) в (2.14), получаем уравнение (2.13).

Следствие 2.2. Гауссовский процесс {x~(t), t[ t 0 ,)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacaaI9baaaa@3F1F@ , является марковским процессом, обладающим непрерывными с вероятностью 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@  траекториями.

Доказательство. Случайный процесс {x~(t), t[ t 0 ,)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcacaaI9baaaa@3F1F@  является марковским, так как плотность f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@  условных вероятностей перехода удовлетворяет параболическому уравнению (2.13), которое является так называемым прямым уравнением Колмогорова для марковских случайных процессов с непрерывными траекториями.

3. Стационарный осцилляторный случайный процесс. Вычислим плотность f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@ , определяемую (2.12).

Теорема 3.1. Плотность f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@  условных вероятностей перехода случайного гауссовского марковского процесса {x~(t);t[t0,)} определяется формулой

f(x,t; x 0 , t 0 )=[(2π ) 2 detC(t,t )] 1/2 exp[ 1 2 ( C 1 (t,t)[x e (t t 0 )A x 0 ],[x e (t t 0 )A x 0 ])]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2 dacaaIBbGaaGikaiaaikdacqaHapaCcaaIPaWaaWbaaSqabeaacaaI YaaaaOGaciizaiaacwgacaGG0bGaam4qaiaaiIcacaWG0bGaaGilai aadshacaaIPaGaaGyxamaaCaaaleqabaGaeyOeI0IaaGymaiaai+ca caaIYaaaaOGaciyzaiaacIhacaGGWbGaaG4waiabgkHiTmaalaaaba GaaGymaaqaaiaaikdaaaGaaGikaiaadoeadaahaaWcbeqaaiabgkHi TiaaigdaaaGccaaIOaGaamiDaiaaiYcacaWG0bGaaGykaiaaiUfaca qI4bGaeyOeI0IaamyzamaaCaaaleqabaGaaGikaiaadshacqGHsisl caWG0bWaaSbaaeaacaaIWaaabeaacaaIPaGaamyqaaaakiaajIhada WgaaWcbaGaaGimaaqabaGccaaIDbGaaGilaiaaiUfacaqI4bGaeyOe I0IaamyzamaaCaaaleqabaGaaGikaiaadshacqGHsislcaWG0bWaaS baaeaacaaIWaaabeaacaaIPaGaamyqaaaakiaajIhadaWgaaWcbaGa aGimaaqabaGccaaIDbGaaGykaiaai2facaaIUaaaaa@7CB0@  (3.1)

Доказательство. Так как S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  симметричная неотрицательно определенная матрица, то квадратичная форма

( e sA S 2 e s A T x,x)=( S 2 [ e s A T x],[ e s A T x])0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw gadaahaaWcbeqaaiaadohacaWGbbaaaOGaam4uamaaCaaaleqabaGa aGOmaaaakiaadwgadaahaaWcbeqaaiaadohacaWGbbWaaWbaaeqaba GaamivaaaaaaGccaqI4bGaaGilaiaajIhacaaIPaGaaGypaiaaiIca caWGtbWaaWbaaSqabeaacaaIYaaaaOGaaG4waiaadwgadaahaaWcbe qaaiaadohacaWGbbWaaWbaaeqabaGaamivaaaaaaGccaqI4bGaaGyx aiaaiYcacaaIBbGaamyzamaaCaaaleqabaGaam4Caiaadgeadaahaa qabeaacaWGubaaaaaakiaajIhacaaIDbGaaGykaiabgwMiZkaaicda aaa@5717@

неотрицательна. Более того, эта форма положительно определена, так как, в противном случае, вектор e s A T x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaam4CaiaadgeadaahaaqabeaacaWGubaaaaaakiaajIha aaa@3AD0@  в R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@  должен быть собственным для матрицы S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@  с нулевым собственным значением, т.е. e s A T x=c1,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaam4CaiaadgeadaahaaqabeaacaWGubaaaaaakiaajIha caaI9aGaam4yaiabgMYiHlaaigdacaaISaGaaGimaiabgQYiXdaa@422D@ . Так как этот вектор не является собственным для матрицы A T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamivaaaaaaa@37BF@  при ω0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaey iyIKRaaGimaaaa@3A41@ , это невозможно. Тогда симметричная матрица e sA S 2 e s A T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaam4CaiaadgeaaaGccaWGtbWaaWbaaSqabeaacaaIYaaa aOGaamyzamaaCaaaleqabaGaam4CaiaadgeadaahaaqabeaacaWGub aaaaaaaaa@3E6D@  положительно определена. Следовательно, согласно формуле (2.8) для любого x R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaiabgI GiolaadkfadaahaaWcbeqaaiaaikdaaaaaaa@3A3A@  выполняется равенство

(C(t,t)x,x)= [ 0 t t 0 e sA S 2 e s A T ds]x,x = 0 t t 0 ( e sA S 2 e s A T x,x)ds>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado eacaaIOaGaamiDaiaaiYcacaWG0bGaaGykaiaajIhacaaISaGaaKiE aiaaiMcacaaI9aWaaeWaaeaacaaIBbWaa8qCaeqaleaacaaIWaaaba GaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaaqdcqGHRiI8 aOGaamyzamaaCaaaleqabaGaam4CaiaadgeaaaGccaWGtbWaaWbaaS qabeaacaaIYaaaaOGaamyzamaaCaaaleqabaGaam4Caiaadgeadaah aaqabeaacaWGubaaaaaakiaayIW7caWGKbGaam4CaiaayIW7caaIDb GaaKiEaiaaiYcacaqI4baacaGLOaGaayzkaaGaaGypamaapehabeWc baGaaGimaaqaaiaadshacqGHsislcaWG0bWaaSbaaeaacaaIWaaabe aaa0Gaey4kIipakiaaiIcacaWGLbWaaWbaaSqabeaacaWGZbGaamyq aaaakiaadofadaahaaWcbeqaaiaaikdaaaGccaWGLbWaaWbaaSqabe aacaWGZbGaamyqamaaCaaabeqaaiaadsfaaaaaaOGaaKiEaiaaiYca caqI4bGaaGykaiaayIW7caWGKbGaam4Caiaai6dacaaIWaGaaGilaa aa@742E@

т.е. симметричная матрица C(t,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bGaaGilaiaadshacaaIPaaaaa@3AC8@  положительно определена и, следовательно, невырождена при любом t[ t 0 ,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabg6Hi LkaaiMcaaaa@3E18@ . Ввиду невырожденности матрицы C(t,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bGaaGilaiaadshacaaIPaaaaa@3AC8@ , существует обратная матрица C 1 (t,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG0bGaaGilaiaadsha caaIPaaaaa@3CA7@ , и поэтому интеграл в (2.12) конечен. Он вычисляется явным образом, что дает формулу (3.1), так как

R n exp( 1 2 (C(t,t)q,q))dq= (2π) n/2 [detC(t,t)] 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8quaeqale aacaWGsbWaaWbaaeqabaGaamOBaaaaaeqaniabgUIiYdGcciGGLbGa aiiEaiaacchacaaIOaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaa aacaaIOaGaam4qaiaaiIcacaWG0bGaaGilaiaadshacaaIPaGaaKyC aiaaiYcacaqIXbGaaGykaiaaiMcacaWGKbGaaKyCaiaai2dadaWcaa qaaiaaiIcacaaIYaGaeqiWdaNaaGykamaaCaaaleqabaGaamOBaiaa i+cacaaIYaaaaaGcbaGaaG4waiGacsgacaGGLbGaaiiDaiaadoeaca aIOaGaamiDaiaaiYcacaWG0bGaaGykaiaai2fadaahaaWcbeqaaiaa igdacaaIVaGaaGOmaaaaaaGccaaIUaaaaa@5F94@

Введем в рассмотрение стандартные (2×2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaik dacqGHxdaTcaaIYaGaaGykaaaa@3AE7@  -матрицы Паули

T (1) = 0 1 1 0 , T (2) = 0 i i 0 , T (3) = 1 0 0 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGypamaabmaabaqbaeqa biGaaaqaaiaaicdaaeaacaaIXaaabaGaaGymaaqaaiaaicdaaaaaca GLOaGaayzkaaGaaGilaiaaywW7caWGubWaaWbaaSqabeaacaaIOaGa aGOmaiaaiMcaaaGccaaI9aWaaeWaaeaafaqabeGacaaabaGaaGimaa qaaiabgkHiTiaadMgaaeaacaWGPbaabaGaaGimaaaaaiaawIcacaGL PaaacaaISaGaaGzbVlaadsfadaahaaWcbeqaaiaaiIcacaaIZaGaaG ykaaaakiaai2dadaqadaqaauaabeqaciaaaeaacaaIXaaabaGaaGim aaqaaiaaicdaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaiaaiY caaaa@56E2@

набор которых вместе в единичной матрицей E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@36BD@  образует базис в пространстве (2×2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaik dacqGHxdaTcaaIYaGaaGykaaaa@3AE7@  -матриц. Разложения матриц A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  и S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@  по этому базису имеют вид

A=β(E+ T (3) )iω T (2) ,S= σ 1/2 2ω (E+ T (3) ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaai2 dacqGHsislcqaHYoGycaaIOaGaamyraiabgUcaRiaadsfadaahaaWc beqaaiaaiIcacaaIZaGaaGykaaaakiaaiMcacqGHsislcaWGPbGaeq yYdCNaamivamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGil aiaaywW7caWGtbGaaGypamaalaaabaGaeq4Wdm3aaWbaaSqabeaaca aIXaGaaG4laiaaikdaaaaakeaacaaIYaGaeqyYdChaaiaayIW7caaI OaGaamyraiabgUcaRiaadsfadaahaaWcbeqaaiaaiIcacaaIZaGaaG ykaaaakiaaiMcacaaIUaaaaa@5A5C@  (3.2)

В дальнейшем для расчетов нам потребуется формула для разложения по базису E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@36BD@ , T (l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaadYgacaaIPaaaaaaa@394F@ , l=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maaaa@3B4B@ , экспоненты от произвольной (2×2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaik dacqGHxdaTcaaIYaGaaGykaaaa@3AE7@  -матрицы M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@ :

exp(Mt)= e M 0 t (ch(Mt)E+ M 1 l=1 3 M l T (l) sh(Mt)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacI hacaGGWbGaaGikaiaad2eacaWG0bGaaGykaiaai2dacaWGLbWaaWba aSqabeaacaWGnbWaaSbaaeaacaaIWaaabeaacaWG0baaaOGaaGikai GacogacaGGObGaaGikaiaad2eacaWG0bGaaGykaiaayIW7caWGfbGa ey4kaSIaamytamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaayIW7da aeWbqabSqaaiaadYgacaaI9aGaaGymaaqaaiaaiodaa0GaeyyeIuoa kiaad2eadaWgaaWcbaGaamiBaaqabaGccaWGubWaaWbaaSqabeaaca aIOaGaamiBaiaaiMcaaaGcciGGZbGaaiiAaiaaiIcacaWGnbGaamiD aiaaiMcacaaIPaGaaGilaaaa@5F1C@ (3.3)

где M 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIWaaabeaaaaa@37AB@ , M l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGSbaabeaaaaa@37E2@ , l=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maaaa@3B4B@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  коэффициенты разложения матрицы M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@  по базису и

M ( l=1 3 M l 2 ) 1/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgg Mi6kaaiIcadaaeWbqabSqaaiaadYgacaaI9aGaaGymaaqaaiaaioda a0GaeyyeIuoakiaad2eadaqhaaWcbaGaamiBaaqaaiaaikdaaaGcca aIPaWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaaaaa@4483@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  ее характеристика. Справедливость формулы (3.3) проверяется дифференцированием по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ . Так как экспонента exp(Mt) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacI hacaGGWbGaaGikaiaad2eacaWG0bGaaGykaaaa@3BFE@  удовлетворяет дифференциальному уравнению

dexp(Mt) dt =Mexp(Mt), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaciyzaiaacIhacaGGWbGaaGikaiaad2eacaWG0bGaaGykaaqa aiaadsgacaWG0baaaiaai2dacaWGnbGaciyzaiaacIhacaGGWbGaaG ikaiaad2eacaWG0bGaaGykaiaaiYcaaaa@4733@

которое, вместе с ее значением E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@36BD@  при t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaaIWaaaaa@386D@ , определяет однозначным образом эту матрицу-функцию, то, используя известные коммутационные соотношения матриц Паули

T (j) T (k) + T (k) T (j) =2 δ jk E, T (j) T (k) =i l ε jkl T (l) ,j,k=1,2,3, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaadQgacaaIPaaaaOGaamivamaaCaaaleqabaGa aGikaiaadUgacaaIPaaaaOGaey4kaSIaamivamaaCaaaleqabaGaaG ikaiaadUgacaaIPaaaaOGaamivamaaCaaaleqabaGaaGikaiaadQga caaIPaaaaOGaaGypaiaaikdacqaH0oazdaWgaaWcbaGaamOAaiaadU gaaeqaaOGaamyraiaaiYcacaaMf8UaamivamaaCaaaleqabaGaaGik aiaadQgacaaIPaaaaOGaamivamaaCaaaleqabaGaaGikaiaadUgaca aIPaaaaOGaaGypaiaadMgadaaeqbqabSqaaiaadYgaaeqaniabggHi LdGccqaH1oqzdaWgaaWcbaGaamOAaiaadUgacaWGSbaabeaakiaads fadaahaaWcbeqaaiaaiIcacaWGSbGaaGykaaaakiaaiYcacaaMf8Ua amOAaiaaiYcacaWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaca aIZaGaaGilaaaa@6A58@  (3.4)

где ε jkl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadQgacaWGRbGaamiBaaqabaaaaa@3A96@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  символ Леви-Чивиты, получаем тождество. Заметим, что формула (3.3) верна также в случае, если M=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai2 dacaaIWaaaaa@3846@ , в смысле предельного перехода в ней M0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgk ziUkaaicdaaaa@396C@ . Кроме того, заметим, что для любой (2×2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaik dacqGHxdaTcaaIYaGaaGykaaaa@3AE7@  -матрицы M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@ , определяемой коэффициентами разложения M 0 , M l ,l=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam ytamaaBaaaleaacaaIWaaabeaakiaaiYcacaWGnbWaaSbaaSqaaiaa dYgaaeqaaOGaaGilaiaadYgacaaI9aGaaGymaiaaiYcacaaIYaGaaG ilaiaaiodacqGHQms8aaa@43F5@ , ее детерминант вычисляется по формуле

detM=det M 0 + M 3 M 1 i M 2 M 1 +i M 2 M 0 M 3 = M 0 2 M 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaamytaiaai2daciGGKbGaaiyzaiaacshadaqadaqaauaa beqaciaaaeaacaWGnbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam ytamaaBaaaleaacaaIZaaabeaaaOqaaiaad2eadaWgaaWcbaGaaGym aaqabaGccqGHsislcaWGPbGaamytamaaBaaaleaacaaIYaaabeaaaO qaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGPbGaamyt amaaBaaaleaacaaIYaaabeaaaOqaaiaad2eadaWgaaWcbaGaaGimaa qabaGccqGHsislcaWGnbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjk aiaawMcaaiaai2dacaWGnbWaa0baaSqaaiaaicdaaeaacaaIYaaaaO GaeyOeI0IaamytamaaCaaaleqabaGaaGOmaaaakiaai6caaaa@5901@ (3.5)

Характеристическое уравнение матрицы A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  имеет вид

det(μEA)= μ 2 +2βμ+ ω 2 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaaGikaiabeY7aTjaadweacqGHsislcaWGbbGaaGykaiaa i2dacqaH8oqBdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeq OSdiMaeqiVd0Maey4kaSIaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGa aGypaiaaicdacaaIUaaaaa@4C96@

Следовательно, если β 2 ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaW baaSqabeaacaaIYaaaaOGaeyiyIKRaeqyYdC3aaWbaaSqabeaacaaI Yaaaaaaa@3D04@ , то матрица A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  диагонализуема, а при β>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG Opaiaaicdaaaa@3916@  вещественная часть каждого из ее собственных чисел μ (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaaaaa@39F6@  и μ (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaaaaa@39F7@  отрицательна. В дальнейшем будем анализировать осцилляторный случайный процесс именно при таких ограничениях на параметр β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3794@ . При этом условии имеет место следующее утверждение.

Теорема 3.2. Если параметры β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3794@  и ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C0@ , определяющие случайный гауссовский марковский процесс x~(t);t[t0,) посредством стохастического дифференциального уравнения (1.4) с матрицей A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@ , таковы, что β>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG Opaiaaicdaaaa@3916@  и ω 2 β 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIYaaaaOGaeyiyIKRaeqOSdi2aaWbaaSqabeaacaaI Yaaaaaaa@3D04@ , то существует предельный по мере случайный процесс limt0x~(t), который не зависит от значения x~(t0) и является стационарным случайным процессом, обладающим частным одномерным распределением вероятностей с плотностью

f(x)=[(2π ) 2 detC ] 1/2 exp[ 1 2 ( C 1 x,x)],C=ϰE,ϰ σ 4β ω 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGykaiaai2dacaaIBbGaaGikaiaaikdacqaHapaCcaaI PaWaaWbaaSqabeaacaaIYaaaaOGaciizaiaacwgacaGG0bGaam4qai aai2fadaahaaWcbeqaaiabgkHiTiaaigdacaaIVaGaaGOmaaaakiGa cwgacaGG4bGaaiiCaiaaiUfacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaaiaaiIcacaWGdbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa aKiEaiaaiYcacaqI4bGaaGykaiaai2facaaISaGaaGzbVlaadoeaca aI9aWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF Wpq+caWGfbGaaGilaiaaywW7cqWFWpq+cqGHHjIUdaWcaaqaaiabeo 8aZbqaaiaaisdacqaHYoGycqaHjpWDdaahaaWcbeqaaiaaikdaaaaa aOGaaGOlaaaa@7436@  (3.6)

Доказательство. Докажем, что существует предел матрицы C(t,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG0bGaaGilaiaadshacaaIPaaaaa@3AC8@  при t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgkziUkabgkHiTiabg6HiLcaa@3C27@ , т.е. сходится интеграл

0 e sA S 2 e s A T ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGLbWaaWbaaSqabeaa caWGZbGaamyqaaaakiaayIW7caWGtbWaaWbaaSqabeaacaaIYaaaaO GaamyzamaaCaaaleqabaGaam4CaiaadgeadaahaaqabeaacaWGubaa aaaakiaadsgacaWGZbGaaGOlaaaa@4700@

Для любого вектора x R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaiabgI GiolaadkfadaahaaWcbeqaaiaaikdaaaaaaa@3A3A@  неотрицательный диагональный элемент положительно определенной симметричной матрицы удовлетворяет неравенству

( e sA S 2 e s A T x,x)=( S 2 e s A T x, e s A T x)S 2 e s A T x 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw gadaahaaWcbeqaaiaadohacaWGbbaaaOGaaGjcVlaadofadaahaaWc beqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaWGZbGaamyqamaaCa aabeqaaiaadsfaaaaaaOGaaKiEaiaaiYcacaqI4bGaaGykaiaai2da caaIOaGaam4uamaaCaaaleqabaGaaGOmaaaakiaadwgadaahaaWcbe qaaiaadohacaWGbbWaaWbaaeqabaGaamivaaaaaaGccaqI4bGaaGil aiaadwgadaahaaWcbeqaaiaadohacaWGbbWaaWbaaeqabaGaamivaa aaaaGccaqI4bGaaGykaiabgsMiJgbbfv3ySLgzGueE0jxyaGqbaiab =vIiqjaadofacqWFLicudaahaaWcbeqaaiaaikdaaaGccqWFLicuca WGLbWaaWbaaSqabeaacaWGZbGaamyqamaaCaaabeqaaiaadsfaaaaa aOGaaKiEaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaai6caaaa@65A4@  (3.7)

Пусть { e (j) ;j{1,2}} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaajw gadaahaaWcbeqaaiaaiIcacaWGQbGaaGykaaaakiaaiUdacaaMe8Ua amOAaiabgIGiolaaiUhacaaIXaGaaGilaiaaikdacaaI9bGaaGyFaa aa@4478@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  базис в R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@ , состоящий из собственных векторов матрицы A T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaCa aaleqabaGaamivaaaaaaa@37BF@  с соответствующими собственными числами μ (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaW baaSqabeaacaaIOaGaamOAaiaaiMcaaaaaaa@3A2A@ , j{1,2}} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgI GiolaaiUhacaaIXaGaaGilaiaaikdacaaI9bGaaGyFaaaa@3DA6@ , причем Re μ (j) <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gacqaH8oqBdaahaaWcbeqaaiaaiIcacaWGQbGaaGykaaaakiaaiYda caaIWaaaaa@3D75@ . Тогда, подействовав матрицей e s A T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaam4CaiaadgeadaahaaqabeaacaWGubaaaaaaaaa@39C3@  на разложение вектора x= α 1 e (1) + α 2 e (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaiaai2 dacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaqILbWaaWbaaSqabeaa caaIOaGaaGymaiaaiMcaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaG OmaaqabaGccaqILbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaaa aa@4445@ , находим

e s A T x= α 1 e s μ (1) e (1) + α 2 e s μ (2) e (2) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaam4CaiaadgeadaahaaqabeaacaWGubaaaaaakiaajIha caaI9aGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaale qabaGaam4CaiabeY7aTnaaCaaabeqaaiaaiIcacaaIXaGaaGykaaaa aaGccaqILbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccqGHRa WkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWGLbWaaWbaaSqabeaa caWGZbGaeqiVd02aaWbaaeqabaGaaGikaiaaikdacaaIPaaaaaaaki aajwgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaai6caaaa@5504@

Следовательно,

e s A T x α 1 e s μ (1) e (1) + α 2 e s μ (2) e (2) e μs (| α 1 |+| α 2 |) e μ ¯ s x 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyzamaaCaaaleqabaGaam4Caiaadgea daahaaqabeaacaWGubaaaaaakiaajIhacqWFLicucqGHKjYOcqWFLi cucqaHXoqydaWgaaWcbaGaaGymaaqabaGccaWGLbWaaWbaaSqabeaa caWGZbGaeqiVd02aaWbaaeqabaGaaGikaiaaigdacaaIPaaaaaaaki aajwgadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakiabgUcaRiab eg7aHnaaBaaaleaacaaIYaaabeaakiaadwgadaahaaWcbeqaaiaado hacqaH8oqBdaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaaaaOGaaKyz amaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGae8xjIaLaeyizIm QaamyzamaaCaaaleqabaGaeqiVd0Maam4CaaaakiaaiIcacaaI8bGa eqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGiFaiabgUcaRiaaiYhacq aHXoqydaWgaaWcbaGaaGOmaaqabaGccaaI8bGaaGykaiabggMi6kaa dwgadaahaaWcbeqaaiqbeY7aTzaaraGaam4Caaaakiab=vIiqjaajI hacqWFLicudaWgaaWcbaGaaGymaaqabaGccaaISaaaaa@79DC@

где μ ¯ =max{Re μ (j) ;j{1,2}} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mbae bacaaI9aGaciyBaiaacggacaGG4bGaaG4EaiaadkfacaWGLbGaeqiV d02aaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaGccaaI7aGaamOAai abgIGiolaaiUhacaaIXaGaaGilaiaaikdacaaI9bGaaGyFaaaa@4ADB@ . В сочетании с (3.7) получаем оценку

( e sA S 2 e s A T x,x) e 2 μ ¯ s S 2 x 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadw gadaahaaWcbeqaaiaadohacaWGbbaaaOGaaGjcVlaadofadaahaaWc beqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaWGZbGaamyqamaaCa aabeqaaiaadsfaaaaaaOGaaKiEaiaaiYcacaqI4bGaaGykaiabgsMi JkaadwgadaahaaWcbeqaaiaaikdacuaH8oqBgaqeaiaadohaaaqeeu uDJXwAKbsr4rNCHbacfaGccqWFLicucaWGtbGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGae8xjIaLaaKiEaiab=vIiqnaaDaaaleaacaaIXa aabaGaaGOmaaaakiaai6caaaa@58C1@

Тогда для любого вектора x R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaiabgI GiolaadkfadaahaaWcbeqaaiaaikdaaaaaaa@3A3A@  равен нулю следующий предел для матрицы-функции, значениями которой являются симметричные положительно определенные матрицы:

([ t e sA S 2 e s A T ds]x,x) e 2| μ ¯ |t 2| μ ¯ | x 1 2 S 2 t 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiU fadaWdXbqabSqaaiaadshaaeaacqGHEisPa0Gaey4kIipakiaadwga daahaaWcbeqaaiaadohacaWGbbaaaOGaaGjcVlaadofadaahaaWcbe qaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaWGZbGaamyqamaaCaaa beqaaiaadsfaaaaaaOGaamizaiaadohacaaIDbGaaKiEaiaaiYcaca qI4bGaaGykaiabgsMiJoaalaaabaGaamyzamaaCaaaleqabaGaeyOe I0IaaGOmaiaaiYhacuaH8oqBgaqeaiaaiYhacaWG0baaaaGcbaGaaG OmaiaaiYhacuaH8oqBgaqeaiaaiYhaaaGaaGjcVhbbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaajIhacqWFLicudaqhaaWcbaGaaGymaaqaai aaikdaaaGccqWFLicucaWGtbGae8xjIa1aaWbaaSqabeaacaaIYaaa aOWaa4akaSqabeaacaaMe8UaamiDaiabgkziUkabg6HiLkaaysW7aO GaayPKHaGaaGimaiaai6caaaa@7444@

Отсюда следует сходимость указанного интеграла. Тогда существует предел

lim t 0 C(t,t)= 0 e sA S 2 e s A T dsC. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bWaaSbaaeaacaaIWaaabeaacqGHsgIRcqGHsislcqGHEisP aeqakeaaciGGSbGaaiyAaiaac2gaaaGaam4qaiaaiIcacaWG0bGaaG ilaiaadshacaaIPaGaaGypamaapehabeWcbaGaaGimaaqaaiabg6Hi LcqdcqGHRiI8aOGaamyzamaaCaaaleqabaGaam4CaiaadgeaaaGcca aMi8Uaam4uamaaCaaaleqabaGaaGOmaaaakiaadwgadaahaaWcbeqa aiaadohacaWGbbWaaWbaaeqabaGaamivaaaaaaGccaWGKbGaam4Cai abggMi6kaadoeacaaIUaaaaa@58E0@

Кроме того, для любого вектора x 0 R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEamaaBa aaleaacaaIWaaabeaakiabgIGiolaadkfadaahaaWcbeqaaiaaikda aaaaaa@3B2A@ , согласно (3.7), имеем e (t t 0 )A x 0 t 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaaGikaiaadshacqGHsislcaWG0bWaaSbaaeaacaaIWaaa beaacaaIPaGaamyqaaaakiaajIhadaWgaaWcbaGaaGimaaqabaGcda GdOaWcbeqaaiaaysW7caWG0bWaaSbaaeaacaaIWaaabeaacqGHsgIR cqGHsislcqGHEisPcaaMe8oakiaawkziaiaaicdaaaa@4A7B@ .

Перейдем к поточечному пределу t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgkziUkabgkHiTiabg6HiLcaa@3C27@  в формуле (3.1). Предельное значение функции f(x,t; x 0 , t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@404C@ , которое мы обозначим как f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGykaaaa@3946@ , существует и определяется формулой (3.6). Покажем, что матрица C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BB@  положительно определена. Проинтегрируем тождество

d ds ( e sA S 2 e s A T )=A e sA S 2 e s A T + e sA S 2 e s A T A T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadohaaaGaaGikaiaadwgadaahaaWcbeqaaiaa dohacaWGbbaaaOGaam4uamaaCaaaleqabaGaaGOmaaaakiaadwgada ahaaWcbeqaaiaadohacaWGbbWaaWbaaeqabaGaamivaaaaaaGccaaI PaGaaGypaiaadgeacaWGLbWaaWbaaSqabeaacaWGZbGaamyqaaaaki aadofadaahaaWcbeqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaWG ZbGaamyqamaaCaaabeqaaiaadsfaaaaaaOGaey4kaSIaamyzamaaCa aaleqabaGaam4CaiaadgeaaaGccaWGtbWaaWbaaSqabeaacaaIYaaa aOGaamyzamaaCaaaleqabaGaam4CaiaadgeadaahaaqabeaacaWGub aaaaaakiaadgeadaahaaWcbeqaaiaadsfaaaaaaa@57F9@

по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EB@  от 0 до MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3764@ . В результате получим матричное уравнение Ляпунова

AC+C A T + S 2 =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado eacqGHRaWkcaWGdbGaamyqamaaCaaaleqabaGaamivaaaakiabgUca RiaadofadaahaaWcbeqaaiaaikdaaaGccaaI9aGaaGimaiaaiYcaaa a@3FE5@

которому должна удовлетворять матрица C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BB@ . Пусть

C= c 0 E+ l c l T (l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaamyraiabgUcaRmaaqafa beWcbaGaamiBaaqab0GaeyyeIuoakiaadogadaWgaaWcbaGaamiBaa qabaGccaWGubWaaWbaaSqabeaacaaIOaGaamiBaiaaiMcaaaaaaa@4390@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  разложение матрицы C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BB@  по базису E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam yraaaa@3876@ , T (l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaadYgacaaIPaaaaaaa@394F@ , l=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiabgQYiXdaa@3D15@ . Подстановка этого разложения в уравнение с использованием коммутационных соотношений (3.4) дает c 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIWaaaaa@394E@ ; также получаем следующие уравнения для коэффициентов c 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaaaaa@37C1@ , c 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaaaaa@37C2@ , c 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaaaaa@37C4@ :

ω c 3 =β c 1 ,β( c 0 + c 3 )= σ 4 ω 2 ,β( c 0 + c 3 )+ω c 1 = σ 4 ω 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaam 4yamaaBaaaleaacaaIZaaabeaakiaai2dacqaHYoGycaWGJbWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaywW7cqaHYoGycaaIOaGaam4yam aaBaaaleaacaaIWaaabeaakiabgUcaRiaadogadaWgaaWcbaGaaG4m aaqabaGccaaIPaGaaGypamaalaaabaGaeq4WdmhabaGaaGinaiabeM 8a3naaCaaaleqabaGaaGOmaaaaaaGccaaISaGaaGzbVlabek7aIjaa iIcacaWGJbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam4yamaaBa aaleaacaaIZaaabeaakiaaiMcacqGHRaWkcqaHjpWDcaWGJbWaaSba aSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaeq4WdmhabaGaaGinai abeM8a3naaCaaaleqabaGaaGOmaaaaaaGccaaISaaaaa@6308@

из которых следует, что c 1 = c 3 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbWaaSbaaSqaaiaaiodaaeqa aOGaaGypaiaaicdaaaa@3BEF@ , c 0 =σ/4β ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIWaaabeaakiaai2dacqaHdpWCcaaIVaGaaGinaiabek7a IjabeM8a3naaCaaaleqabaGaaGOmaaaaaaa@4023@ .

Таким образом, C=(σ/4β ω 2 )E>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacaaIOaGaeq4WdmNaaG4laiaaisdacqaHYoGycqaHjpWDdaahaaWc beqaaiaaikdaaaGccaaIPaGaamyraiaai6dacaaIWaaaaa@42CE@ , и поэтому f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGykaaaa@3946@  является плотностью распределения вероятностей. Эта предельная плотность не зависит от x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEamaaBa aaleaacaaIWaaabeaaaaa@37DC@ . Так как она не зависит от tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaadkfaaaa@3947@  и плотность условных вероятностей перехода зависит только лишь от разности t t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk HiTiaadshadaWgaaWcbaGaaGimaaqabaaaaa@39B8@ , то предельный случайный гауссовский марковский процесс, который теперь определен для всех tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaadkfaaaa@3947@ , является стационарным (см. [9]).

Следствие 3.1. Осцилляторный случайный процесс x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUabm iEayaaiaGaaGikaiaadshacaaIPaaaaa@3B16@ , tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaadkfacqGHQms8aaa@3B11@  является стационарным.

4. Характеристическая функция случайной величины J t [ x ˜ (s)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWG0baabeaakiaaiUfaceWG4bGbaGaacaaIOaGaam4Caiaa iMcacaaIDbaaaa@3D26@ Далее изучим распределение вероятностей случайной величины (1.7), которая представляется интегралом

Jt[x(~s)]=ω20t(x~(s),Vx~(s)ds,

так как x ˜ 1 (s)= x ˙ (s)/ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaIPaGaaGypaiqa dIhagaGaaiaaiIcacaWGZbGaaGykaiaai+cacqaHjpWDaaa@40FD@ . Она с вероятностью 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@  неотрицательна. Тогда ее распределение вероятностей удобно характеризовать производящей функцией

Q(λ,t)=Eexp(λ J t [ x ˜ (s)]),Reλ[0,). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcacaaI9aGaaeyraiGacwgacaGG 4bGaaiiCaiaaiIcacqGHsislcqaH7oaBcaWGkbWaaSbaaSqaaiaads haaeqaaOGaaG4waiqadIhagaacaiaaiIcacaWGZbGaaGykaiaai2fa caaIPaGaaGilaiaaywW7caWGsbGaamyzaiabeU7aSjabgIGiolaaiU facaaIWaGaaGilaiabg6HiLkaaiMcacaaIUaaaaa@57A2@  (4.1)

Характеристическая функция случайной величины J t [ x ˜ (s)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWG0baabeaakiaaiUfaceWG4bGbaGaacaaIOaGaam4Caiaa iMcacaaIDbaaaa@3D26@  равна Q(iλ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqGHsislcaWGPbGaeq4UdWMaaGilaiaadshacaaIPaaaaa@3D6C@ , λR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaamOuaaaa@3A02@ . Произведем вычисление функции (4.1) методом Фейнмана MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Каца MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Дынкина, идея которого изложена в [19]. Этот метод сводит вычисление функции Q(λ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcaaaa@3B91@  к поиску специального решения вспомогательного параболического уравнения типа уравнения Шрёдингера, которое получим в этом разделе. В отличие от указанной работы, мы не используем явным образом интегрирование по мере винеровского процесса ω~(t), t[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacqGHQms8aaa@3EB3@ , а воспользуемся формулой усреднения Фуруцу MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Новикова (см. [10, 16]), связанной с процессом белого шума.

Введем, следуя М. Кацу, совместную одновременнýю плотность g(x,v;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaqI4bGaaGilaiaadAhacaaI7aGaamiDaiaaiYcacaqI4bWaaSba aSqaaiaaicdaaeqaaOGaaGykaaaa@3F5F@  распределения вероятностей для составного случайного процесса, представляющего собой пару случайных процессов

x~(t),Jt[x~(s)],t,g(x,v;t,x0)=Eδ(xx~(t))δ(vJt[x~(s)]),

которая является условной относительно фиксированных значений x~(0)=x0, J0[x~,s)]=0. Здесь первая δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@3798@  -функция двумерная, а вторая MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  одномерная, хотя мы их обозначаем одной буквой; в дальнейшем это не вызовет недоразумений. Следующие интегралы с этой плотностью определяют плотность f(x,t; x 0 ,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiYcacaaIWaGaaGykaaaa@3F1D@  и производящую функцию Q(λ,t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiYcacaqI4bWaaSbaaSqaaiaaicda aeqaaOGaaGykaaaa@3E3A@  условного распределения вероятностей для величины Jt[x~(s)]:

f(x,t; x 0 ,0)= 0 g(x,v;t, x 0 )dv,h(x,λ;t, x 0 )= 0 g(x,v;t, x 0 ) e λv dv, Q(λ,t; x 0 )= R 2 h(x,λ;t, x 0 )dx= 0 dv R 2 g(x,v;t, x 0 ) e λv dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadAgacaaIOaGaaKiEaiaaiYcacaWG0bGaaG4oaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaISaGaaGimaiaaiMcacaaI9aWaa8qCae qaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGNbGaaGikaiaa jIhacaaISaGaamODaiaaiUdacaWG0bGaaGilaiaajIhadaWgaaWcba GaaGimaaqabaGccaaIPaGaamizaiaadAhacaaISaGaaGzbVlaadIga caaIOaGaaKiEaiaaiYcacqaH7oaBcaaI7aGaamiDaiaaiYcacaqI4b WaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dadaWdXbqabSqaaiaa icdaaeaacqGHEisPa0Gaey4kIipakiaadEgacaaIOaGaaKiEaiaaiY cacaWG2bGaaG4oaiaadshacaaISaGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiMcacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBcaWG2b aaaOGaamizaiaadAhacaaISaaabaGaamyuaiaaiIcacqaH7oaBcaaI SaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykai aai2dadaWdrbqabSqaaiaadkfadaahaaqabeaacaaIYaaaaaqab0Ga ey4kIipakiaadIgacaaIOaGaaKiEaiaaiYcacqaH7oaBcaaI7aGaam iDaiaaiYcacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaadsga caqI4bGaaGypamaapehabeWcbaGaaGimaaqaaiabg6HiLcqdcqGHRi I8aOGaamizaiaadAhadaWdrbqabSqaaiaadkfadaahaaqabeaacaaI Yaaaaaqab0Gaey4kIipakiaadEgacaaIOaGaaKiEaiaaiYcacaWG2b GaaG4oaiaadshacaaISaGaaKiEamaaBaaaleaacaaIWaaabeaakiaa iMcacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBcaWG2baaaOGaam izaiaajIhacaaIUaaaaaaa@A7CD@  (4.2)

Пусть случайные траектории процесса z~(s), sR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI GiolaadkfacqGHQms8aaa@3B10@  представляются таким функционалом

z ˜ j (s)= Λ K jl (s, s ) φ ˜ l ( s )d s ,j{1,2}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOEayaaia WaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadohacaaIPaGaaGypamaa pebabeWcbaGaeu4MdWeabeqdcqGHRiI8aOGaam4samaaBaaaleaaca WGQbGaamiBaaqabaGccaaIOaGaam4CaiaaiYcaceWGZbGbauaacaaI PaGafqOXdOMbaGaadaWgaaWcbaGaamiBaaqabaGccaaIOaGabm4Cay aafaGaaGykaiaadsgaceWGZbGbauaacaaISaGaaGzbVlaadQgacqGH iiIZcaaI7bGaaGymaiaaiYcacaaIYaGaaGyFaiaaiYcaaaa@56C0@

от реализаций белого шума, что они непрерывны с вероятностью 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@ . Пусть также G[z~(s)]  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@ функционал от случайных траекторий s, обладающий вариационной производной (производной Гато) по этим функциям на пространстве непрерывных функций. Тогда для математического ожидания Eφ~j(t)G[z~(s')], в рамках техники Фуруцу MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Новикова, имеет место равенство

Eφ~j(t)G[z~(s')=(REδG[z~(s')]δz~l(s))(Eφ~j(t)z~l(s)ds. (4.3)

Из формулы (4.3) вытекает, что математическое ожидание линейно относительно G[z~(s)]. Пусть носитель Λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdWeaaa@3768@  непрерывной относительно переменной s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaafa aaaa@36F7@  функции K jk (s, s ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGQbGaam4AaaqabaGccaaIOaGaam4CaiaaiYcaceWGZbGb auaacaaIPaaaaa@3CEF@  содержит t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  в качестве внутренней точки. Тогда

E φ ˜ j (t) z ˜ l (s)= K jl (s,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiqbeA 8aQzaaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaGa bmOEayaaiaWaaSbaaSqaaiaadYgaaeqaaOGaaGikaiaadohacaaIPa GaaGypaiaadUeadaWgaaWcbaGaamOAaiaadYgaaeqaaOGaaGikaiaa dohacaaISaGaamiDaiaaiMcacaaIUaaaaa@490D@

Если внутренность носителя не содержит точки t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ , то

E φ ˜ j (t) z ˜ l (s)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiqbeA 8aQzaaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaGa bmOEayaaiaWaaSbaaSqaaiaadYgaaeqaaOGaaGikaiaadohacaaIPa GaaGypaiaaicdacaaIUaaaaa@42D5@

Наконец, если t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  является крайней точкой носителя, то

E φ ˜ j (t) z ˜ l (s)= 1 2 K jl (t,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiqbeA 8aQzaaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaGa bmOEayaaiaWaaSbaaSqaaiaadYgaaeqaaOGaaGikaiaadohacaaIPa GaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaam4samaaBaaaleaa caWGQbGaamiBaaqabaGccaaIOaGaamiDaiaaiYcacaWG0bGaaGykai aai6caaaa@4A95@

Последнее равенство связано с толкованием белого шума в смысле Стратоновича, так как в этом случае, согласно теореме Вонга MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Закаи, правильное использование корреляционной функции белого шума состоит в замене обобщенной функции δ(ts) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ikaiaadshacqGHsislcaWGZbGaaGykaaaa@3BDB@  на некоторую непрерывную корреляционную функцию Δ(st) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadohacqGHsislcaWG0bGaaGykaaaa@3B9C@ , которая является по определению четной, с последующим переходом к пределу Δ(t)δ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadshacaaIPaGaeyOKH4QaeqiTdqMaaGikaiaadshacaaIPaaa aa@3FA7@ .

На основе перечисленных свойств устанавливается справедливость следующего утверждения.

Лемма 4.1. Пусть x~(t), t[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacqGHQms8aaa@3EB3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3803@  двухкомпонентный случайный процесс, определяемый стохастическим дифференциальный уравнением (1.4), и

G[x~(s)]=exp(i(q,x(t))λJt[x~(s)]).

Тогда имеет место формула

Eφ~j(t)G[x~(s)]=i2(Sq)jEG[x~(s)]. (4.4)

Доказательство. Согласно (1.5), положим

x~(t)=etAx0+z~(t),z~j(t)0tKjl(t,s)φ~l(s)ds,Kjl(t,s)=(e(tsA)S)j,lθ(ts).

Тогда

δG[z~(s')]δz~l(s)=iqlδ(ts)λδJt[z~(s')δδz~lsG[x(s)

δJt[z~(s')]δz~l(s)=2ω20tδ(ss')(Vx~)l(s')ds'=2ω2θ(ts)θ(s)(Vx~)l(s),

откуда следует, что

0tδJt[z~(s')]δz~l(s)(Eφ~j(t)z~l(s))ds=2ω2(0tVx~)l(s)(Eφ~j(t)z~l(s)ds=

=2ω2(0tVx~)l(s)Kl,j(s,t)ds=2ω2(0tVx~)l(s)e(stA)Sljθ(st)ds=0

так как t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  является внешней точкой по отношению к интервалу интегрирования по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EB@ . Учитывая полученное равенство, получаем, согласно (4.3), формулу (4.4). Для слагаемого с ядром K jl (s, s ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGQbGaamiBaaqabaGccaaIOaGaam4CaiaaiYcaceWGZbGb auaacaaIPaaaaa@3CF0@ , точка t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  является крайней в интервале интегрирования, и мы положим E φ ˜ j (t) z ˜ l (s)= S lj /2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiqbeA 8aQzaaiaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadshacaaIPaGa bmOEayaaiaWaaSbaaSqaaiaadYgaaeqaaOGaaGikaiaadohacaaIPa GaaGypaiaadofadaWgaaWcbaGaamiBaiaadQgaaeqaaOGaaG4laiaa ikdaaaa@45C6@ . Мы воспользовались также симметрией матрицы S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@ .

Следующее утверждение является основой для вычисления производящей функции Q(λ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcaaaa@3B91@ .

Теорема 4.1. Плотность h(x,λ;t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGykaaaa@3D70@  удовлетворяет уравнению

t h(x,λ;t, x 0 )=[( x ,Ax)h+ 1 2 ( x , S 2 x )hλ ω 2 (Vx,x)h](x,λ;t, x 0 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaayIW7caWGObGaaGikaiaajIha caaISaGaeq4UdWMaaG4oaiaadshacaaISaGaaKiEamaaBaaaleaaca aIWaaabeaakiaaiMcacaaI9aGaaG4waiabgkHiTiaaiIcadaWcaaqa aiabgkGi2cqaaiabgkGi2kaajIhaaaGaaGilaiaadgeacaqI4bGaaG ykaiaadIgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiIca daWcaaqaaiabgkGi2cqaaiabgkGi2kaajIhaaaGaaGilaiaadofada ahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaa jIhaaaGaaGykaiaadIgacqGHsislcqaH7oaBcqaHjpWDdaahaaWcbe qaaiaaikdaaaGccaaIOaGaamOvaiaajIhacaaISaGaaKiEaiaaiMca caWGObGaaGyxaiaaiIcacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0b GaaGilaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGilaaaa @75E2@  (4.5)

которым она, вместе с условиями

h(x,λ;0, x 0 )=δ(x x 0 ),h(x,0;t, x 0 )=f(x,t; x 0 ,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaaIWaGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaGaaGypaiabes7aKjaaiIcacaqI4b GaeyOeI0IaaKiEamaaBaaaleaacaaIWaaabeaakiaaiMcacaaISaGa aGzbVlaadIgacaaIOaGaaKiEaiaaiYcacaaIWaGaaG4oaiaadshaca aISaGaaKiEamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aGaamOz aiaaiIcacaqI4bGaaGilaiaadshacaaI7aGaaKiEamaaBaaaleaaca aIWaaabeaakiaaiYcacaaIWaGaaGykaaaa@5CEF@

однозначно определяется.

Доказательство. Заметим, что

h(x,λt,x0)=Eδ(xx(t)texpλJt[s]

откуда, в частности следует необходимость последних условий в формулировке теоремы, так как J0[z~(s)]=0 и вектор x~(0)=x0 неслучаен, и поэтому

h(x,λ;x0)=f(x,0;x0,0)=δ(xx0).

Кроме того,

h(x,0;t,x0)=Eδ(xx~(t))=f(x,t;x0,0).

Представим функцию h(x,λ;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaaaaa@4019@  в виде интеграла Фурье

h(x,λ;t,x0)=1π2R2ei(x,q)EG[z~(s)]dq.

Запишем выражение для производной

tG[z~(s)]=G[z~(s)][i(q,ddtx~(t))+λω2(x~(t)Vx~(t))]=

G[z~(s)][i(q,Ax(t)+iq,Sφ~(t)+λω2x~(t),Vx(t))]

Выполняя преобразование Фурье для математического ожидания от обеих частей этого равенства, воспользовавшись (4.4), находим

th(x,λ;t,x0)=i(2π)2R2ei(x,q)(q,AEx~(t)G[z~(s)]dq

λω2(2π)2R2eix,qE(x(t), V x~(t))G[z~(s)]dqi(2π)2R2ei(x,q)(q,SEφ~(t)G[z(s)]dq. (4.6)

Первое слагаемое в правой части формулы преобразуется следующим образом:

i(2π)2R2eix,qq,AEx~(t)G[z~(s)]dq=(x,AEx~(t)1(2π)2R2ei(x,q)G[z~(s)]dq=

=(x,AEx~(t))δ(xx~(t))exp(λJtz(s)])=(x,A(x)h(x,λ;t,x0) (4.7)

Преобразование же второго слагаемого в (4.6) дается равенствами

ω2(2π)2R2ei(x,q)E(x~(t),Vx~(t))G[z)]sdq=ω2E(x(t)Vx(t)1(2π)2R2ei(x,q)G[z~(s)]dq=

=ω2 E(x~(t), V x~(t))δ(x  x~(t)) exp(λJt[z~(s)]) = ω2(x, V x)h(x, λ; t,x0). (4.8)

Наконец, для преобразования последнего слагаемого в (4.6) применим формулу (4.4):

i(2π)2R2ei(x,q)(q,SEφ~(t))G[z~(s)]dq=(x,SEφ~(t))1(2π)2R2ei(x,q)G[x(s)])dq=

x,S1(2π)2R2ei(x,q)Eφ~(t)G[z~(s)]dq=i2(x,S21(2π)2R2qei(x,q)EG[z~(s)]dq=

= 1 2 ( x , S 2 x )h(x,λ;t, x 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaGikamaalaaabaGaeyOa IylabaGaeyOaIyRaaKiEaaaacaaISaGaam4uamaaCaaaleqabaGaaG OmaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaaKiEaaaacaaIPaGa amiAaiaaiIcacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilai aajIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGOlaaaa@4FB0@

Подставляя это выражение вместе с (4.7) и (4.8) в (4.6), получаем уравнение (4.5).

5. Формула Каца MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbeqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3801@ Зигерта для осцилляторного процесса. По определению, функция h(x,λ;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaaaaa@4019@  существует и единственна, так как существует и единственна плотность распределения g(x,v;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaqI4bGaaGilaiaadAhacaaI7aGaamiDaiaaiYcacaqI4bWaaSba aSqaaiaaicdaaeqaaOGaaGykaaaa@3F5F@  и функция h(x,λ;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaaaaa@4019@  представляет собой условное математическое ожидание случайной величины exp(λJt[z~(s)], распределенной согласно совместной плотности g(x,v;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaqI4bGaaGilaiaadAhacaaI7aGaamiDaiaaiYcacaqI4bWaaSba aSqaaiaaicdaaeqaaOGaaGykaaaa@3F5F@ . При этом случайная величина ограничена при Reλ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gacqaH7oaBcqGHLjYScaaIWaaaaa@3BE8@ , ввиду того, что Jt[z~(s)]0 с вероятностью 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@ .

С целью вычисления функции h(x,λ;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaaaaa@4019@ , прежде всего, найдем решение уравнения (4.5), удовлетворяющее начальному условию h(x,λ;0, x 0 )=δ(x x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaaIWaGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaGaaGypaiabes7aKjaaiIcacaqI4b GaeyOeI0IaaKiEamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@478E@ . Для этого понадобится какое-либо вещественное симметричное невырожденное решение следующего матричного уравнения Риккати [11] относительно матрицы B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BA@  при λ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyeHeSaeq 4UdWMaaGypaiaaicdaaaa@3AA7@ :

B S 2 B+(AB+B A T )2λ ω 2 V=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaado fadaahaaWcbeqaaiaaikdaaaGccaWGcbGaey4kaSIaaGikaiaadgea caWGcbGaey4kaSIaamOqaiaadgeadaahaaWcbeqaaiaadsfaaaGcca aIPaGaeyOeI0IaaGOmaiabeU7aSjabeM8a3naaCaaaleqabaGaaGOm aaaakiaadAfacaaI9aGaaGimaiaai6caaaa@49D0@  (5.1)

Положим B=ρE MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacqaHbpGCcaWGfbaaaa@3A0B@ . Ввиду определения матриц A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  и S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@ , уравнение запишем в виде

[ σ ω 2 ρ 2 4βρ2λ ω 2 ]V=0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamaala aabaGaeq4WdmhabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiab eg8aYnaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdacqaHYoGycq aHbpGCcqGHsislcaaIYaGaeq4UdWMaeqyYdC3aaWbaaSqabeaacaaI YaaaaOGaaGyxaiaadAfacaaI9aGaaGimaiaaiUdaaaa@4D4F@

решениями квадратного уравнения

σ ω 2 ρ 2 4βρ2λ ω 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHdpWCaeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaOGaeqyWdi3a aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiabek7aIjabeg8aYj abgkHiTiaaikdacqaH7oaBcqaHjpWDdaahaaWcbeqaaiaaikdaaaGc caaI9aGaaGimaaaa@49E3@

являются

ρ ± = 2 ω 2 σ (β±r),r=( β 2 + λσ 2 ) 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiabgglaXcqabaGccaaI9aWaaSaaaeaacaaIYaGaeqyYdC3a aWbaaSqabeaacaaIYaaaaaGcbaGaeq4WdmhaaiaaiIcacqaHYoGycq GHXcqScaWGYbGaaGykaiaaiYcacaaMf8UaamOCaiaai2dacaaIOaGa eqOSdi2aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaH7o aBcqaHdpWCaeaacaaIYaaaaiaaiMcadaahaaWcbeqaaiaaigdacaaI VaGaaGOmaaaakiaai6caaaa@5617@  (5.2)

Положим, что функция h(x,λ;t, x 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaaaaa@4019@  имеет вид

h=Hexp(at 1 2 (x,Bx)),H=H(x,λ;t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaai2 dacaWGibGaeyyXICTaciyzaiaacIhacaGGWbGaaGikaiaadggacaWG 0bGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIOaGaamiEai aaiYcacaWGcbGaamiEaiaaiMcacaaIPaGaaGilaiaaywW7caWGibGa aGypaiaadIeacaaIOaGaaKiEaiaaiYcacqaH7oaBcaaI7aGaamiDai aaiMcacaaISaaaaa@5418@

с симметричной матрицей B T =B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaCa aaleqabaGaamivaaaakiaai2dacaWGcbaaaa@3958@ . Тогда

k j h=exp(at 1 2 (x,Bx))[ k j H (Bx) j k H (Bx) k j H+( B jk + (Bx) j (Bx) k )H], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiaadUgaaeqaaOGaey4bIe9aaSbaaSqaaiaadQgaaeqaaOGa amiAaiaai2daciGGLbGaaiiEaiaacchacaaIOaGaamyyaiaadshacq GHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiIcacaqI4bGaaGil aiaadkeacaqI4bGaaGykaiaaiMcacaaIBbGaey4bIe9aaSbaaSqaai aadUgaaeqaaOGaey4bIe9aaSbaaSqaaiaadQgaaeqaaOGaamisaiab gkHiTiaaiIcacaWGcbGaaKiEaiaaiMcadaWgaaWcbaGaamOAaaqaba GccqGHhis0daWgaaWcbaGaam4AaaqabaGccaWGibGaeyOeI0IaaGik aiaadkeacaqI4bGaaGykamaaBaaaleaacaWGRbaabeaakiabgEGirp aaBaaaleaacaWGQbaabeaakiaadIeacqGHRaWkcaaIOaGaeyOeI0Ia amOqamaaBaaaleaacaWGQbGaam4AaaqabaGccqGHRaWkcaaIOaGaam OqaiaajIhacaaIPaWaaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadkea caqI4bGaaGykamaaBaaaleaacaWGRbaabeaakiaaiMcacaWGibGaaG yxaiaaiYcaaaa@74FB@

j (Ax) j h=exp(at 1 2 (x,Bx))[(A ) jj H+ (Ax) j ( j H (Bx) j H)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaS baaSqaaiaadQgaaeqaaOGaaGikaiaadgeacaqI4bGaaGykamaaBaaa leaacaWGQbaabeaakiaadIgacaaI9aGaciyzaiaacIhacaGGWbGaaG ikaiaadggacaWG0bGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaa caaIOaGaaKiEaiaaiYcacaWGcbGaaKiEaiaaiMcacaaIPaGaaG4wai aaiIcacaWGbbGaaGykamaaBaaaleaacaWGQbGaamOAaaqabaGccaWG ibGaey4kaSIaaGikaiaadgeacaqI4bGaaGykamaaBaaaleaacaWGQb aabeaakiaaiIcacqGHhis0daWgaaWcbaGaamOAaaqabaGccaWGibGa eyOeI0IaaGikaiaadkeacaqI4bGaaGykamaaBaaaleaacaWGQbaabe aakiaadIeacaaIPaGaaGyxaiaaiYcaaaa@63CE@

где здесь и далее по повторяющимся индексам j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36E2@  и/или k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E3@  производится суммирование, j,k{1,2} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaaiY cacaWGRbGaeyicI4SaaG4EaiaaigdacaaISaGaaGOmaiaai2haaaa@3E45@ . Подстановка полученных выражений в (4.5) дает следующее равенство:

aH+ H ˙ =[(A ) jj H+ (Ax) j ( j H (Bx) j H)]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaadI eacqGHRaWkceWGibGbaiaacaaI9aGaeyOeI0IaaG4waiaaiIcacaWG bbGaaGykamaaBaaaleaacaWGQbGaamOAaaqabaGccaWGibGaey4kaS IaaGikaiaadgeacaqI4bGaaGykamaaBaaaleaacaWGQbaabeaakiaa iIcacqGHhis0daWgaaWcbaGaamOAaaqabaGccaWGibGaeyOeI0IaaG ikaiaadkeacaqI4bGaaGykamaaBaaaleaacaWGQbaabeaakiaadIea caaIPaGaaGyxaiabgUcaRaaa@52EC@

+ 1 2 ( S 2 ) jk [ k j H k H (Bx) j j H (Bx) k +( B jk + (Bx) j (Bx) k )H]λ ω 2 (x,Vx)H. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGOmaaaacaaIOaGaam4uamaaCaaaleqabaGa aGOmaaaakiaaiMcadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaaG4wai abgEGirpaaBaaaleaacaWGRbaabeaakiabgEGirpaaBaaaleaacaWG QbaabeaakiaadIeacqGHsislcqGHhis0daWgaaWcbaGaam4Aaaqaba GccaWGibGaeyyXICTaaGikaiaadkeacaqI4bGaaGykamaaBaaaleaa caWGQbaabeaakiabgkHiTiabgEGirpaaBaaaleaacaWGQbaabeaaki aadIeacqGHflY1caaIOaGaamOqaiaajIhacaaIPaWaaSbaaSqaaiaa dUgaaeqaaOGaey4kaSIaaGikaiabgkHiTiaadkeadaWgaaWcbaGaam OAaiaadUgaaeqaaOGaey4kaSIaaGikaiaadkeacaqI4bGaaGykamaa BaaaleaacaWGQbaabeaakiaaiIcacaWGcbGaaKiEaiaaiMcadaWgaa WcbaGaam4AaaqabaGccaaIPaGaamisaiaai2facqGHsislcqaH7oaB cqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaaIOaGaaKiEaiaaiYcaca WGwbGaaKiEaiaaiMcacaWGibGaaGOlaaaa@77E3@

Постоянную a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36D9@  и матрицу B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BA@  выберем таким образом, чтобы уравнение для функции H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@36C0@  не содержало членов, пропорциональных самой функции H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@36C0@ . Отсюда следует, что

a=Sp(A+ 1 2 S 2 B); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaai2 dacqGHsislcaWGtbGaamiCaiaaiIcacaWGbbGaey4kaSYaaSaaaeaa caaIXaaabaGaaGOmaaaacaWGtbWaaWbaaSqabeaacaaIYaaaaOGaam OqaiaaiMcacaaI7aaaaa@4245@

так как матрица S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@  симметрична и имеет место равенство (BAx,x)=( A T Bx,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk eacaWGbbGaaKiEaiaaiYcacaqI4bGaaGykaiaai2dacaaIOaGaamyq amaaCaaaleqabaGaamivaaaakiaadkeacaqI4bGaaGilaiaajIhaca aIPaaaaa@4326@ , то матрица B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BA@  должна быть решением матричного уравнения (5.1). При указанном выборе матрицы B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BA@ , используя (2.2), находим, что a=βr MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaai2 dacqaHYoGycqWItisBcaWGYbaaaa@3B6B@ , а функция H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@36C0@  должна удовлетворять дифференциальному уравнению

H ˙ = 1 2 ( S 2 ) jk k j H (Dx) j j H, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaca GaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiaadofadaah aaWcbeqaaiaaikdaaaGccaaIPaWaaSbaaSqaaiaadQgacaWGRbaabe aakiabgEGirpaaBaaaleaacaWGRbaabeaakiabgEGirpaaBaaaleaa caWGQbaabeaakiaadIeacqGHsislcaaIOaGaamiraiaajIhacaaIPa WaaSbaaSqaaiaadQgaaeqaaOGaey4bIe9aaSbaaSqaaiaadQgaaeqa aOGaamisaiaaiYcaaaa@4DF1@  (5.3)

где

D=A+ S 2 B, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacaWGbbGaey4kaSIaam4uamaaCaaaleqabaGaaGOmaaaakiaadkea caaISaaaaa@3C73@  (5.4)

и начальному условию

H(x,λ;0)=δ(x x 0 )exp[ 1 2 (B x 0 , x 0 )]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaaIWaGaaGykaiaai2dacqaH 0oazcaaIOaGaaKiEaiabgkHiTiaajIhadaWgaaWcbaGaaGimaaqaba GccaaIPaGaciyzaiaacIhacaGGWbGaaG4wamaalaaabaGaaGymaaqa aiaaikdaaaGaaGikaiaadkeacaqI4bWaaSbaaSqaaiaaicdaaeqaaO GaaGilaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGyxaiaa i6caaaa@5273@

В уравнении (5.3) перейдем от векторов x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKiEaaaa@36F6@  к зависящим от времени векторам y= e tD x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyEaiaai2 dacaWGLbWaaWbaaSqabeaacqGHsislcaWG0bGaamiraaaakiaajIha aaa@3C91@ . Введем такую функцию F(y,λ;t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaqI5bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGykaaaa@3D4F@ , что

F( e Dt x,λ;t)=H(x,λ;t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWGLbWaaWbaaSqabeaacqGHsislcaWGebGaamiDaaaakiaajIha caaISaGaeq4UdWMaaG4oaiaadshacaaIPaGaaGypaiaadIeacaaIOa GaaKiEaiaaiYcacqaH7oaBcaaI7aGaamiDaiaaiMcacaaIUaaaaa@49FA@

В результате для этой функции получим следующее уравнение:

t F(y,λ;t)= 1 2 ( S 2 (t)) jk 2 y j y k F(y,λ;t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaaiaadAeacaaIOaGaaKyEaiaaiYca cqaH7oaBcaaI7aGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaaba GaaGOmaaaacaaIOaGaam4uamaaDaaaleaacqGHsislaeaacaaIYaaa aOGaaGikaiaadshacaaIPaGaaGykamaaBaaaleaacaWGQbGaam4Aaa qabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiab gkGi2kaadMhadaWgaaWcbaGaamOAaaqabaGccqGHciITcaWG5bWaaS baaSqaaiaadUgaaeqaaaaakiaadAeacaaIOaGaaKyEaiaaiYcacqaH 7oaBcaaI7aGaamiDaiaaiMcacaaISaaaaa@5D90@  (5.5)

где введена матрица

S 2 (t)=exp(tD) S 2 exp(t D T ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqGHsislaeaacaaIYaaaaOGaaGikaiaadshacaaIPaGaaGyp aiGacwgacaGG4bGaaiiCaiaaiIcacqGHsislcaWG0bGaamiraiaaiM cacaWGtbWaaWbaaSqabeaacaaIYaaaaOGaciyzaiaacIhacaGGWbGa aGikaiabgkHiTiaadshacaWGebWaaWbaaSqabeaacaWGubaaaOGaaG ykaiaai6caaaa@4D41@

Непосредственной подстановкой проверяем, что

F(y,λ;t)= exp[( x 0 ,B x 0 )/2] [(2π ) 2 det G (t)] 1/2 exp[((y x 0 ), G 1 (t)(y x 0 ))/2], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaqI5bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGykaiaai2dadaWc aaqaaiGacwgacaGG4bGaaiiCaiaaiUfacaaIOaGaaKiEamaaBaaale aacaaIWaaabeaakiaaiYcacaWGcbGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiMcacaaIVaGaaGOmaiaai2faaeaacaaIBbGaaGikaiaaik dacqaHapaCcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaciizaiaacwga caGG0bGaaGjcVlaadEeadaWgaaWcbaGaeyOeI0cabeaakiaaiIcaca WG0bGaaGykaiaai2fadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaa aaGcciGGLbGaaiiEaiaacchacaaIBbGaeyOeI0IaaGikaiaaiIcaca qI5bGaeyOeI0IaaKiEamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI SaGaam4ramaaDaaaleaacqGHsislaeaacqGHsislcaaIXaaaaOGaaG ikaiaadshacaaIPaGaaGikaiaajMhacqGHsislcaqI4bWaaSbaaSqa aiaaicdaaeqaaOGaaGykaiaaiMcacaaIVaGaaGOmaiaai2facaaISa aaaa@7719@  (5.6)

является решением уравнения (5.5), удовлетворяющее начальному условию

F(y,λ;0)=H (x,λ;0) x=y , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaqI5bGaaGilaiabeU7aSjaaiUdacaaIWaGaaGykaiaai2dacaWG ibGaaGikaiaajIhacaaISaGaeq4UdWMaaG4oaiaaicdacaaIPaWaaS baaSqaaiaadIhacaaI9aGaamyEaaqabaGccaaISaaaaa@48A3@

где

G (t)= 0 t S 2 (s)ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadofadaqhaaWcba GaeyOeI0cabaGaaGOmaaaakiaaiIcacaWGZbGaaGykaiaadsgacaWG ZbGaaGOlaaaa@46DC@

Матрица S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@  симметрична и неотрицательно определена; такова же и матрица S 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqGHsislaeaacaaIYaaaaOGaaGikaiaadshacaaIPaaaaa@3B09@ . Более того, эта матрица положительно определена для почти всех s>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai6 dacaaIWaaaaa@386D@ . В самом деле, если вектор e s D T x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0Iaam4CaiaadseadaahaaqabeaacaWGubaaaaaa kiaayIW7caqI4baaaa@3D51@  в R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@  является собственным для матрицы S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@  с нулевым собственным значением, т.е. e s D T x=c1,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0Iaam4CaiaadseadaahaaqabeaacaWGubaaaaaa kiaayIW7caqI4bGaaGypaiaadogacqGHPms4caaIXaGaaGilaiaaic dacqGHQms8aaa@44AE@ , то такое равенство возможно только для какого-либо одного значения s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EB@ , так как матрица D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BC@  не коммутирует с S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@  и знак реальной части ее собственных значений фиксирован. Ввиду положительной определенности матрицы S 2 (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqGHsislaeaacaaIYaaaaOGaaGikaiaadohacaaIPaaaaa@3B08@  для почти всех s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EB@ , матрица G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaaaaa@3A40@  положительно определена при t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgc Mi5kaaicdaaaa@396D@  и, в частности, det G (t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaam4ramaaBaaaleaacqGHsislaeqaaOGaaGikaiaadsha caaIPaGaeyiyIKRaaGimaaaa@3F8C@ . Ввиду симметричности матрицы S 2 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacqGHsislaeaacaaIYaaaaOGaaGikaiaadshacaaIPaaaaa@3B09@ , таким же свойством обладает матрица G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaaaaa@3A40@  при любом t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgc Mi5kaaicdaaaa@396D@ . Матрица G 1 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacqGHsislaeaacqGHsislcaaIXaaaaOGaaGikaiaadshacaaI Paaaaa@3BE9@  обладает теми же свойствами, что и матрица G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaaaaa@3A40@ . Это означает, что функция (5.6) существует, неотрицательна и суммируема по y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaKyEaaaa@36F7@  на R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@ . Так как матрица G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaaaaa@3A40@  стремится к нулю при t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkaaicdaaaa@3993@ , то функция (5.6) стремится к δ(y x 0 )exp[( x 0 ,B x 0 )/2] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaaG ikaiaajMhacqGHsislcaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGyk aiGacwgacaGG4bGaaiiCaiaaiUfacaaIOaGaaKiEamaaBaaaleaaca aIWaaabeaakiaaiYcacaWGcbGaaKiEamaaBaaaleaacaaIWaaabeaa kiaaiMcacaaIVaGaaGOmaiaai2faaaa@49C5@ , т.е. удовлетворяет указанному выше начальному условию.

На основе (5.6) находим требуемое решение уравнения (5.3):

H(x,λ;t)= exp[( x 0 ,B x 0 )/2] [(2π ) 2 det G (t)] 1/2 exp[ 1 2 (( e tD x x 0 ), G 1 (t)( e tD x x 0 ))] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGykaiaai2dadaWc aaqaaiGacwgacaGG4bGaaiiCaiaaiUfacaaIOaGaaKiEamaaBaaale aacaaIWaaabeaakiaaiYcacaWGcbGaaKiEamaaBaaaleaacaaIWaaa beaakiaaiMcacaaIVaGaaGOmaiaai2faaeaacaaIBbGaaGikaiaaik dacqaHapaCcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaciizaiaacwga caGG0bGaaGjcVlaadEeadaWgaaWcbaGaeyOeI0cabeaakiaaiIcaca WG0bGaaGykaiaai2fadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaa aaGcciGGLbGaaiiEaiaacchacaaIBbGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaaaacaaIOaGaaGikaiaadwgadaahaaWcbeqaaiabgkHi TiaadshacaWGebaaaOGaaKiEaiabgkHiTiaajIhadaWgaaWcbaGaaG imaaqabaGccaaIPaGaaGilaiaadEeadaqhaaWcbaGaeyOeI0cabaGa eyOeI0IaaGymaaaakiaaiIcacaWG0bGaaGykaiaaiIcacaWGLbWaaW baaSqabeaacqGHsislcaWG0bGaamiraaaakiaajIhacqGHsislcaqI 4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaaiMcacaaIDbaaaa@7E14@

и, следовательно,

h(x,λ;t, x 0 )= e at [(2π ) 2 det G (t)] 1/2 exp{ 1 2 [( x 0 ,B x 0 )(x,Bx)]}× MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaGaaGypamaalaaabaGaamyzamaaCa aaleqabaGaamyyaiaadshaaaaakeaacaaIBbGaaGikaiaaikdacqaH apaCcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaciizaiaacwgacaGG0b GaaGjcVlaadEeadaWgaaWcbaGaeyOeI0cabeaakiaaiIcacaWG0bGa aGykaiaai2fadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaaaaGcci GGLbGaaiiEaiaacchacaaI7bWaaSaaaeaacaaIXaaabaGaaGOmaaaa caaIBbGaaGikaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaam OqaiaajIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaaGik aiaajIhacaaISaGaamOqaiaajIhacaaIPaGaaGyxaiaai2hacqGHxd aTaaa@6C8B@

×exp[ 1 2 ((x e tD x 0 ),[ e tD G (t) e t D T ] 1 (x e tD x 0 ))]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aqRaci yzaiaacIhacaGGWbGaaG4waiabgkHiTmaalaaabaGaaGymaaqaaiaa ikdaaaGaaGikaiaaiIcacaqI4bGaeyOeI0IaamyzamaaCaaaleqaba GaamiDaiaadseaaaGccaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGyk aiaaiYcacaaIBbGaamyzamaaCaaaleqabaGaamiDaiaadseaaaGcca WGhbWaaSbaaSqaaiabgkHiTaqabaGccaaIOaGaamiDaiaaiMcacaWG LbWaaWbaaSqabeaacaWG0bGaamiramaaCaaabeqaaiaadsfaaaaaaO GaaGyxamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaqI4bGa eyOeI0IaamyzamaaCaaaleqabaGaamiDaiaadseaaaGccaqI4bWaaS baaSqaaiaaicdaaeqaaOGaaGykaiaaiMcacaaIDbGaaGOlaaaa@6107@  (5.7)

Произведем несложные преобразования входящих в эту формулу матриц:

e tD G (t) e t D T = 0 t e sD S 2 e s D T ds G + (t), det G + (t)=(det e tD )(det G (t))(det e t D T )=exp(2tSpD)det G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadwgadaahaaWcbeqaaiaadshacaWGebaaaOGaam4ramaaBaaa leaacqGHsislaeqaaOGaaGikaiaadshacaaIPaGaamyzamaaCaaale qabaGaamiDaiaadseadaahaaqabeaacaWGubaaaaaakiaai2dadaWd XbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGLbWaaWbaaS qabeaacaWGZbGaamiraaaakiaadofadaahaaWcbeqaaiaaikdaaaGc caWGLbWaaWbaaSqabeaacaWGZbGaamiramaaCaaabeqaaiaadsfaaa aaaOGaamizaiaadohacqGHHjIUcaWGhbWaaSbaaSqaaiabgUcaRaqa baGccaaIOaGaamiDaiaaiMcacaaISaaabaGaciizaiaacwgacaGG0b Gaam4ramaaBaaaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaGa aGypaiaaiIcaciGGKbGaaiyzaiaacshacaWGLbWaaWbaaSqabeaaca WG0bGaamiraaaakiaaiMcacaaIOaGaciizaiaacwgacaGG0bGaam4r amaaBaaaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaGaaGykai aaiIcaciGGKbGaaiyzaiaacshacaWGLbWaaWbaaSqabeaacaWG0bGa amiramaaCaaabeqaaiaadsfaaaaaaOGaaGykaiaai2daciGGLbGaai iEaiaacchacaaIOaGaaGOmaiaadshacaWGtbGaamiCaiaadseacaaI PaGaeyyXICTaciizaiaacwgacaGG0bGaam4ramaaBaaaleaacqGHsi slaeqaaOGaaGikaiaadshacaaIPaaaaaaa@894E@  (5.8)

и, следовательно,

e tSpB S 2 /2 [det G + (t)] 1/2 = e tSpDB S 2 /2 [det G (t)] 1/2 = e at [det G (t)] 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaamiDaiaadofacaWGWbGaamOqaiaadofadaah aaqabeaacaaIYaaaaiaai+cacaaIYaaaaOGaaG4waiGacsgacaGGLb GaaiiDaiaadEeadaWgaaWcbaGaey4kaScabeaakiaaiIcacaWG0bGa aGykaiaai2fadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakiaai2 dacaWGLbWaaWbaaSqabeaacaWG0bGaam4uaiaadchacaWGebGaeyOe I0IaamOqaiaadofadaahaaqabeaacaaIYaaaaiaai+cacaaIYaaaaO GaaG4waiGacsgacaGGLbGaaiiDaiaadEeadaWgaaWcbaGaeyOeI0ca beaakiaaiIcacaWG0bGaaGykaiaai2fadaahaaWcbeqaaiaaigdaca aIVaGaaGOmaaaakiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcaWG HbGaamiDaaaakiaaiUfaciGGKbGaaiyzaiaacshacaWGhbWaaSbaaS qaaiabgkHiTaqabaGccaaIOaGaamiDaiaaiMcacaaIDbWaaWbaaSqa beaacaaIXaGaaG4laiaaikdaaaGccaaIUaaaaa@7051@  (5.9)

Так как матрица G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaaaaa@3A40@  положительно определена, то и матрица G + (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaaaaa@3A35@ , согласно своему определению, положительно определена. Наконец, так как в формуле (3.1) отсутствует матрица S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@ , то для выполнимости условия h(x,0;t, x 0 )=f(x,t; x 0 ,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiaaicdacaaI7aGaamiDaiaaiYcacaqI4bWaaSba aSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGMbGaaGikaiaajIhaca aISaGaamiDaiaaiUdacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGil aiaaicdacaaIPaaaaa@4910@ , нужно положить, чтобы B=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaaIWaaaaa@383B@  при λ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaicdaaaa@3928@ , т.е. нужно выбрать ρ= ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabeg8aYnaaBaaaleaacqGHsislaeqaaaaa@3B53@  (см. (5.2)) в определении матрицы B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BA@ . Таким образом, принимая во внимание (5.8) и (5.9), заключаем, что формула (5.7) приобретает следующий вид:

h(x,λ;t, x 0 )= exp(tSpB S 2 /2) [(2π ) 2 det G + (t)] 1/2 exp{ 1 2 [( x 0 ,B x 0 )(x,Bx)]}× MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaqI4bGaaGilaiabeU7aSjaaiUdacaWG0bGaaGilaiaajIhadaWg aaWcbaGaaGimaaqabaGccaaIPaGaaGypamaalaaabaGaciyzaiaacI hacaGGWbGaaGikaiaadshacaWGtbGaamiCaiaadkeacaWGtbWaaWba aSqabeaacaaIYaaaaOGaaG4laiaaikdacaaIPaaabaGaaG4waiaaiI cacaaIYaGaeqiWdaNaaGykamaaCaaaleqabaGaaGOmaaaakiGacsga caGGLbGaaiiDaiaayIW7caWGhbWaaSbaaSqaaiabgUcaRaqabaGcca aIOaGaamiDaiaaiMcacaaIDbWaaWbaaSqabeaacaaIXaGaaG4laiaa ikdaaaaaaOGaciyzaiaacIhacaGGWbGaaG4EamaalaaabaGaaGymaa qaaiaaikdaaaGaaG4waiaaiIcacaqI4bWaaSbaaSqaaiaaicdaaeqa aOGaaGilaiaadkeacaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykai abgkHiTiaaiIcacaqI4bGaaGilaiaadkeacaqI4bGaaGykaiaai2fa caaI9bGaey41aqlaaa@748D@

×exp[ 1 2 ((x e tD x 0 ), G + 1 (t)(x e tD x 0 ))]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aqRaci yzaiaacIhacaGGWbGaaG4waiabgkHiTmaalaaabaGaaGymaaqaaiaa ikdaaaGaaGikaiaaiIcacaqI4bGaeyOeI0IaamyzamaaCaaaleqaba GaamiDaiaadseaaaGccaqI4bWaaSbaaSqaaiaaicdaaeqaaOGaaGyk aiaaiYcacaaMe8Uaam4ramaaDaaaleaacqGHRaWkaeaacqGHsislca aIXaaaaOGaaGikaiaadshacaaIPaGaaGikaiaajIhacqGHsislcaWG LbWaaWbaaSqabeaacaWG0bGaamiraaaakiaajIhadaWgaaWcbaGaaG imaaqabaGccaaIPaGaaGykaiaai2facaaIUaaaaa@59C6@  (5.10)

Вычислим матрицу G + (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaaaaa@3A35@ . Прежде всего, заметим, что согласно определению и соотношениям (3.2) и (5.4) матрица D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BC@  представляется разложением D=2rViω T (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dacqGHsislcaaIYaGaamOCaiaadAfacqGHsislcaWGPbGaeqyYdCNa amivamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaaaa@41CD@  и имеет характеристику D= r 2 ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH jpWDdaahaaWcbeqaaiaaikdaaaaabeaaaaa@3D20@ . Используя (3.3), находим

exp(tD)= e rt (ch(Dt)E D 1 (r T (3) +iω T (2) )sh(Dt)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyzaiaacI hacaGGWbGaaGikaiaadshacaWGebGaaGykaiaai2dacaWGLbWaaWba aSqabeaacqGHsislcaWGYbGaamiDaaaakiaaiIcaciGGJbGaaiiAai aaiIcacaWGebGaamiDaiaaiMcacaaMi8UaamyraiabgkHiTiaadsea daahaaWcbeqaaiabgkHiTiaaigdaaaGccaaMi8UaaGikaiaadkhaca WGubWaaWbaaSqabeaacaaIOaGaaG4maiaaiMcaaaGccqGHRaWkcaWG PbGaeqyYdCNaamivamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGykaiGacohacaGGObGaaGikaiaadseacaWG0bGaaGykaiaaiMca caaIUaaaaa@60BC@  (5.11)

Ввиду того, что

T (3) V=V T (3) =V, T (2) V T (2) =EV,V T (2) T (2) V=i T (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaaiodacaaIPaaaaOGaamOvaiaai2dacaWGwbGa amivamaaCaaaleqabaGaaGikaiaaiodacaaIPaaaaOGaaGypaiaadA facaaISaGaaGzbVlaadsfadaahaaWcbeqaaiaaiIcacaaIYaGaaGyk aaaakiaadAfacaWGubWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaa GccaaI9aGaamyraiabgkHiTiaadAfacaaISaGaaGzbVlaadAfacaWG ubWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccqGHsislcaWGub WaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaWGwbGaaGypaiab gkHiTiaadMgacaWGubWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaa aaaa@5E61@

и вследствие (3.4) справедливы следующие преобразования:

e tD S 2 e t D T = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaamiDaiaadseaaaGccaWGtbWaaWbaaSqabeaacaaIYaaa aOGaamyzamaaCaaaleqabaGaamiDaiaadseadaahaaqabeaacaWGub aaaaaakiaai2daaaa@3F46@

= σ e 2rt ω 2 (ch(Dt)E 1 D (r T (3) +iω T (2) )sh(Dt))V(ch(Dt)E 1 D (r T (3) iω T (2) )sh(Dt))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaeq4WdmNaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadkha caWG0baaaaGcbaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiI caciGGJbGaaiiAaiaaiIcacaWGebGaamiDaiaaiMcacaaMi8Uaamyr aiabgkHiTmaalaaabaGaaGymaaqaaiaadseaaaGaaGikaiaadkhaca WGubWaaWbaaSqabeaacaaIOaGaaG4maiaaiMcaaaGccqGHRaWkcaWG PbGaeqyYdCNaamivamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaO GaaGykaiGacohacaGGObGaaGikaiaadseacaWG0bGaaGykaiaaiMca caWGwbGaaGikaiGacogacaGGObGaaGikaiaadseacaWG0bGaaGykai aayIW7caWGfbGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiraaaacaaI OaGaamOCaiaadsfadaahaaWcbeqaaiaaiIcacaaIZaGaaGykaaaaki abgkHiTiaadMgacqaHjpWDcaWGubWaaWbaaSqabeaacaaIOaGaaGOm aiaaiMcaaaGccaaIPaGaaGjcVlGacohacaGGObGaaGikaiaadseaca WG0bGaaGykaiaaiMcacaaI9aaaaa@7C8F@

= σ e 2rt ω 2 [(ch(Dt) r D sh(Dt )) 2 V+ ω 2 D 2 sh 2 (Dt)(EV)+ iω D sh(Dt)(ch(Dt) r D sh(Dt))[V, T (2) ]]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaeq4WdmNaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadkha caWG0baaaaGcbaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiU facaaIOaGaci4yaiaacIgacaaIOaGaamiraiaadshacaaIPaGaeyOe I0YaaSaaaeaacaWGYbaabaGaamiraaaaciGGZbGaaiiAaiaaiIcaca WGebGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaamOv aiabgUcaRmaalaaabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcba GaamiramaaCaaaleqabaGaaGOmaaaaaaGcdaqfGaqabSqabeaacaaI YaaakeaaciGGZbGaaiiAaaaacaaIOaGaamiraiaadshacaaIPaGaaG ikaiaadweacqGHsislcaWGwbGaaGykaiabgUcaRmaalaaabaGaamyA aiabeM8a3bqaaiaadseaaaGaci4CaiaacIgacaaIOaGaamiraiaads hacaaIPaGaaGikaiGacogacaGGObGaaGikaiaadseacaWG0bGaaGyk aiabgkHiTmaalaaabaGaamOCaaqaaiaadseaaaGaci4CaiaacIgaca aIOaGaamiraiaadshacaaIPaGaaGykaiaaiUfacaWGwbGaaGilaiaa dsfadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaai2facaaIDb GaaGypaaaa@804C@

= σ e 2rt ω 2 [ E 2 {(ch(Dt) r D sh(Dt )) 2 + ω 2 D 2 sh 2 (Dt)}+ T (3) 2 {(ch(Dt) r D sh(Dt )) 2 ω 2 D 2 sh 2 (Dt)}+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaeq4WdmNaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadkha caWG0baaaaGcbaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaakiaaiU fadaWcaaqaaiaadweaaeaacaaIYaaaaiaaiUhacaaIOaGaci4yaiaa cIgacaaIOaGaamiraiaadshacaaIPaGaeyOeI0YaaSaaaeaacaWGYb aabaGaamiraaaaciGGZbGaaiiAaiaaiIcacaWGebGaamiDaiaaiMca caaIPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaHjp WDdaahaaWcbeqaaiaaikdaaaaakeaacaWGebWaaWbaaSqabeaacaaI YaaaaaaakmaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGObaaai aaiIcacaWGebGaamiDaiaaiMcacaaI9bGaey4kaSYaaSaaaeaacaWG ubWaaWbaaSqabeaacaaIOaGaaG4maiaaiMcaaaaakeaacaaIYaaaai aaiUhacaaIOaGaci4yaiaacIgacaaIOaGaamiraiaadshacaaIPaGa eyOeI0YaaSaaaeaacaWGYbaabaGaamiraaaaciGGZbGaaiiAaiaaiI cacaWGebGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0YaaSaaaeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaaca WGebWaaWbaaSqabeaacaaIYaaaaaaakmaavacabeWcbeqaaiaaikda aOqaaiGacohacaGGObaaaiaaiIcacaWGebGaamiDaiaaiMcacaaI9b Gaey4kaScaaa@81B3@

+ ω D sh(Dt)(ch(Dt) r D sh(Dt)) T (1) ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaS aaaeaacqaHjpWDaeaacaWGebaaaiGacohacaGGObGaaGikaiaadsea caWG0bGaaGykaiaaiIcaciGGJbGaaiiAaiaaiIcacaWGebGaamiDai aaiMcacqGHsisldaWcaaqaaiaadkhaaeaacaWGebaaaiGacohacaGG ObGaaGikaiaadseacaWG0bGaaGykaiaaiMcacaWGubWaaWbaaSqabe aacaaIOaGaaGymaiaaiMcaaaGccaaIDbGaaGOlaaaa@5180@

Интегрируя по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ , согласно (5.8), получаем выражения для элементов G jk (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGQbGaam4AaaqabaGccaaIOaGaamiDaiaaiMcaaaa@3B32@ , j,k{1,2} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaaiY cacaWGRbGaeyicI4SaaG4EaiaaigdacaaISaGaaGOmaiaai2haaaa@3E45@ , матрицы G + (t)= G + T (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaadEea daqhaaWcbaGaey4kaScabaGaamivaaaakiaaiIcacaWG0bGaaGykaa aa@4018@ :

G jk (t)= 0 t ( e sD S 2 e s D T ) jk ds,j,k{1,2}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGQbGaam4AaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aWa a8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaGikaiaadw gadaahaaWcbeqaaiaadohacaWGebaaaOGaam4uamaaCaaaleqabaGa aGOmaaaakiaadwgadaahaaWcbeqaaiaadohacaWGebWaaWbaaeqaba GaamivaaaaaaGccaaIPaWaaSbaaSqaaiaadQgacaWGRbaabeaakiaa dsgacaWGZbGaaGilaiaaywW7caWGQbGaaGilaiaadUgacqGHiiIZca aI7bGaaGymaiaaiYcacaaIYaGaaGyFaiaai6caaaa@5953@

Так как

0 t e 2rs sh(Ds)ch(Ds)ds= 1 2D e 2rt sh 2 (Dt)+ r D 0 t e 2rs sh 2 (Ds)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamyzamaaCaaaleqabaGa eyOeI0IaaGOmaiaadkhacaWGZbaaaOGaci4CaiaacIgacaaIOaGaam iraiaadohacaaIPaGaci4yaiaacIgacaaIOaGaamiraiaadohacaaI PaGaamizaiaadohacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiaads eaaaGaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadkhacaWG0baa aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacIgaaaGaaGikai aadseacaWG0bGaaGykaiabgUcaRmaalaaabaGaamOCaaqaaiaadsea aaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamyzam aaCaaaleqabaGaeyOeI0IaaGOmaiaadkhacaWGZbaaaOWaaubiaeqa leqabaGaaGOmaaGcbaGaci4CaiaacIgaaaGaaGikaiaadseacaWGZb GaaGykaiaadsgacaWGZbGaaGilaaaa@6CE9@

то

G 12 (t)= 2βϰω D 2 e 2rt sh 2 (Dt)W(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aWa aSaaaeaacaaIYaGaeqOSdi2efv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuGacqWFWpq+cqaHjpWDaeaacaWGebWaaWbaaSqabeaa caaIYaaaaaaakiaayIW7caWGLbWaaWbaaSqabeaacqGHsislcaaIYa GaamOCaiaadshaaaGcdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGa aiiAaaaacaaIOaGaamiraiaadshacaaIPaGaeyyyIORaam4vaiaaiI cacaWG0bGaaGykaiaai6caaaa@5FA5@  (5.12)

Вводя обозначения

U(t)= βϰ r (1 e 2rt ),V(t)= βϰ D e 2rt sh(2Dt), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiabek7aInrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpabaGaamOCaaaaca aMi8UaaGikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsisl caaIYaGaamOCaiaadshaaaGccaaIPaGaaGilaiaaywW7caWGwbGaaG ikaiaadshacaaIPaGaaGypamaalaaabaGaeqOSdiMae8h8dKpabaGa amiraaaacaaMi8UaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadk hacaWG0baaaOGaci4CaiaacIgacaaIOaGaaGOmaiaadseacaWG0bGa aGykaiaaiYcaaaa@69E7@  (5.13)

дифференцированием по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ , c учетом определения характеристики D 2 = r 2 ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCa aaleqabaGaaGOmaaaakiaai2dacaWGYbWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaa@3E03@ , проверяется равенство

G 22 (t)= σ D 2 0 t e 2rs sh 2 (Ds)ds=U(t) r ω G 12 (t)V(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aWa aSaaaeaacqaHdpWCaeaacaWGebWaaWbaaSqabeaacaaIYaaaaaaakm aapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaWGYbGaam4CaaaakmaavacabeWcbe qaaiaaikdaaOqaaiGacohacaGGObaaaiaaiIcacaWGebGaam4Caiaa iMcacaWGKbGaam4Caiaai2dacaWGvbGaaGikaiaadshacaaIPaGaey OeI0YaaSaaaeaacaWGYbaabaGaeqyYdChaaiaadEeadaWgaaWcbaGa aGymaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0IaamOvai aaiIcacaWG0bGaaGykaiaai6caaaa@6171@  (5.14)

Точно так же, разбивая интеграл на отдельные слагаемые, проверяется соотношение

G 11 (t)= σ ω 2 0 t e 2rs (ch(Ds) r D sh(Ds)) 2 ds=U(t) r ω G 12 (t)+V(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aWa aSaaaeaacqaHdpWCaeaacqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaO Waa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamyzamaa CaaaleqabaGaeyOeI0IaaGOmaiaadkhacaWGZbaaaOGaaGikaiGaco gacaGGObGaaGikaiaadseacaWGZbGaaGykaiabgkHiTmaalaaabaGa amOCaaqaaiaadseaaaGaaGjcVlGacohacaGGObGaaGikaiaadseaca WGZbGaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGKbGaam4C aiaai2dacaWGvbGaaGikaiaadshacaaIPaGaeyOeI0YaaSaaaeaaca WGYbaabaGaeqyYdChaaiaadEeadaWgaaWcbaGaaGymaiaaikdaaeqa aOGaaGikaiaadshacaaIPaGaey4kaSIaamOvaiaaiIcacaWG0bGaaG ykaiaai6caaaa@6CFA@  (5.15)

На основании (5.14), (5.15) запишем разложение для матрицы G + (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaaaaa@3A35@ :

G + (t)=(U(t) r ω W(t))E+W(t) T (1) +V(t) T (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaaiIca caWGvbGaaGikaiaadshacaaIPaGaeyOeI0YaaSaaaeaacaWGYbaaba GaeqyYdChaaiaayIW7caWGxbGaaGikaiaadshacaaIPaGaaGykaiaa dweacqGHRaWkcaWGxbGaaGikaiaadshacaaIPaGaamivamaaCaaale qabaGaaGikaiaaigdacaaIPaaaaOGaey4kaSIaamOvaiaaiIcacaWG 0bGaaGykaiaadsfadaahaaWcbeqaaiaaiIcacaaIZaGaaGykaaaaaa a@577E@  (5.16)

и выражение для ее детерминанта:

G(t)det G + (t)= G 11 (t) G 22 (t) G 12 2 (t)=(U(t) r ω W(t )) 2 V 2 (t) W 2 (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG0bGaaGykaiabggMi6kGacsgacaGGLbGaaiiDaiaayIW7caWG hbWaaSbaaSqaaiabgUcaRaqabaGccaaIOaGaamiDaiaaiMcacaaI9a Gaam4ramaaBaaaleaacaaIXaGaaGymaaqabaGccaaIOaGaamiDaiaa iMcacaWGhbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0b GaaGykaiabgkHiTiaadEeadaqhaaWcbaGaaGymaiaaikdaaeaacaaI YaaaaOGaaGikaiaadshacaaIPaGaaGypaiaaiIcacaWGvbGaaGikai aadshacaaIPaGaeyOeI0YaaSaaaeaacaWGYbaabaGaeqyYdChaaiaa dEfacaaIOaGaamiDaiaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaO GaeyOeI0IaamOvamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0bGa aGykaiabgkHiTiaadEfadaahaaWcbeqaaiaaikdaaaGccaaIOaGaam iDaiaaiMcacaaIUaaaaa@6CB7@  (5.17)

Заметим, наконец, что SpB S 2 =2(βr) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadc hacaWGcbGaam4uamaaCaaaleqabaGaaGOmaaaakiaai2dacaaIYaGa aGikaiabek7aIjabgkHiTiaadkhacaaIPaaaaa@40BF@ , а обратная матрица G + 1 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacqGHRaWkaeaacqGHsislcaaIXaaaaOGaaGikaiaadshacaaI Paaaaa@3BDE@  представляется формулой

G + 1 (t)= G 1 (t) G 22 (t) G 12 (t) G 12 (t) G 11 (t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacqGHRaWkaeaacqGHsislcaaIXaaaaOGaaGikaiaadshacaaI PaGaaGypaiaadEeadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIOa GaamiDaiaaiMcadaqadaqaauaabeqaciaaaeaacaWGhbWaaSbaaSqa aiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGykaaqaaiabgkHiTi aadEeadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaaGikaiaadshacaaI PaaabaGaeyOeI0Iaam4ramaaBaaaleaacaaIXaGaaGOmaaqabaGcca aIOaGaamiDaiaaiMcaaeaacaWGhbWaaSbaaSqaaiaaigdacaaIXaaa beaakiaaiIcacaWG0bGaaGykaaaaaiaawIcacaGLPaaacaaIUaaaaa@5935@  (5.18)

При этом если B=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dacaaIWaaaaa@383B@ , то G + (t)= G (t)=C(t,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHRaWkaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaadEea daWgaaWcbaGaeyOeI0cabeaakiaaiIcacaWG0bGaaGykaiaai2daca WGdbGaaGikaiaadshacaaISaGaamiDaiaaiMcaaaa@44E5@  и поэтому выполняется условие

h(x,0;t,x0)=f(x,t;x0,0).

Окончательный вид формулы (5.10) для функции h(x,λ;t,x0), полученный выше, приведен в следующем утверждении.

Теорема 5.1. При β>0, ω20, ω2β2 плотность h(x,λt,x0) производящей функции условного распределения вероятностей случайной величины Jtz~(s) имеет вид

h(x,λ;t,x0)=exp(t(βr))[(2π)2G(t)]1/2expω2(βr)12(x0,x0)(x,x)σ×

×exp12((xetDx0),G+1(t)(xetDx0)),rβ2+λσ21/2,

где функции U(t), V(t), W(t), G(t) определяются, соответственно, формулами (5.12), (5.13), (5.17), (5.18), а матрица D имеет вид

D=2rωω0.

На основании формулы (4.2) производящая функция условного распределения вероятностей случайной величины Jt[z~](s) определяется интегралом плотности h(x,λ;t,x0) по x 

Q(λ,t;x0)=R2h(x,λ;t,x0)dxexp[(tSpBS2+(x0,Bx0))/2][(2π)2detG+(t)]1/2×

×R2exp12[(x,Bx)+((xetDx0),G+1(t)(xetDx0))]dx.

Лемма 5.1. Пусть β>0, ω20, ω2β2. Тогда квадратичная форма ((B+G+1(t))x,x) положительна.

Доказательство. Собственные числа ν± матрицы D=A+S2B являются корнями уравнения ν2+2rν+ω2=0. Так как ν±=2r±(r2ω2)1/2, то maxReν±<0 при Reλ0 и ω20. При этих условиях Reν+<βRer<0 и поэтому eDs<es(βRer), s>0. Следовательно,

G+tS20teDs2ds<σ2ω2(Rerβ)1=(|Reρ|)1

ввиду отрицательности Reρ, и поэтому для любого вектора xR2 имеют место неравенства

(G+(t)x,x)G+(t)(x,x)(x,x)(|Reρ|)1. (5.19)

Так как вещественные симметричные матрицы G+(t), G+1(t) положительно определены, то, выбрав их положительно определенные квадратные корни, получаем, используя неравенство Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Буняковского:

(G+(t)x,x)(G+1(t)x,x)(G+(t)1/2x,G+1/2(t)x)(G+1/2(t)x,G+1/2(t)x)|(G+1/2(t)x,G+1/2(t)x)

и поэтому

(G+1(t)x,x)(x,x)(G+(t)x,x)1.

Вместе с оценкой (5.19) это дает неравенство

(G+1(t)x,x)>(x,x)|Reρ|,

откуда следует

((B+G+1(t))x,x))=((G+1(t)|Reρ|E)x,x))>0.

Используя положительную определенность матрицы B+G+1(t), вычисление интеграла производится посредством выделения полного квадрата по вектору x в показателе экспоненты подинтегрального выражения:

(x,Bx)+((xetDx0),G+1(t)(xetDx0))=(etDx0,B[E+G+(t)B]1etDx0)+

+((B+G+1(t))(x(B+G+1(t))1G+1(t)etDx0),x(B+G1(t))1G+1(t)etDx0).

Вычислив двумерный интеграл Пуассона по x, находим

Q(λ,tx0)=exp[tSpBS2+(x0[BetDTB[E+G+(t)B]1etD]x0)]det(E+G+(t)B)1/2. (5.20)

Подставляя явное выражение для матриц B и S, приходим к заключению, что справедлива следующая теорема.

Теорема 5.2. При β>0, ω20, ω2β2 производящая функция Q(λ,t;x0) распределения условных вероятностей при условии x~(0)=x0 определяется следующей формулой:

Q(λ,t;x0)=exp{(βr)[t+ω2(x0,[EetDT[E+2ω2(βr)G+(t)/σ]1etD]x0)/σ]}[det (E+2ω2(βr)G+(t)/σ)]1/2;

зависимость от λ определяется зависимостью от параметра r=(β2+λσ/2)1/2 и матрицы D.

Наконец, вычислим производящую функцию Q(λ,t) безусловного распределения вероятностей значений функционала Jt[x~(s)] от траекторий осцилляторного случайного процесса, которую мы называем обобщенной формулой Каца MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ Зигерта.

Согласно определению производящей функции Q(λ,t) (см. (4.1)), она выражается посредством интеграла

Q(λ,t)=Eexp(λJt[x~(s)])=R2Q(λ,t;x0)f(x0)dx0,

где плотность f() определяется формулой (3.6). Используя эти определения и (5.20), запишем интеграл в следующем виде:

R2Q(λ,t;x0)f(x0)dx0=exp(tSpBS2)(2π)2detCdet (E+G+(t)B)1/2×

×R2exp(12(x0,[C1B+etDTB[E+G+(t)B]1etD]x0))dx0,

где C=ϰE (см. (3.6)). Воспользуемся тем, что B<0 и C>0. В этом случае матрица в показателе экспоненты положительно определена, так как G+1(t)>0. Вычислим двумерный интеграл Пуассона:

Qλ,texp(t(βr))det(ECB+CetDTB[E+G+(t)B]1etD)det (E+G+(t)B1/2,

где использовано соотношение SpBS2=2(βr). Так как D=A+BS2, SpA=2β, то

Q(λ,t)=exp((β+r)t)det(etDTetD(1ϰρ)+CB[E+G+(t)B]1)det (E+G+(t)B)1/2

=exp((β+r)t)det((1ϰρ)(etDetDT+ρG(t))+ϰρE)1/2, (5.21)

где произведена циклическая перестановка матрицы etDT под оператором det и использована формула (5.8). Так как

D=2rViωT(2),DT=2rV+iωT(2),V=12(E+T(3)),

то, согласно (5.11),

eDt=ert(ch(Dt )E+rT(3)+iωT(2)Dsh(Dt)),

eDTt=ert(ch(Dt)E+rT(3)iωT(2)Dsh(Dt))

и поэтому

e2rteDteDTt=(1+2r2D2sh2(Dt))E2ωrT(1)D2sh2(Dt)+rT(3)Dsh(2Dt)L.

Заметим, что G (t)= G + (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaGaaGypaiabgkHi TiaadEeadaWgaaWcbaGaey4kaScabeaakiaaiIcacqGHsislcaWG0b GaaGykaaaa@4123@ , и поэтому, согласно (5.12), (5.13), (5.16), разложение матрицы G (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacqGHsislaeqaaOGaaGikaiaadshacaaIPaaaaa@3A40@  по базису E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam yraaaa@3876@ , T (l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaadYgacaaIPaaaaaaa@394F@ ; l=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiabgQYiXdaa@3D15@  имеет вид

e 2rt G (t)=η(L e 2rt ),η= βϰρ r . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaaGOmaiaadkhacaWG0baaaOGaam4ramaaBaaa leaacqGHsislaeqaaOGaaGikaiaadshacaaIPaGaaGypaiabeE7aOj aaiIcacaWGmbGaeyOeI0IaamyzamaaCaaaleqabaGaeyOeI0IaaGOm aiaadkhacaWG0baaaOGaaGykaiaaiYcacaaMf8Uaeq4TdGMaaGypam aalaaabaGaeqOSdi2efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuGacqWFWpq+cqaHbpGCaeaacaWGYbaaaiaai6caaaa@5F1E@

Вычислим коэффициенты разложения матрицы R=(1ϰρ)( e tD e t D T +ρ G (t))+ϰρE MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaaIOaGaaGymaiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfiGae8h8dKVaeqyWdiNaaGykaiaaiIcacaWGLbWaaW baaSqabeaacqGHsislcaWG0bGaamiraaaakiaadwgadaahaaWcbeqa aiabgkHiTiaadshacaWGebWaaWbaaeqabaGaamivaaaaaaGccqGHRa WkcqaHbpGCcaWGhbWaaSbaaSqaaiabgkHiTaqabaGccaaIOaGaamiD aiaaiMcacaaIPaGaey4kaSIae8h8dKVaeqyWdiNaamyraaaa@5F27@ . Так как

e 2rt [ e Dt e D T t +ρ G (t)]=(1+η)Lη e 2rt E, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeyOeI0IaaGOmaiaadkhacaWG0baaaOGaaG4waiaadwga daahaaWcbeqaaiabgkHiTiaadseacaWG0baaaOGaamyzamaaCaaale qabaGaeyOeI0IaamiramaaCaaabeqaaiaadsfaaaGaamiDaaaakiab gUcaRiabeg8aYjaadEeadaWgaaWcbaGaeyOeI0cabeaakiaaiIcaca WG0bGaaGykaiaai2facaaI9aGaaGikaiaaigdacqGHRaWkcqaH3oaA caaIPaGaamitaiabgkHiTiabeE7aOjaadwgadaahaaWcbeqaaiabgk HiTiaaikdacaWGYbGaamiDaaaakiaadweacaaISaaaaa@5B1C@

то

R=(1ϰρ)((1+η)L e 2rt ηE)+ϰρE. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaaIOaGaaGymaiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfiGae8h8dKVaeqyWdiNaaGykaiaaiIcacaaIOaGaaG ymaiabgUcaRiabeE7aOjaaiMcacaWGmbGaamyzamaaCaaaleqabaGa aGOmaiaadkhacaWG0baaaOGaeyOeI0Iaeq4TdGMaamyraiaaiMcacq GHRaWkcqWFWpq+cqaHbpGCcaWGfbGaaGOlaaaa@5D04@

Представим эту матрицу в виде R= L 0 e 2rt +γE MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaWGmbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGa aGOmaiaadkhacaWG0baaaOGaey4kaSIaeq4SdCMaamyraaaa@4072@ , где

L 0 =(1ϰρ)(1+η) 2r D 2 sh(Dt)[(rEω T (1) )sh(Dt)+ T (3) Dch(Dt)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIWaaabeaakiaai2dacaaIOaGaaGymaiabgkHiTmrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKVaeqyWdi NaaGykaiaaiIcacaaIXaGaey4kaSIaeq4TdGMaaGykamaalaaabaGa aGOmaiaadkhaaeaacaWGebWaaWbaaSqabeaacaaIYaaaaaaakiGaco hacaGGObGaaGikaiaadseacaWG0bGaaGykaiaaiUfacaaIOaGaamOC aiaadweacqGHsislcqaHjpWDcaaMi8UaamivamaaCaaaleqabaGaaG ikaiaaigdacaaIPaaaaOGaaGykaiGacohacaGGObGaaGikaiaadsea caWG0bGaaGykaiabgUcaRiaadsfadaahaaWcbeqaaiaaiIcacaaIZa GaaGykaaaakiaadseaciGGJbGaaiiAaiaaiIcacaWGebGaamiDaiaa iMcacaaIDbGaaGilaaaa@7286@

γ=(1+η)((1ϰρ) e 2rt +ϰρ)η. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ypaiaaiIcacaaIXaGaey4kaSIaeq4TdGMaaGykaiaaiIcacaaIOaGa aGymaiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfiGae8h8dKVaeqyWdiNaaGykaiaadwgadaahaaWcbeqaaiaaikda caWGYbGaamiDaaaakiabgUcaRiab=b=a5labeg8aYjaaiMcacqGHsi slcqaH3oaAcaaIUaaaaa@5B6F@

При вычислении ее детерминанта на основе коэффициентов разложения по базису E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam yraaaa@3876@ , T (l) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaadYgacaaIPaaaaaaa@394F@ ; l=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiabgQYiXdaa@3D15@  воспользуемся тем, что она имеет порядок 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36AF@ , т.е.

detR= γ 2 +γ e 2rt Sp L 0 + e 4rt det L 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaamOuaiaai2dacqaHZoWzdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcqaHZoWzcaaMi8UaamyzamaaCaaaleqabaGaaGOmaiaadk hacaWG0baaaOGaam4uaiaadchacaWGmbWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaamyzamaaCaaaleqabaGaaGinaiaadkhacaWG0baaaO GaaGjcVlGacsgacaGGLbGaaiiDaiaadYeadaWgaaWcbaGaaGimaaqa baGccaaIUaaaaa@53F1@

Тогда

(1ϰρ)(1+η)= (β+r) 2 4βr θ + ,(1+η)ϰρη= (βr) 2 4βr θ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsisltuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb ciab=b=a5labeg8aYjaaiMcacaaIOaGaaGymaiabgUcaRiabeE7aOj aaiMcacaaI9aWaaSaaaeaacaaIOaGaeqOSdiMaey4kaSIaamOCaiaa iMcadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aGaeqOSdiMaamOCaa aacqGHHjIUcqaH4oqCdaWgaaWcbaGaey4kaScabeaakiaaiYcacaaM f8UaaGikaiaaigdacqGHRaWkcqaH3oaAcaaIPaGae8h8dKVaeqyWdi NaeyOeI0Iaeq4TdGMaaGypaiabgkHiTmaalaaabaGaaGikaiabek7a IjabgkHiTiaadkhacaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG inaiabek7aIjaadkhaaaGaeyyyIORaeyOeI0IaeqiUde3aaSbaaSqa aiabgkHiTaqabaGccaaISaaaaa@78F9@

det L 0 = θ + 2 (2r) 2 D 4 sh 2 (Dt)[( r 2 ω 2 ) sh 2 (Dt) D 2 ch 2 (Dt)]= θ + 2 (2r) 2 D 2 sh 2 (Dt). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaamitamaaBaaaleaacaaIWaaabeaakiaai2dacqaH4oqC daqhaaWcbaGaey4kaScabaGaaGOmaaaakiaayIW7daWcaaqaaiaaiI cacaaIYaGaamOCaiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaWG ebWaaWbaaSqabeaacaaI0aaaaaaakmaavacabeWcbeqaaiaaikdaaO qaaiGacohacaGGObaaaiaaiIcacaWGebGaamiDaiaaiMcacaaIBbGa aGikaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHjpWDda ahaaWcbeqaaiaaikdaaaGccaaIPaWaaubiaeqaleqabaGaaGOmaaGc baGaci4CaiaacIgaaaGaaGikaiaadseacaWG0bGaaGykaiabgkHiTi aadseadaahaaWcbeqaaiaaikdaaaGccaaMi8+aaubiaeqaleqabaGa aGOmaaGcbaGaci4yaiaacIgaaaGaaGikaiaadseacaWG0bGaaGykai aai2facaaI9aGaeyOeI0IaeqiUde3aa0baaSqaaiabgUcaRaqaaiaa ikdaaaGcdaWcaaqaaiaaiIcacaaIYaGaamOCaiaaiMcadaahaaWcbe qaaiaaikdaaaaakeaacaWGebWaaWbaaSqabeaacaaIYaaaaaaakmaa vacabeWcbeqaaiaaikdaaOqaaiGacohacaGGObaaaiaaiIcacaWGeb GaamiDaiaaiMcacaaIUaaaaa@7767@

Так как матрицы T (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaaigdacaaIPaaaaaaa@3919@ , T (3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaaGikaiaaiodacaaIPaaaaaaa@391B@  имеют нулевой след, то

Sp L 0 = θ + (2r) 2 D 2 sh 2 (Dt),γ= θ + e 2rt θ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadc hacaWGmbWaaSbaaSqaaiaaicdaaeqaaOGaaGypaiabeI7aXnaaBaaa leaacqGHRaWkaeqaaOWaaSaaaeaacaaIOaGaaGOmaiaadkhacaaIPa WaaWbaaSqabeaacaaIYaaaaaGcbaGaamiramaaCaaaleqabaGaaGOm aaaaaaGccaaMi8+aaubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacI gaaaGaaGikaiaadseacaWG0bGaaGykaiaaiYcacaaMf8Uaeq4SdCMa aGypaiabeI7aXnaaBaaaleaacqGHRaWkaeqaaOGaaGjcVlaadwgada ahaaWcbeqaaiaaikdacaWGYbGaamiDaaaakiabgkHiTiabeI7aXnaa BaaaleaacqGHsislaeqaaOGaaGOlaaaa@5BF5@

Следовательно,

detR= e 2rt ([ θ + e rt θ e rt ] 2 θ θ + (2r) 2 D 2 sh 2 (Dt)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacw gacaGG0bGaamOuaiaai2dacaWGLbWaaWbaaSqabeaacaaIYaGaamOC aiaadshaaaGccaaIOaGaaG4waiabeI7aXnaaBaaaleaacqGHRaWkae qaaOGaamyzamaaCaaaleqabaGaamOCaiaadshaaaGccqGHsislcqaH 4oqCdaWgaaWcbaGaeyOeI0cabeaakiaadwgadaahaaWcbeqaaiabgk HiTiaadkhacaWG0baaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiab gkHiTiabeI7aXnaaBaaaleaacqGHsislaeqaaOGaeqiUde3aaSbaaS qaaiabgUcaRaqabaGcdaWcaaqaaiaaiIcacaaIYaGaamOCaiaaiMca daahaaWcbeqaaiaaikdaaaaakeaacaWGebWaaWbaaSqabeaacaaIYa aaaaaakiaayIW7daqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiiA aaaacaaIOaGaamiraiaadshacaaIPaGaaGykaiaai6caaaa@64BF@

Наконец, подставляя это выражение в знаменатель формулы (5.21), с учетом обозначений θ ± MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiabgglaXcqabaaaaa@39C3@ , получаем основной результат работы, который мы сформулируем в виде отдельного утверждения.

Теорема 5.3. При Reλ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gacqaH7oaBcaaI+aGaaGimaaaa@3AEA@  производящая функция Q(λ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcaaaa@3B91@  безусловного распределения вероятностей случайной величины, представленной значениями функционала Jts  от траекторий осцилляторного случайного процесса в случае, когда β>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG Opaiaaicdaaaa@3916@ , ω 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW baaSqabeaacaaIYaaaaOGaeyiyIKRaaGimaaaa@3B34@  и β 2 ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaW baaSqabeaacaaIYaaaaOGaeyiyIKRaeqyYdC3aaWbaaSqabeaacaaI Yaaaaaaa@3D04@ , определяется следующей формулой:

Q(λ,t)= 4rβ e βt ((β+r ) 2 e rt (βr) 2 e rt ) 2 4 r 2 ( β 2 r 2 ) 2 sh 2 (Dt) D 2 1/2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI cacqaH7oaBcaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaI0aGa amOCaiabek7aIjaadwgadaahaaWcbeqaaiabek7aIjaadshaaaaake aadaWadaqaaiaaiIcacaaIOaGaeqOSdiMaey4kaSIaamOCaiaaiMca daahaaWcbeqaaiaaikdaaaGccaWGLbWaaWbaaSqabeaacaWGYbGaam iDaaaakiabgkHiTiaaiIcacqaHYoGycqGHsislcaWGYbGaaGykamaa CaaaleqabaGaaGOmaaaakiaadwgadaahaaWcbeqaaiabgkHiTiaadk hacaWG0baaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa isdacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiabek7aInaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadkhadaahaaWcbeqaaiaaikda aaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaadaqfGaqabS qabeaacaaIYaaakeaaciGGZbGaaiiAaaaacaaIOaGaamiraiaadsha caaIPaaabaGaamiramaaCaaaleqabaGaaGOmaaaaaaaakiaawUfaca GLDbaadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaaaaGccaaISaaa aa@71CA@  (5.22)

где D= r 2 ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2 dadaGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH jpWDdaahaaWcbeqaaiaaikdaaaaabeaaaaa@3D20@ , r= β 2 +λσ/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dadaGcaaqaaiabek7aInaaCaaaleqabaGaaGOmaaaakiabgUcaRiab eU7aSjabeo8aZjaai+cacaaIYaaaleqaaaaa@402E@ .

6. Заключение. Полученная в работе формула (5.22), представляющая основной ее результат, выражает в явной форме, в терминах элементарных функций, характеристическую функцию (1.6) случайной величины

J t [ x ˜ (s)]= 0 t d x ˜ (s) ds 2 ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWG0baabeaakiaaiUfaceWG4bGbaGaacaaIOaGaam4Caiaa iMcacaaIDbGaaGypamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey 4kIipakmaabmaabaWaaSaaaeaacaWGKbGabmiEayaaiaGaaGikaiaa dohacaaIPaaabaGaamizaiaadohaaaaacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaamizaiaadohaaaa@4C74@

в случае, если x ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia GaaGikaiaadshacaaIPaaaaa@395D@ ; tR MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaadkfaaaa@3947@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  случайные траектории осцилляторного случайного процесса.

Кроме определенного прогресса в области изучения распределений вероятностей квадратичных функционалов от траекторий гауссовских случайных процессов, этот результат может иметь важные приложения в статистической радиофизике и квантовой оптике. Заметим, что каждая характеристическая функция такого рода пропорциональна детерминанту Фредгольма интегрального оператора, ядро которого связано с корреляционным интегральным оператором. По этой причине полученный результат может оказаться полезным в теории интегральных уравнений. Отметим также, что в работе изучен так называемый вырожденный случай, когда детерминанты каждой из матриц S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@37B4@  и V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36CE@  равны нулю. С этой точки зрения в дальнейшем важно изучить общий невырожденный случай, для которого, по-видимому, также возможно явное вычисление соответствующего детерминанта Фредгольма.

×

About the authors

Yu. P. Virchenko

Белгородский государственный технологический университет им. В. Г. Шухова; Белгородский государственный университет

Author for correspondence.
Email: virch@bsu.edu.ru
Russian Federation, Белгород; Белгород

A. S. Mazmanishvili

Национальный научный центр «Харьковский физико-технический институт»

Email: virch@bsu.edu.ru
Ukraine, Харьков

References

  1. Вирченко Ю. П., Мазманишвили А. С. Статистические свойства функционала-свертки от нормального марковского процесса// Докл. АН Укр. ССР. Сер. А. — 1989. — 1. — С. 14–16.
  2. Вирченко Ю. П., Мазманишвили А. С. Распределение вероятностей случайного функционала-свертки от нормального марковского процесса// Пробл. передачи информ. — 1990. — 26, № 3. — С. 96–101.
  3. Вирченко Ю. П., Мазманишвили А. С. Статистические свойства кросс-корреляционного функционала на траекториях двух процессов Орнштейна—Уленбека// Радиофиз. квант. электрон. — 1996. — 39, №7. — С. 916–924.
  4. Вирченко Ю. П., Мазманишвили А. С. Распределение кросс-корреляционного функционала от траекторий двух процессов Орнштейна—Уленбека// Докл. НАНУ. — 1996. — 4. — С. 27–30.
  5. Вирченко Ю. П., Мазманишвили А. С. Исследование статистики функционала контроля качества в теории обработки шероховатой поверхности// Функц. матер. — 2004. — 11, № 1. — С. 6–13.
  6. Гантмахер Ф. Р. Теория матриц. — М.: Наука, 1954.
  7. Гихман И. И., Скороход А. В. Теория случайных процессов. Т. 1. — М.: Наука, 1971.
  8. Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. — М.: Наука, 1977.
  9. Королюк В. С., Портенко Н. И., Скороход А. В., Турбин А. Ф. Handbook on probability theory and mathematical statistics. — М.: Наука, 1985.
  10. Новиков Е. А. Функционалы и метод случайных сил в теории турбулентности// ЖЭТФ. — 1964. — 47. — С. 1919–1927.
  11. Палин В. В. О разрешимости квадратных матричных уравнений// Вестн. Моск. ун-та. Сер. 1. Мат. мех. — 2008. — 6. — С. 36–41.
  12. Anderson T. W. The Statistical Analysis of Time Series. — New York: Wiley, 1971.
  13. Antosik P., Mikusinski J., Sikorski R. Theory of Distributions. The Sequential Approach. — Amsterdam: Elsevier, 1973.
  14. Arato M. Linear Stochastic Systems with Constant Coefficients. A Statistical Approach.— Berlin: Springer-Verlag, 1982.
  15. Doob J. L. Stochastic Processes. — New York: Wiley, 1953.
  16. Furutsu K. On the statistical theory of electromagnetic waves in a fluctuating medium// J. Res. Natl. Bur. Standards. Sec. D. — 1963. — 67. — P. 303–311.
  17. Horsthemke W., Lefever R. Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. — Berlin: Springer-Verlag, 1984.
  18. Ibragimov I. A., Rozanov Yu. A. Gaussian Random Processes. — New York: Springer-Verlag, 1978.
  19. Kac M. Probability and Related Topics in Physical Sciences. — New York: Interscience, 1957.
  20. Kac M., Ziegert A. J. F. On the theory of noise in radio receivers with square law detector// J. Appl. Phys. — 1947. — 18, № 4. — P. 383–397.
  21. Karhunen K. Über Linearen Methoden in der Wahrscheinlichkeit Srechung// Ann. Acad. Sci. Fenn. Ser. A. — 1947. — 1, № 2.
  22. Kendall M. Time Series. — London: Griffin, 1975.
  23. Lax M. Fluctuation and Coherence Phenomena in Classical and Quantum Physics. — New York: Gordon & Breach, 1968.
  24. Loéve M. Probability Theory. — Princeton, New Jersey: Van Nostrand, 1955.
  25. Pugachev V. S. Theory of Random Functions And Its Application to Control Problems. — Amsterdam: Elsevier, 2013.
  26. Pugachev V. S., Sinitsin I. N. Stochastic Differential Systems Analysis and Filtering. — Chichester–New York: World Scientific, 2002.
  27. Simon B. The P (φ) 2 Euclidian Quantum Field Theory. — Princeton, New Jersey: Princeton Univ. Press, 1974.
  28. Slepian D. Fluctuation of random noise power// Bell Systems Tech. J. — 1958. — 37, № 1. — P. 163–184.
  29. Stratonovich R. L. Selected Topics in the Theory of Random Noise. Vols. 1, 2. — New York: Gordon & Breach, 1963, 1967.
  30. Wong E., Zakai M. On the convergence of ordinary integrals to stochastic integrals// Ann. Math. Stat. — 1965. — 36, № 5. — P. 1560–1564.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Virchenko Y.P., Mazmanishvili A.S.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».