Structure of the essential spectrum and discrete spectrum of the energy operator of four-electron systems in the impurity Hubbard model. The third triplet state

Cover Page

Cite item

Full Text

Abstract

The structure of the essential spectrum and the discrete spectrum of the energy operator of four-electron systems in the Hubbard impurity model for the third triplet state of the system are examined. The following statements are proved. (a) The essential spectrum of the third triplet is the union of three segments and the discrete spectrum of the third triplet is empty. (b) The essential spectrum of the third triplet is the union of eight segments and the discrete spectrum of the third triplet consists of three eigenvalues. (c) The essential spectrum of the third triplet is the union of sixteen segments and the discrete spectrum of the third triplet consists of eleven eigenvalues.

Full Text

1 Введение

В 1963 г. почти одновременно и независимо появились три работы [3, 4, 9], в которых была предложена простая модель металла, ставшая фундаментальной моделью теории сильно коррелированных электронных систем. В этой модели рассматривается единственная невырожденная зона электронов с локальным кулоновским взаимодействием.

Гамильтониан модели содержит всего два параметра: параметр B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@  перескока электрона с узла на соседний узел решетки и параметр U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@  кулоновского отталкивания двух электронов в одном узле. В представлении вторичного квантования он записывается в виде

                                   H=B m,τ,γ a m,γ + a m+τ,γ +U m a m, + a m, a m, + a m, . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGypaiaadkeadaaeqbqabS qaaiaad2gacaaISaGaeqiXdqNaaGilaiabeo7aNbqab0GaeyyeIuoa kiaadggadaqhaaWcbaGaamyBaiaaiYcacqaHZoWzaeaacqGHRaWkaa GccaWGHbWaaSbaaSqaaiaad2gacqGHRaWkcqaHepaDcaaISaGaeq4S dCgabeaakiabgUcaRiaadwfadaaeqbqabSqaaiaad2gaaeqaniabgg HiLdGccaWGHbWaa0baaSqaaiaad2gacaaISaGaeyyKH0kabaGaey4k aScaaOGaamyyamaaBaaaleaacaWGTbGaaGilaiabggziTcqabaGcca WGHbWaa0baaSqaaiaad2gacaaISaGaey4KH8kabaGaey4kaScaaOGa amyyamaaBaaaleaacaWGTbGaaGilaiabgoziVcqabaGccaaIUaaaaa@6292@                                          (1)

Здесь через a m,γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaa0baaSqaaiaad2gacaaISa Gaeq4SdCgabaGaey4kaScaaaaa@3705@  ( a m,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad2gacaaISa Gaeq4SdCgabeaaaaa@3622@  ) обозначен ферми-оператор рождения (уничтожения) электрона со спином γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3368@  на узле m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32B3@ , суммирование по τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3386@  означает суммирование по ближайшим соседям в решетке.

Предложенная в [3, 4, 9] модель получила название модели Хаббарда в честь Дж. Хаббарда, внесшего фундаментальный вклад в изучение статистической механики этой системы, хотя локальная форма кулоновского взаимодействия впервые введена Андерсоном для примесной модели в металле (см. [1]. Напоминим также, что модель Хаббарда является частным случаем полярной модели Шубина MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Вонсовского (см. [15]), появившейся за тридцать лет до [3, 4, 9]. В модели Шубина MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  Вонсовского наряду с кулоновским взаимодействием на одном узле, учитывается взаимодействие электронов на соседних узлах.

Модель Хаббарда является приближением, которое используется в физике твердого тела для описания перехода между проводящим и диэлектрическим состояниями. Она представляет собой простейшую модель, описывающей взаимодействие частиц в решетке. Ее гамильтониан содержит только два слагаемых: кинетический член, соответствующий туннелированию («перескокам») частиц между узлами решетки, и слагаемое, соответствующее внутриузловому взаимодействию. Частицы могут быть фермионами, как в исходной работе Хаббарда, а также бозонами. Простота и достаточность гамильтониана (1) сделала модель Хаббарда весьма популярной и эффективной для описания сильно коррелированных электронных систем.

Модель Хаббарда хорошо описывает поведение частиц в периодическом потенциале при достаточно низких температурах, когда все частицы находятся в нижней блоховской зоне, а дальними взаимодействиями можно пренебречь. Если учитывается взаимодействие между частицами на разных узлах, то такую модель часто называют «расширенной моделью Хаббарда». Впервые эта модель была предложена для описания электронов в твердых телах, с тех пор она представляет особый интерес при изучении высокотемпературной сверхпроводимости. Позднее расширенная модель Хаббарда стала использоваться и при описании поведения ультрахолодных атомов в оптических решетках.

При рассмотрении электронов в твердых телах модель Хаббарда можно считать усложнением модели сильно связанных электронов, которая учитывает только член гамильтониана, связанный с перескоками электронов. В случае сильных взаимодействиях эти две модели могут давать значительно отличающиеся друг от друга результаты. При этом модель Хаббарда точно предсказывает существование так называемых изоляторов Мотта, в которых проводимость отсутствует из-за сильного отталкивания между частицами.

Модель Хаббарда основана на приближении сильно связанных электронов. В приближении сильной связи электроны изначально занимают стандартные орбитали в атомах (узлах решетки), а затем перескакивают на другие атомы в процессе проведения тока. Математически это представляется так называемым интегралом перескока. Этот процесс можно рассматривать как физическое явление, благодаря которому появляются электронные зоны в кристаллических материалах. Однако в более общих зонных теориях взаимодействия между электронами не рассматривается. Кроме интеграла перескока, объясняющего проводимость материала, модель Хаббарда содержит так называемое внутриузловое отталкивание, соответствующее кулоновскому отталкиванию между электронами. Это проводит к конкуренции между интегралом перескока, зависящим от взаимного расположения узлов решетки, и внутриузловым отталкиванием, которое от расположения атомов не зависит. Благодаря этому факту модель Хаббарда объясняет переход проводник-диэлектрик в оксидах некоторых переходных металлов. При нагревании такого материала расстояния между ближайшими соседними узлами в нем увеличиваются, интеграл перескока уменьшается, и внутриузловое отталкивание становится доминирующим фактором.

В настоящее время модель Хаббарда является одной из наиболее интенсивно изучаемых многоэлектронных моделей металла (см. [8, 10-12, 18]). Однако до сих пор имеется очень мало точных результатов для спектра и волновых функций кристалла, описываемого моделью Хаббарда, и получение соответствующих утверждений представляет большой интерес.

В [10] изучался спектр и волновые функции системы двух электронов в кристалле, который описывается гамильтонианом Хаббарда. Известно, что двухэлектронные системы могут находиться в двух состояниях: триплетном и синглетном (см. [8, 10-12, 18]. В [10] доказано, что спектр гамильтониана H t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaWbaaSqabeaacaWG0baaaa aa@33B4@  системы в триплетном состоянии чисто непрерывен и совпадает с отрезком [m,M] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyBaiaaiYcacaWGnbGaaG yxaaaa@3607@ , а у оператора H s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaWbaaSqabeaacaWGZbaaaa aa@33B3@  системы в синглетном состоянии, кроме непрерывного спектра [m,M] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyBaiaaiYcacaWGnbGaaG yxaaaa@3607@ , при некоторых значениях квазиимпульса существует единственное антисвязанное состояние (см. [10]). Для антисвязанного состояния реализуется такое коррелированное движение электронов, при котором велик вклад двоичных состояний. При этом в силу замкнутости системы энергия должна оставаться постоянной и большой. Это вынуждает электроны не расходиться на большие расстояния. Далее, существенным является то обстоятельство, что связанные состояния (их иногда называют состояния типа рассеяния) ниже непрерывного спектра не формируется. Это вполне понятно, так как взаимодействие имеет характер отталкивания. Заметим, что при U<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGipaiaaicdaaaa@341B@ реализуется, как нетрудно видеть, обратная ситуация: ниже непрерывного спектра имеется связанное состояние (антисвязанные состояния отсутствуют), поскольку в этом случае электроны притягиваются друг к другу.

Для первой полосы спектр не зависит от параметра U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@  кулоновского взаимодействия двух электронов на одном узле и соответствует энергии двух невзаимодействующих электронов, в точности совпадая с триплетной полосой. Вторая полоса в гораздо большей степени определяется кулоновским взаимодействием: от U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@  зависят как амплитуды, так и энергия двух электронов, причем сама полоса исчезает при U0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaeyOKH4QaaGimaaaa@3542@ , а при U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaeyOKH4QaeyOhIukaaa@35F9@  неограниченно возрастает. Вторая полоса в основном соответствует одночастичному состоянию, а именно движению двойки, т.е. двухэлектронным связанным состояниям.

В [1] изучался спектр и волновые функции системы трёх электронов в кристалле, который описывается гамильтонианом Хаббарда. Известно, что трехэлектронные системы могут находиться в трех состояниях: квартетном и двух дублетных (см. [1]).

Квартетное состояние соответствует свободному движению трех электронов на решетке, и ему отвечают базисные функции

                                                   q m,n,p 3/2 = a m, + a n, + a p, + φ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaa0baaSqaaiaad2gacaaISa GaamOBaiaaiYcacaWGWbaabaGaaG4maiaai+cacaaIYaaaaOGaaGyp aiaadggadaqhaaWcbaGaamyBaiaaiYcacqGHrgsRaeaacqGHRaWkaa GccaWGHbWaa0baaSqaaiaad6gacaaISaGaeyyKH0kabaGaey4kaSca aOGaamyyamaaDaaaleaacaWGWbGaaGilaiabggziTcqaaiabgUcaRa aakiabeA8aQnaaBaaaleaacaaIWaaabeaakiaai6caaaa@4E4C@

В [1] доказано, что существенный спектр системы в квартетном состоянии состоит из единственного отрезка, а трехэлектронное связанное состояние или трехэлектронное антисвязанное состояние отсутствуют.

Дублетному состоянию соответствуют базисные функции

                              1 d m,n,p 1/2 = a m, + a n, + a p, + φ 0 , 2 d m,n,p 1/2 = a m, + a n, + a p, + φ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGccaWGKb Waa0baaSqaaiaad2gacaaISaGaamOBaiaaiYcacaWGWbaabaGaaGym aiaai+cacaaIYaaaaOGaaGypaiaadggadaqhaaWcbaGaamyBaiaaiY cacqGHrgsRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaaiaad6gacaaI SaGaey4KH8kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWGWbGaaG ilaiabggziTcqaaiabgUcaRaaakiabeA8aQnaaBaaaleaacaaIWaaa beaakiaaiYcacaaMf8+aaWbaaSqabeaacaaIYaaaaOGaamizamaaDa aaleaacaWGTbGaaGilaiaad6gacaaISaGaamiCaaqaaiaaigdacaaI VaGaaGOmaaaakiaai2dacaWGHbWaa0baaSqaaiaad2gacaaISaGaey yKH0kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWGUbGaaGilaiab ggziTcqaaiabgUcaRaaakiaadggadaqhaaWcbaGaamiCaiaaiYcacq GHtgYRaeaacqGHRaWkaaGccqaHgpGAdaWgaaWcbaGaaGimaaqabaGc caaIUaaaaa@6E32@

Если ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@  и U>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGOpaiaaicdaaaa@341D@ , то существенный спектр оператора первого дублетного состояния H ˜ 1 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIXaaabaGaamizaaaaaaa@3521@  является объединением ровно трех отрезков, а дискретный спектр состоит из единственной точки, т.е. в системе существует единственное антисвязанное состояние. В двумерном случае имеем аналогичные результаты. В трехмерном случае либо существенный спектр оператора первого дублетного состояния H ˜ 1 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIXaaabaGaamizaaaaaaa@3521@  является объединением ровно трех отрезков, а дискретный спектр состоит из единственной точки, либо существенный спектр является объединением двух отрезков, а дискретный спектр пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр оператора пуст, т.е., в системе антисвязанные состояние отсутствуют. В одномерном случае существенный спектр оператора второго дублетного состояния H ˜ 2 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaamizaaaaaaa@3522@  является объединением трёх отрезков, а дискретный спектр содержит не более одной точки. В двумерном случае имеем аналогичные результаты. В трехмерном случае либо существенный спектр оператора второго дублетного состояния H ˜ 2 d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaamizaaaaaaa@3522@  является объединением трех отрезков, а дискретный спектр содержит не более одной точки, т.е. в системе существует не более одного антисвязанного состояния, либо существенный спектр является объединением двух отрезков, а дискретный спектр пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр пуст, т.е., в системе антисвязанные состояния отсутствуют.

В [16] изучался спектр и волновые функции системы четырех электронов в кристалле, который описывается гамильтонианом Хаббарда в триплетном состоянии системы. Четырехэлектронные системы могут находиться в шести состояниях: квинтетном, трех триплетных и двух синглетных (см. [16]). Триплетным состояниям соответствуют следующие базисные функции:

1 t m,n,p,r 1 = a m, + a n, + a p, + a r, + φ 0 , 2 t m,n,p,r 1 = a m, + a n, + a p, + a r, + φ 0 , 3 t m,n,p,r 1 = a m, + a n, + a p, + a r, + φ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGccaWG0b Waa0baaSqaaiaad2gacaaISaGaamOBaiaaiYcacaWGWbGaaGilaiaa dkhaaeaacaaIXaaaaOGaaGypaiaadggadaqhaaWcbaGaamyBaiaaiY cacqGHrgsRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaaiaad6gacaaI SaGaeyyKH0kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWGWbGaaG ilaiabggziTcqaaiabgUcaRaaakiaadggadaqhaaWcbaGaamOCaiaa iYcacqGHtgYRaeaacqGHRaWkaaGccqaHgpGAdaWgaaWcbaGaaGimaa qabaGccaaISaGaaGzbVpaaCaaaleqabaGaaGOmaaaakiaadshadaqh aaWcbaGaamyBaiaaiYcacaWGUbGaaGilaiaadchacaaISaGaamOCaa qaaiaaigdaaaGccaaI9aGaamyyamaaDaaaleaacaWGTbGaaGilaiab ggziTcqaaiabgUcaRaaakiaadggadaqhaaWcbaGaamOBaiaaiYcacq GHrgsRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaaiaadchacaaISaGa ey4KH8kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWGYbGaaGilai abggziTcqaaiabgUcaRaaakiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiYcacaaMf8+aaWbaaSqabeaacaaIZaaaaOGaamiDamaaDaaale aacaWGTbGaaGilaiaad6gacaaISaGaamiCaiaaiYcacaWGYbaabaGa aGymaaaakiaai2dacaWGHbWaa0baaSqaaiaad2gacaaISaGaeyyKH0 kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWGUbGaaGilaiabgozi VcqaaiabgUcaRaaakiaadggadaqhaaWcbaGaamiCaiaaiYcacqGHrg sRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaaiaadkhacaaISaGaeyyK H0kabaGaey4kaScaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaG Olaaaa@9ECF@

Если ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@  и U>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGOpaiaaicdaaaa@341D@ , то существенный спектр оператора в первом триплетном состоянии 1 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3623@  является объединением двух отрезков, а дискретный спектр пуст. В двумерном случае имеем аналогичные результаты. В трехмерном случае либо существенный спектр оператора в первом триплетном состоянии 1 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3623@  является объединением двух отрезков, а дискретный спектр пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр пуст. Если ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@  и U>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGOpaiaaicdaaaa@341D@ , то существенный спектр оператора второго дублетного состояния 2 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaikdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3624@  является объединением ровно трех отрезков, а дискретный спектр содержит не более одной точки. В двумерном случае имеем аналогичные результаты. В трехмерном случае либо существенный спектр оператора во втором триплетном состоянии 2 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaikdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3624@  является объединением трех отрезков, а дискретный спектр содержит не более одной точки, либо существенный спектр является объединением двух отрезков, а дискретный спектр пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр пуст.

Если ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@  и U>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGOpaiaaicdaaaa@341D@ , то существенный спектр оператора в третьем триплетном состоянии 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением ровно трех отрезков, а дискретный спектр содержит не более одной точки. В двумерном случае имеем аналогичные результаты. В трехмерном случае либо существенный спектр оператора третьего триплетного состояния 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков, а дискретный спектр содержит не более одной точки, либо существенный спектр является объединением двух отрехков, а дискретный спектр пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр пуст. Итак, здесь существует три типа триплетных состояний, имеющих различное происхождение.

В [17] изучался спектр и волновые функции системы четырех электронов в кристалле, который описывается гамильтонианом Хаббарда в квинтетном и синглетных состояниях системы. В квинтетном состоянии свободные движения четырех электронов в решетке описываются следующими базисными функциями:

                                                q m,n,p,r 2 = a m, + a n, + a p, + a r, + φ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaa0baaSqaaiaad2gacaaISa GaamOBaiaaiYcacaWGWbGaaGilaiaadkhaaeaacaaIYaaaaOGaaGyp aiaadggadaqhaaWcbaGaamyBaiaaiYcacqGHrgsRaeaacqGHRaWkaa GccaWGHbWaa0baaSqaaiaad6gacaaISaGaeyyKH0kabaGaey4kaSca aOGaamyyamaaDaaaleaacaWGWbGaaGilaiabggziTcqaaiabgUcaRa aakiaadggadaqhaaWcbaGaamOCaiaaiYcacqGHrgsRaeaacqGHRaWk aaGccqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIUaaaaa@541A@

В [17] доказано, что спектр системы в квинтетном состоянии чисто непрерывен и совпадает с сегментом [4A8Bν,4A+8Bν] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGinaiaadgeacqGHsislca aI4aGaamOqaiabe27aUjaaiYcacaaI0aGaamyqaiabgUcaRiaaiIda caWGcbGaeqyVd4MaaGyxaaaa@3F9C@ , и в системе отсутствуют четырехэлектронные связанные состояния или четырехэлектронные антисвязанные состояния. Синглетному состоянию соответствуют следующие базисные функции:

                         1 s p,q,r,t 0 = a p, + a q, + a r, + a t, + φ 0 , 2 s p,q,r,t 0 = a p, + a q, + a r, + a t, + φ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGccaWGZb Waa0baaSqaaiaadchacaaISaGaamyCaiaaiYcacaWGYbGaaGilaiaa dshaaeaacaaIWaaaaOGaaGypaiaadggadaqhaaWcbaGaamiCaiaaiY cacqGHrgsRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaaiaadghacaaI SaGaeyyKH0kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWGYbGaaG ilaiabgoziVcqaaiabgUcaRaaakiaadggadaqhaaWcbaGaamiDaiaa iYcacqGHtgYRaeaacqGHRaWkaaGccqaHgpGAdaWgaaWcbaGaaGimaa qabaGccaaISaGaaGzbVpaaCaaaleqabaGaaGOmaaaakiaadohadaqh aaWcbaGaamiCaiaaiYcacaWGXbGaaGilaiaadkhacaaISaGaamiDaa qaaiaaicdaaaGccaaI9aGaamyyamaaDaaaleaacaWGWbGaaGilaiab ggziTcqaaiabgUcaRaaakiaadggadaqhaaWcbaGaamyCaiaaiYcacq GHtgYRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaaiaadkhacaaISaGa eyyKH0kabaGaey4kaScaaOGaamyyamaaDaaaleaacaWG0bGaaGilai abgoziVcqaaiabgUcaRaaakiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiYcaaaa@7A1A@

и эти два синглетные состояния имеют различное происхождение.

Если ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@  и U>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGOpaiaaicdaaaa@341D@ , то существенный спектр оператора первого синглетного состояния 1 H ˜ 4 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaaI0aaabaGaam4Caaaaaaa@3625@  является объединением ровно трех отрезков, а дискретный спектр состоит из единственной точки. В двумерном случае имеем аналогичные результаты. В трехмерном случае существенный спектр оператора первого синглетного состояния 1 H ˜ 4 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaaI0aaabaGaam4Caaaaaaa@3625@  является объединением трех отрезков, а дискретный спектр состоит из единственной точки, либо существенный спектр является объединением двух отрезков, а дискретный спектр пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр оператора 1 H ˜ 4 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaigdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaaI0aaabaGaam4Caaaaaaa@3625@  пуст. Если ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@  и U>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGOpaiaaicdaaaa@341D@ , то существенный спектр оператора второго синглетного состояния 2 H ˜ 4 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaikdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaaI0aaabaGaam4Caaaaaaa@3626@  является объединением ровно трех отрезков, а дискретный спектр состоит из единственной точки. В двумерном случае имеем аналогичные результаты. В трехмерном случае существенный спектр оператора второго синглетного состояния 2 H ˜ 4 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaikdaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaaI0aaabaGaam4Caaaaaaa@3626@  является объединением трех отрезков, а дискретный спектр состоит из единственной точки, либо существенный спектр является объединением двух отрезков, а дискретный спектр оператора пуст, либо существенный спектр состоит из единственного отрезка, а дискретный спектр пуст.

2 Гамильтониан системы

В настоящей работе рассматривается оператор энергии четырехэлектронных систем в примесной модели Хаббарда и описывается структура существенного и дискретного спектров системы для третьих триплетных состояний. Гамильтониан рассматриваемой модели имеет вид

             H=A m,γ a m,γ + a m,γ +B m,τ,γ a m,γ + a m+τ,γ +U m a m, + a m, a m, + a m, + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGypaiaadgeadaaeqbqabS qaaiaad2gacaaISaGaeq4SdCgabeqdcqGHris5aOGaamyyamaaDaaa leaacaWGTbGaaGilaiabeo7aNbqaaiabgUcaRaaakiaadggadaWgaa WcbaGaamyBaiaaiYcacqaHZoWzaeqaaOGaey4kaSIaamOqamaaqafa beWcbaGaamyBaiaaiYcacqaHepaDcaaISaGaeq4SdCgabeqdcqGHri s5aOGaamyyamaaDaaaleaacaWGTbGaaGilaiabeo7aNbqaaiabgUca RaaakiaadggadaWgaaWcbaGaamyBaiabgUcaRiabes8a0jaaiYcacq aHZoWzaeqaaOGaey4kaSIaamyvamaaqafabeWcbaGaamyBaaqab0Ga eyyeIuoakiaadggadaqhaaWcbaGaamyBaiaaiYcacqGHrgsRaeaacq GHRaWkaaGccaWGHbWaaSbaaSqaaiaad2gacaaISaGaeyyKH0kabeaa kiaadggadaqhaaWcbaGaamyBaiaaiYcacqGHtgYRaeaacqGHRaWkaa GccaWGHbWaaSbaaSqaaiaad2gacaaISaGaey4KH8kabeaakiabgUca Raaa@739A@

         +( A 0 A) γ a 0,γ + a 0,γ +( B 0 B) τ,γ ( a 0,γ + a τ,γ + a τ,γ + a 0,γ )+( U 0 U) a 0, + a 0, a 0, + a 0, , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIOaGaamyqamaaBaaale aacaaIWaaabeaakiabgkHiTiaadgeacaaIPaWaaabuaeqaleaacqaH ZoWzaeqaniabggHiLdGccaWGHbWaa0baaSqaaiaaicdacaaISaGaeq 4SdCgabaGaey4kaScaaOGaamyyamaaBaaaleaacaaIWaGaaGilaiab eo7aNbqabaGccqGHRaWkcaaIOaGaamOqamaaBaaaleaacaaIWaaabe aakiabgkHiTiaadkeacaaIPaWaaabuaeqaleaacqaHepaDcaaISaGa eq4SdCgabeqdcqGHris5aOGaaGikaiaadggadaqhaaWcbaGaaGimai aaiYcacqaHZoWzaeaacqGHRaWkaaGccaWGHbWaaSbaaSqaaiabes8a 0jaaiYcacqaHZoWzaeqaaOGaey4kaSIaamyyamaaDaaaleaacqaHep aDcaaISaGaeq4SdCgabaGaey4kaScaaOGaamyyamaaBaaaleaacaaI WaGaaGilaiabeo7aNbqabaGccaaIPaGaey4kaSIaaGikaiaadwfada WgaaWcbaGaaGimaaqabaGccqGHsislcaWGvbGaaGykaiaadggadaqh aaWcbaGaaGimaiaaiYcacqGHrgsRaeaacqGHRaWkaaGccaWGHbWaaS baaSqaaiaaicdacaaISaGaeyyKH0kabeaakiaadggadaqhaaWcbaGa aGimaiaaiYcacqGHtgYRaeaacqGHRaWkaaGccaWGHbWaaSbaaSqaai aaicdacaaISaGaey4KH8kabeaakiaaiYcaaaa@81B8@               (2)

где A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  ( A 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaicdaaeqaaa aa@336D@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ энергия электрона в узле решетке, B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@  ( B 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaaicdaaeqaaa aa@336E@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ интеграл переноса между соседними узлами (между электрона и примесями); для удобства считаем, что B>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaaGOpaiaaicdaaaa@340A@  ( B 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@34FA@  ), τ=± e j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeyySaeRaamyzam aaBaaaleaacaWGQbaabeaaaaa@3840@ , j=1,2,,ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaeqyVd4gaaa@39EA@ , где e j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaadQgaaeqaaa aa@33C6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ единичные орты, т.е. суммирование ведется по ближайшим соседям; U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ параметр кулоновского взаимодействия двух электронов на одном узле, γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3368@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ спиновый индекс, γ= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI9aGaeyyKH0kaaa@361A@  или γ= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI9aGaey4KH8kaaa@361E@ ; через MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHrgsRaaa@33AC@  и MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHtgYRaaa@33B0@  обозначены значения спина 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiaaikdaaaa@33F1@  и 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaG4laiaaikdaaa a@34DE@ ; a m,γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaa0baaSqaaiaad2gacaaISa Gaeq4SdCgabaGaey4kaScaaaaa@3705@  и a m,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad2gacaaISa Gaeq4SdCgabeaaaaa@3622@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ соответственно операторы рождения и уничтожения электрона в узле m Z ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaeyicI4SaamOwamaaCaaale qabaGaeqyVd4gaaaaa@36FB@ .

Энергия системы зависит от ее полного спина S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbaaaa@3299@ . В случае насыщенного ферромагнитного состояния ( S= N e /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaad6eadaWgaaWcba GaamyzaaqabaGccaaIVaGaaGOmaaaa@36C8@ , где N e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobWaaSbaaSqaaiaadwgaaeqaaa aa@33AA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ число электронов в системе) решение задачи является точным и тривиальным для любого допустимого числа электронов N e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobWaaSbaaSqaaiaadwgaaeqaaa aa@33AA@ . В этом случае система представляет собой идеальный ферми-газ электронов с одним направлением проекции спинов.

Наряду с гамильтонианом H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@ , N e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobWaaSbaaSqaaiaadwgaaeqaaa aa@33AA@  -электронная система характеризуется полным спином S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbaaaa@3299@ , S= S max , S max 1,, S min MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaadofadaWgaaWcba GaciyBaiaacggacaGG4baabeaakiaaiYcacaWGtbWaaSbaaSqaaiGa c2gacaGGHbGaaiiEaaqabaGccqGHsislcaaIXaGaaGilaiablAcilj aaiYcacaWGtbWaaSbaaSqaaiGac2gacaGGPbGaaiOBaaqabaaaaa@43E6@ , S max = N e /2, S min =0,1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaGccaaI9aGaamOtamaaBaaaleaacaWGLbaabeaakiaa i+cacaaIYaGaaGilaiaadofadaWgaaWcbaGaciyBaiaacMgacaGGUb aabeaakiaai2dacaaIWaGaaGilaiaaigdacaaIVaGaaGOmaaaa@42CF@ . Гамильтониан (2) коммутирует со всеми компонентами оператора S=( S + , S , S z ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGypaiaaiIcacaWGtbWaaW baaSqabeaacqGHRaWkaaGccaaISaGaam4uamaaCaaaleqabaGaeyOe I0caaOGaaGilaiaadofadaahaaWcbeqaaiaadQhaaaGccaaIPaaaaa@3C2C@  полного спина системы, поэтому структура собственных функций и собственные значения системы зависят от S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbaaaa@3299@ . Гамильтониан H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@  действует в антисимметрическом пространстве Фока H as MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaWGHbGaam4Caaqabaaa aa@3E4D@ .

Пусть φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaaGimaaqaba aaaa@3464@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ вакуумный вектор в пространстве H as MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaWGHbGaam4Caaqabaaa aa@3E4D@ . Третье триплетное состояние соответствует свободному движению четырех электронов на решетке и их взаимодействие, и ему отвечают базисные функции

                                              3 t p,q,r,k Z ν 1 = a p + a q, + a r + a k + φ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWG0b Waa0baaSqaaiaadchacaaISaGaamyCaiaaiYcacaWGYbGaaGilaiaa dUgacqGHiiIZcaWGAbWaaWbaaeqabaGaeqyVd4gaaaqaaiaaigdaaa GccaaI9aGaamyyamaaDaaaleaacaWGWbGaeyyKH0kabaGaey4kaSca aOGaamyyamaaDaaaleaacaWGXbGaaGilaiabgoziVcqaaiabgUcaRa aakiaadggadaqhaaWcbaGaamOCaiabggziTcqaaiabgUcaRaaakiaa dggadaqhaaWcbaGaam4AaiabggziTcqaaiabgUcaRaaakiabeA8aQn aaBaaaleaacaaIWaaabeaakiaai6caaaa@5731@

Подпространство 3 H p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaakiab=TqiinaaDaaa leaacaWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaey icI4SaamOwamaaCaaabeqaaiabe27aUbaaaeaacaaIXaaaaaaa@4850@ , соответствующее третьему триплетному состоянию, есть множество всех векторов вида

                                3 ψ t 1 = p,q,r,k Z ν f ˜ (p,q,r,k) 3 t p,q,r,k Z ν 1 , f ˜ l 2 as , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccqaHip qEdaqhaaWcbaGaamiDaaqaaiaaigdaaaGccaaI9aWaaabuaeqaleaa caWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaeyicI4 SaamOwamaaCaaabeqaaiabe27aUbaaaeqaniabggHiLdGcdaaiaaqa aiaadAgaaiaawoWaaiaaiIcacaWGWbGaaGilaiaadghacaaISaGaam OCaiaaiYcacaWGRbGaaGykamaaCaaaleqabaGaaG4maaaakiaadsha daqhaaWcbaGaamiCaiaaiYcacaWGXbGaaGilaiaadkhacaaISaGaam 4AaiabgIGiolaadQfadaahaaqabeaacqaH9oGBaaaabaGaaGymaaaa kiaaiYcacaaMf8+aaacaaeaacaWGMbaacaGLdmaacqGHiiIZcaWGSb Waa0baaSqaaiaaikdaaeaacaWGHbGaam4CaaaakiaaiYcaaaa@6397@

где l 2 as MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaa0baaSqaaiaaikdaaeaaca WGHbGaam4Caaaaaaa@3579@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ подпространство антисимметричных функций из пространства l 2 (( Z ν ) 4 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaaiIcacaWGAbWaaWbaaSqabeaacqaH9oGBaaGccaaIPaWa aWbaaSqabeaacaaI0aaaaOGaaGykaaaa@3A31@ .

Теорема 1  Подпространство 3 H ˜ p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83c HGeacaGLdmaadaqhaaWcbaGaamiCaiaaiYcacaWGXbGaaGilaiaadk hacaaISaGaam4AaiabgIGiolaadQfadaahaaqabeaacqaH9oGBaaaa baGaaGymaaaaaaa@4912@  инвариантно относительно оператора H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@ , и сужение 3 H t 1 =H / 3 H p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWGib Waa0baaSqaaiaadshaaeaacaaIXaaaaOGaaGypaiaadIeacaaIVaWa aSbaaSqaamaaCaaabeqaaiaaiodaaaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqaacqWFlecsdaqhaaqaaiaadchacaaISaGa amyCaiaaiYcacaWGYbGaaGilaiaadUgacqGHiiIZcaWGAbWaaWbaae qabaGaeqyVd4gaaaqaaiaaigdaaaaabeaaaaa@4E55@  оператора H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@  на подпространство 3 H p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaakiab=TqiinaaDaaa leaacaWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaey icI4SaamOwamaaCaaabeqaaiabe27aUbaaaeaacaaIXaaaaaaa@4850@  является ограниченным самосопряженным оператором. Он порождает ограниченный самосопряженный оператор 3 H ¯ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaqdaa qaaiaadIeaaaWaa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3574@ , действующий в пространстве l 2 as MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaa0baaSqaaiaaikdaaeaaca WGHbGaam4Caaaaaaa@3579@  по формуле

             ( 3 H ¯ t 1 f)(p,q,r,k)=4Af(p,q,r,k)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWaaWbaaSqabeaacaaIZaaaaO Waa0aaaeaacaWGibaaamaaDaaaleaacaWG0baabaGaaGymaaaakiaa dAgacaaIPaGaaGikaiaadchacaaISaGaamyCaiaaiYcacaWGYbGaaG ilaiaadUgacaaIPaGaaGypaiaaisdacaWGbbGaamOzaiaaiIcacaWG WbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaaGykaiabgU caRaaa@4A98@

       +B τ [f(p+τ,q,r,k)+f(p,q+τ,r,k)+f(p,q,r+τ,k)+f(p,q,r,k+τ)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGcbWaaabuaeqaleaacq aHepaDaeqaniabggHiLdGccaaIBbGaamOzaiaaiIcacaWGWbGaey4k aSIaeqiXdqNaaGilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaaG ykaiabgUcaRiaadAgacaaIOaGaamiCaiaaiYcacaWGXbGaey4kaSIa eqiXdqNaaGilaiaadkhacaaISaGaam4AaiaaiMcacqGHRaWkcaWGMb GaaGikaiaadchacaaISaGaamyCaiaaiYcacaWGYbGaey4kaSIaeqiX dqNaaGilaiaadUgacaaIPaGaey4kaSIaamOzaiaaiIcacaWGWbGaaG ilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaey4kaSIaeqiXdqNa aGykaiaai2facqGHRaWkaaa@685D@

               +U[ δ p,q + δ q,r + δ q,k ]+( A 0 A)[ δ p,0 + δ q,0 + δ r,0 + δ k,0 ]f(p,q,r,k)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGvbGaaG4waiabes7aKn aaBaaaleaacaWGWbGaaGilaiaadghaaeqaaOGaey4kaSIaeqiTdq2a aSbaaSqaaiaadghacaaISaGaamOCaaqabaGccqGHRaWkcqaH0oazda WgaaWcbaGaamyCaiaaiYcacaWGRbaabeaakiaai2facqGHRaWkcaaI OaGaamyqamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadgeacaaIPa GaaG4waiabes7aKnaaBaaaleaacaWGWbGaaGilaiaaicdaaeqaaOGa ey4kaSIaeqiTdq2aaSbaaSqaaiaadghacaaISaGaaGimaaqabaGccq GHRaWkcqaH0oazdaWgaaWcbaGaamOCaiaaiYcacaaIWaaabeaakiab gUcaRiabes7aKnaaBaaaleaacaWGRbGaaGilaiaaicdaaeqaaOGaaG yxaiaadAgacaaIOaGaamiCaiaaiYcacaWGXbGaaGilaiaadkhacaaI SaGaam4AaiaaiMcacqGHRaWkaaa@68C4@

   +( B 0 B) τ [ δ p,0 f(τ,q,r,k)+ δ q,0 f(p,τ,r,k)+ δ r,0 f(p,q,τ,k)+ δ k,0 f(p,q,r,τ)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIOaGaamOqamaaBaaale aacaaIWaaabeaakiabgkHiTiaadkeacaaIPaWaaabuaeqaleaacqaH epaDaeqaniabggHiLdGccaaIBbGaeqiTdq2aaSbaaSqaaiaadchaca aISaGaaGimaaqabaGccaWGMbGaaGikaiabes8a0jaaiYcacaWGXbGa aGilaiaadkhacaaISaGaam4AaiaaiMcacqGHRaWkcqaH0oazdaWgaa WcbaGaamyCaiaaiYcacaaIWaaabeaakiaadAgacaaIOaGaamiCaiaa iYcacqaHepaDcaaISaGaamOCaiaaiYcacaWGRbGaaGykaiabgUcaRi abes7aKnaaBaaaleaacaWGYbGaaGilaiaaicdaaeqaaOGaamOzaiaa iIcacaWGWbGaaGilaiaadghacaaISaGaeqiXdqNaaGilaiaadUgaca aIPaGaey4kaSIaeqiTdq2aaSbaaSqaaiaadUgacaaISaGaaGimaaqa baGccaWGMbGaaGikaiaadchacaaISaGaamyCaiaaiYcacaWGYbGaaG ilaiabes8a0jaaiMcacqGHRaWkaaa@7523@

            + δ p,τ f(0,q,r,k)+ δ q,τ f(p,0,r,k)+ δ r,τ f(p,q,0,k)+ δ k,τ f(p,q,r,0)]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaH0oazdaWgaaWcbaGaam iCaiaaiYcacqaHepaDaeqaaOGaamOzaiaaiIcacaaIWaGaaGilaiaa dghacaaISaGaamOCaiaaiYcacaWGRbGaaGykaiabgUcaRiabes7aKn aaBaaaleaacaWGXbGaaGilaiabes8a0bqabaGccaWGMbGaaGikaiaa dchacaaISaGaaGimaiaaiYcacaWGYbGaaGilaiaadUgacaaIPaGaey 4kaSIaeqiTdq2aaSbaaSqaaiaadkhacaaISaGaeqiXdqhabeaakiaa dAgacaaIOaGaamiCaiaaiYcacaWGXbGaaGilaiaaicdacaaISaGaam 4AaiaaiMcacqGHRaWkcqaH0oazdaWgaaWcbaGaam4AaiaaiYcacqaH epaDaeqaaOGaamOzaiaaiIcacaWGWbGaaGilaiaadghacaaISaGaam OCaiaaiYcacaaIWaGaaGykaiaai2facqGHRaWkaaa@6C62@

                             +( U 0 U)[ δ p,0 δ p,q + δ q,0 δ q,r + δ k,0 δ q,k ]f(p,q,r,k). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIOaGaamyvamaaBaaale aacaaIWaaabeaakiabgkHiTiaadwfacaaIPaGaaG4waiabes7aKnaa BaaaleaacaWGWbGaaGilaiaaicdaaeqaaOGaeqiTdq2aaSbaaSqaai aadchacaaISaGaamyCaaqabaGccqGHRaWkcqaH0oazdaWgaaWcbaGa amyCaiaaiYcacaaIWaaabeaakiabes7aKnaaBaaaleaacaWGXbGaaG ilaiaadkhaaeqaaOGaey4kaSIaeqiTdq2aaSbaaSqaaiaadUgacaaI SaGaaGimaaqabaGccqaH0oazdaWgaaWcbaGaamyCaiaaiYcacaWGRb aabeaakiaai2facaWGMbGaaGikaiaadchacaaISaGaamyCaiaaiYca caWGYbGaaGilaiaadUgacaaIPaGaaGOlaaaa@5E52@                                   (3)

Сам оператор 3 H t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWGib Waa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3563@  на вектор 3 ψ t 1 3 H ˜ p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccqaHip qEdaqhaaWcbaGaamiDaaqaaiaaigdaaaGccqGHiiIZdaahaaWcbeqa aiaaiodaaaGcdaaiaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbaceaGae83cHGeacaGLdmaadaqhaaWcbaGaamiCaiaaiYca caWGXbGaaGilaiaadkhacaaISaGaam4AaiabgIGiolaadQfadaahaa qabeaacqaH9oGBaaaabaGaaGymaaaaaaa@4F43@  действует по формуле

                                 3 H t 1 3 ψ t 1 = p,q,r,k Z ν ( 3 H ¯ t 1 f)(p,q,r,k ) 3 t p,q,r,k Z ν 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWGib Waa0baaSqaaiaadshaaeaacaaIXaaaaOWaaWbaaSqabeaacaaIZaaa aOGaeqiYdK3aa0baaSqaaiaadshaaeaacaaIXaaaaOGaaGypamaaqa fabeWcbaGaamiCaiaaiYcacaWGXbGaaGilaiaadkhacaaISaGaam4A aiabgIGiolaadQfadaahaaqabeaacqaH9oGBaaaabeqdcqGHris5aO GaaGikamaaCaaaleqabaGaaG4maaaakmaanaaabaGaamisaaaadaqh aaWcbaGaamiDaaqaaiaaigdaaaGccaWGMbGaaGykaiaaiIcacaWGWb GaaGilaiaadghacaaISaGaamOCaiaaiYcacaWGRbGaaGykamaaCaaa leqabaGaaG4maaaakiaadshadaqhaaWcbaGaamiCaiaaiYcacaWGXb GaaGilaiaadkhacaaISaGaam4AaiabgIGiolaadQfadaahaaqabeaa cqaH9oGBaaaabaGaaGymaaaakiaai6caaaa@626E@                                       (4)

Proof. Подействуем гамильтонианом H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@  на векторы 3 ψ t 1 3 H ˜ p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccqaHip qEdaqhaaWcbaGaamiDaaqaaiaaigdaaaGccqGHiiIZdaahaaWcbeqa aiaaiodaaaGcdaaiaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbaceaGae83cHGeacaGLdmaadaqhaaWcbaGaamiCaiaaiYca caWGXbGaaGilaiaadkhacaaISaGaam4AaiabgIGiolaadQfadaahaa qabeaacqaH9oGBaaaabaGaaGymaaaaaaa@4F43@  с использованием обычных антикоммутационных соотношений между операторами рождения и уничтожения электронов в узлах

                           { a m,γ , a n,β + }= δ m,n δ γ,β ,{ a m,γ , a n,β }={ a m,γ + , a n,β + }=θ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyyamaaBaaaleaacaWGTb GaaGilaiabeo7aNbqabaGccaaISaGaamyyamaaDaaaleaacaWGUbGa aGilaiabek7aIbqaaiabgUcaRaaakiaai2hacaaI9aGaeqiTdq2aaS baaSqaaiaad2gacaaISaGaamOBaaqabaGccqaH0oazdaWgaaWcbaGa eq4SdCMaaGilaiabek7aIbqabaGccaaISaGaaGzbVlaaiUhacaWGHb WaaSbaaSqaaiaad2gacaaISaGaeq4SdCgabeaakiaaiYcacaWGHbWa aSbaaSqaaiaad6gacaaISaGaeqOSdigabeaakiaai2hacaaI9aGaaG 4EaiaadggadaqhaaWcbaGaamyBaiaaiYcacqaHZoWzaeaacqGHRaWk aaGccaaISaGaamyyamaaDaaaleaacaWGUbGaaGilaiabek7aIbqaai abgUcaRaaakiaai2hacaaI9aGaeqiUdeNaaGilaaaa@6877@

а также учтем, что a m,γ φ 0 =θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad2gacaaISa Gaeq4SdCgabeaakiabeA8aQnaaBaaaleaacaaIWaaabeaakiaai2da cqaH4oqCaaa@3B56@ , где θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCaaa@3377@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ нулевой элемент пространства 3 H ˜ p,q,r,k Z ν 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83c HGeacaGLdmaadaqhaaWcbaGaamiCaiaaiYcacaWGXbGaaGilaiaadk hacaaISaGaam4AaiabgIGiolaadQfadaahaaqabeaacqaH9oGBaaaa baGaaGymaaaaaaa@4912@ . Отсюда получается утверждение теоремы.

Лемма 1  Спектры операторов 3 H t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWGib Waa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3563@  и 3 H ¯ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaqdaa qaaiaadIeaaaWaa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3574@  совпадают.

Proof. Так как операторы 3 H t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWGib Waa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3563@  и 3 H ¯ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaqdaa qaaiaadIeaaaWaa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3574@ являются ограниченными самосопряженными операторами, то из критерия Вейля (см. [13, гл. VII, раздел 3]) следует существование такой последовательности векторов ψ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamyAaaqaba aaaa@34A9@ , что

          ψ i = p,q,r,k f i (p,q,r,k) a p + a q, + a r + a k + φ 0 , ψ i =1, lim i ( 3 H t 1 λ) ψ i =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamyAaaqaba GccaaI9aWaaabuaeqaleaacaWGWbGaaGilaiaadghacaaISaGaamOC aiaaiYcacaWGRbaabeqdcqGHris5aOGaamOzamaaBaaaleaacaWGPb aabeaakiaaiIcacaWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYca caWGRbGaaGykaiaadggadaqhaaWcbaGaamiCaiabggziTcqaaiabgU caRaaakiaadggadaqhaaWcbaGaamyCaiaaiYcacqGHtgYRaeaacqGH RaWkaaGccaWGHbWaa0baaSqaaiaadkhacqGHrgsRaeaacqGHRaWkaa GccaWGHbWaa0baaSqaaiaadUgacqGHrgsRaeaacqGHRaWkaaGccqaH gpGAdaWgaaWcbaGaaGimaaqabaGccaaISaGaaGzbVhbbfv3ySLgzGu eE0jxyaGabaiab=vIiqjabeI8a5naaBaaaleaacaWGPbaabeaakiab =vIiqjaai2dacaaIXaGaaGilaiaaywW7daGfqbqabSqaaiaadMgacq GHsgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGae8xjIaLa aGikamaaCaaaleqabaGaaG4maaaakiaadIeadaqhaaWcbaGaamiDaa qaaiaaigdaaaGccqGHsislcqaH7oaBcaaIPaGaeqiYdK3aaSbaaSqa aiaadMgaaeqaaOGae8xjIaLaaGypaiaaicdacaaISaaaaa@8467@                 (5)

 где λσ ( 3 H t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcqGHiiIZcqaHdpWCcaaIOa WaaWbaaSqabeaacaaIZaaaaOGaamisamaaDaaaleaacaWG0baabaGa aGymaaaakiaaiMcaaaa@3BCD@ . С другой стороны,

             ( 3 H t 1 λ) ψ i 2 =(( 3 H t 1 λ) ψ i ,( 3 H t 1 λ) ψ i )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaaIOaWaaWbaaSqabeaacaaIZaaaaOGaamisamaaDaaaleaacaWG 0baabaGaaGymaaaakiabgkHiTiabeU7aSjaaiMcacqaHipqEdaWgaa WcbaGaamyAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaI 9aGaaGikaiaaiIcadaahaaWcbeqaaiaaiodaaaGccaWGibWaa0baaS qaaiaadshaaeaacaaIXaaaaOGaeyOeI0Iaeq4UdWMaaGykaiabeI8a 5naaBaaaleaacaWGPbaabeaakiaaiYcacaaIOaWaaWbaaSqabeaaca aIZaaaaOGaamisamaaDaaaleaacaWG0baabaGaaGymaaaakiabgkHi TiabeU7aSjaaiMcacqaHipqEdaWgaaWcbaGaamyAaaqabaGccaaIPa GaaGypaaaa@5D1C@

            = p,q,r,k ( 3 H ¯ t 1 λ) f i (p,q,r,k) 2 ( a p, + a q, + a r, + a k, + φ 0 , a p, + a q, + a r, + a k, + φ 0 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabuaeqaleaacaWGWbGaaG ilaiaadghacaaISaGaamOCaiaaiYcacaWGRbaabeqdcqGHris5aebb fv3ySLgzGueE0jxyaGabaOGae8xjIaLaaGikamaaCaaaleqabaGaaG 4maaaakmaanaaabaGaamisaaaadaqhaaWcbaGaamiDaaqaaiaaigda aaGccqGHsislcqaH7oaBcaaIPaGaamOzamaaBaaaleaacaWGPbaabe aakiaaiIcacaWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWG RbGaaGykaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGHb Waa0baaSqaaiaadchacaaISaGaeyyKH0kabaGaey4kaScaaOGaamyy amaaDaaaleaacaWGXbGaaGilaiabgoziVcqaaiabgUcaRaaakiaadg gadaqhaaWcbaGaamOCaiaaiYcacqGHrgsRaeaacqGHRaWkaaGccaWG HbWaa0baaSqaaiaadUgacaaISaGaeyyKH0kabaGaey4kaScaaOGaeq OXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadggadaqhaaWcbaGa amiCaiaaiYcacqGHrgsRaeaacqGHRaWkaaGccaWGHbWaa0baaSqaai aadghacaaISaGaey4KH8kabaGaey4kaScaaOGaamyyamaaDaaaleaa caWGYbGaaGilaiabggziTcqaaiabgUcaRaaakiaadggadaqhaaWcba Gaam4AaiaaiYcacqGHrgsRaeaacqGHRaWkaaGccqaHgpGAdaWgaaWc baGaaGimaaqabaGccaaIPaGaaGypaaaa@8883@

            = p,q,r,k ( 3 H ¯ t 1 λ) F i (p,q,r,k) 2 ( a k, a r, a q, a p, a p, + a q, + a r, + a k, + φ 0 , φ 0 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabuaeqaleaacaWGWbGaaG ilaiaadghacaaISaGaamOCaiaaiYcacaWGRbaabeqdcqGHris5aebb fv3ySLgzGueE0jxyaGabaOGae8xjIaLaaGikamaaCaaaleqabaGaaG 4maaaakmaanaaabaGaamisaaaadaqhaaWcbaGaamiDaaqaaiaaigda aaGccqGHsislcqaH7oaBcaaIPaGaamOramaaBaaaleaacaWGPbaabe aakiaaiIcacaWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWG RbGaaGykaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGHb WaaSbaaSqaaiaadUgacaaISaGaeyyKH0kabeaakiaadggadaWgaaWc baGaamOCaiaaiYcacqGHrgsRaeqaaOGaamyyamaaBaaaleaacaWGXb GaaGilaiabgoziVcqabaGccaWGHbWaaSbaaSqaaiaadchacaaISaGa eyyKH0kabeaakiaadggadaqhaaWcbaGaamiCaiaaiYcacqGHrgsRae aacqGHRaWkaaGccaWGHbWaa0baaSqaaiaadghacaaISaGaey4KH8ka baGaey4kaScaaOGaamyyamaaDaaaleaacaWGYbGaaGilaiabggziTc qaaiabgUcaRaaakiaadggadaqhaaWcbaGaam4AaiaaiYcacqGHrgsR aeaacqGHRaWkaaGccqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaISa GaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2daaaa@84D7@

      = p,q,r,k ( 3 H ¯ t 1 λ) F i (p,q,r,k) 2 ( φ 0 , φ 0 )= p,q,r,k ( 3 H ¯ t 1 λ) F i (p,q,r,k) 2 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabuaeqaleaacaWGWbGaaG ilaiaadghacaaISaGaamOCaiaaiYcacaWGRbaabeqdcqGHris5aebb fv3ySLgzGueE0jxyaGabaOGae8xjIaLaaGikamaaCaaaleqabaGaaG 4maaaakmaanaaabaGaamisaaaadaqhaaWcbaGaamiDaaqaaiaaigda aaGccqGHsislcqaH7oaBcaaIPaGaamOramaaBaaaleaacaWGPbaabe aakiaaiIcacaWGWbGaaGilaiaadghacaaISaGaamOCaiaaiYcacaWG RbGaaGykaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacqaHgp GAdaWgaaWcbaGaaGimaaqabaGccaaISaGaeqOXdO2aaSbaaSqaaiaa icdaaeqaaOGaaGykaiaai2dadaaeqbqabSqaaiaadchacaaISaGaam yCaiaaiYcacaWGYbGaaGilaiaadUgaaeqaniabggHiLdGccqWFLicu caaIOaWaaWbaaSqabeaacaaIZaaaaOWaa0aaaeaacaWGibaaamaaDa aaleaacaWG0baabaGaaGymaaaakiabgkHiTiabeU7aSjaaiMcacaWG gbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadchacaaISaGaamyCai aaiYcacaWGYbGaaGilaiaadUgacaaIPaGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaeyOKH4QaaGimaiaaiYcaaaa@7B6C@

при i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaeyOKH4QaeyOhIukaaa@360D@ , где

                  F i = p,q,r,k f i (p,q,r,k), F i 2 = p,q,r,k | f i (p,q,r,k )| 2 = ψ i 2 =1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaaqafabeWcbaGaamiCaiaaiYcacaWGXbGaaGilaiaadkha caaISaGaam4Aaaqab0GaeyyeIuoakiaadAgadaWgaaWcbaGaamyAaa qabaGccaaIOaGaamiCaiaaiYcacaWGXbGaaGilaiaadkhacaaISaGa am4AaiaaiMcacaaISaGaaGzbVhbbfv3ySLgzGueE0jxyaGabaiab=v IiqjaadAeadaWgaaWcbaGaamyAaaqabaGccqWFLicudaahaaWcbeqa aiaaikdaaaGccaaI9aWaaabuaeqaleaacaWGWbGaaGilaiaadghaca aISaGaamOCaiaaiYcacaWGRbaabeqdcqGHris5aOGaaGiFaiaadAga daWgaaWcbaGaamyAaaqabaGccaaIOaGaamiCaiaaiYcacaWGXbGaaG ilaiaadkhacaaISaGaam4AaiaaiMcacaaI8bWaaWbaaSqabeaacaaI YaaaaOGaaGypaiab=vIiqjabeI8a5naaBaaaleaacaWGPbaabeaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiaai2dacaaIXaGaaGOlaaaa @7068@

Это означает, что λσ ( 3 H ¯ t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcqGHiiIZcqaHdpWCcaaIOa WaaWbaaSqabeaacaaIZaaaaOWaa0aaaeaacaWGibaaamaaDaaaleaa caWG0baabaGaaGymaaaakiaaiMcaaaa@3BDE@ . Следовательно, σ ( 3 H ¯ t 1 )σ ( 3 H ¯ t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaWaaWbaaSqabeaaca aIZaaaaOWaa0aaaeaacaWGibaaamaaDaaaleaacaWG0baabaGaaGym aaaakiaaiMcacqGHckcZcqaHdpWCcaaIOaWaaWbaaSqabeaacaaIZa aaaOWaa0aaaeaacaWGibaaamaaDaaaleaacaWG0baabaGaaGymaaaa kiaaiMcaaaa@4187@ .

Обратно, пусть λ ¯ σ( H ¯ 2 q ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabeU7aSbaacqGHiiIZcq aHdpWCcaaIOaWaa0aaaeaacaWGibaaamaaDaaaleaacaaIYaaabaGa amyCaaaakiaaiMcaaaa@3AF9@ . Тогда в силу того же критерия Вейля существует такая последовательность { F i } i=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamOramaaBaaaleaacaWGPb aabeaakiaai2hadaqhaaWcbaGaamyAaiaai2dacaaIXaaabaGaeyOh Iukaaaaa@39CA@ , что

                                          F i =1, lim i ( 3 H ¯ t 1 λ ¯ ) ψ i =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGgbWaaSbaaSqaaiaadMgaaeqaaOGae8xjIaLaaGypaiaaigda caaISaGaaGzbVpaawafabeWcbaGaamyAaiabgkziUkabg6HiLcqabO qaaiGacYgacaGGPbGaaiyBaaaacqWFLicucaaIOaWaaWbaaSqabeaa caaIZaaaaOWaa0aaaeaacaWGibaaamaaDaaaleaacaWG0baabaGaaG ymaaaakiabgkHiTmaanaaabaGaeq4UdWgaaiaaiMcacqaHipqEdaWg aaWcbaGaamyAaaqabaGccqWFLicucaaI9aGaaGimaiaai6caaaa@5520@

Полагая

                         F i = p,r,t,k f i (p,r,t,k), F i = p,r,t,k | f i (p,r,t,k )| 2 1/2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaaqafabeWcbaGaamiCaiaaiYcacaWGYbGaaGilaiaadsha caaISaGaam4Aaaqab0GaeyyeIuoakiaadAgadaWgaaWcbaGaamyAaa qabaGccaaIOaGaamiCaiaaiYcacaWGYbGaaGilaiaadshacaaISaGa am4AaiaaiMcacaaISaGaaGzbVhbbfv3ySLgzGueE0jxyaGabaiab=v IiqjaadAeadaWgaaWcbaGaamyAaaqabaGccqWFLicucaaI9aWaaeWa aeaadaaeqbqabSqaaiaadchacaaISaGaamOCaiaaiYcacaWG0bGaaG ilaiaadUgaaeqaniabggHiLdGccaaI8bGaamOzamaaBaaaleaacaWG PbaabeaakiaaiIcacaWGWbGaaGilaiaadkhacaaISaGaamiDaiaaiY cacaWGRbGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaaakiaawIca caGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakiaaiYcaaa a@6B09@

получим

                ψ i = F i =1, ( 3 H ¯ t 1 λ ¯ ) F i = ( 3 H ¯ t 1 λ ¯ ) ψ i 0при i. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHipqEdaWgaaWcbaGaamyAaaqabaGccqWFLicucaaI9aGae8xj IaLaamOramaaBaaaleaacaWGPbaabeaakiab=vIiqjaai2dacaaIXa GaaGilaiaaywW7cqWFLicucaaIOaWaaWbaaSqabeaacaaIZaaaaOWa a0aaaeaacaWGibaaamaaDaaaleaacaWG0baabaGaaGymaaaakiabgk HiTmaanaaabaGaeq4UdWgaaiaaiMcacaWGgbWaaSbaaSqaaiaadMga aeqaaOGae8xjIaLaaGypaiab=vIiqjaaiIcadaahaaWcbeqaaiaaio daaaGcdaqdaaqaaiaadIeaaaWaa0baaSqaaiaadshaaeaacaaIXaaa aOGaeyOeI0Yaa0aaaeaacqaH7oaBaaGaaGykaiabeI8a5naaBaaale aacaWGPbaabeaakiab=vIiqjabgkziUkaaicdacaaMf8Uaae4peiaa bcebcaqG4qGaaeiiaiaabMgacqGHsgIRcqGHEisPcaqGUaaaaa@6A19@

Отсюда вытекает, что λ ¯ σ ( 3 H ¯ t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiabeU7aSbaacqGHiiIZcq aHdpWCcaaIOaWaaWbaaSqabeaacaaIZaaaaOWaa0aaaeaacaWGibaa amaaDaaaleaacaWG0baabaGaaGymaaaakiaaiMcaaaa@3BEF@  и, следовательно, σ ( 3 H ¯ t 1 )σ ( 3 H t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaWaaWbaaSqabeaaca aIZaaaaOWaa0aaaeaacaWGibaaamaaDaaaleaacaWG0baabaGaaGym aaaakiaaiMcacqGHckcZcqaHdpWCcaaIOaWaaWbaaSqabeaacaaIZa aaaOGaamisamaaDaaaleaacaWG0baabaGaaGymaaaakiaaiMcaaaa@4176@ . Эти два соотношения означают, что σ ( 3 H t 1 )=σ ( 3 H ¯ t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaWaaWbaaSqabeaaca aIZaaaaOGaamisamaaDaaaleaacaWG0baabaGaaGymaaaakiaaiMca caaI9aGaeq4WdmNaaGikamaaCaaaleqabaGaaG4maaaakmaanaaaba GaamisaaaadaqhaaWcbaGaamiDaaqaaiaaigdaaaGccaaIPaaaaa@4041@ .

Оператор 3 H t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGccaWGib Waa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3563@  будем называть оператором четырехэлектронного третьего триплета в примесной модели Хаббарда.

Обозначим через F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ftigbaa@3C67@  преобразование Фурье

                                          F: l 2 (( Z ν ) 4 ) L 2 (( T ν ) 4 ) 3 H ˜ t 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ftigjaaiQdacaWGSbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaaiIcacaWGAbWaaWbaaSqabeaacqaH9oGBaaGcca aIPaWaaWbaaSqabeaacaaI0aaaaOGaaGykaiabgkziUkaadYeadaWg aaWcbaGaaGOmaaqabaGccaaIOaGaaGikaiaadsfadaahaaWcbeqaai abe27aUbaakiaaiMcadaahaaWcbeqaaiaaisdaaaGccaaIPaGaeyyy IO7aaacaaeaadaahaaWcbeqaaiaaiodaaaGccqWFlecsaiaawoWaam aaDaaaleaacaWG0baabaGaaGymaaaakiaaiYcaaaa@56EB@

где T ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacqaH9oGBaa aaaa@347F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBaaa@3379@  -мерный тор, снабженный нормированной мерой Лебега dλ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeq4UdWgaaa@345E@ , т.е. λ( T ν )=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBcaaIOaGaamivamaaCaaale qabaGaeqyVd4gaaOGaaGykaiaai2dacaaIXaaaaa@3924@ .

Положим 3 H ˜ t 1 =F 3 H ¯ t 1 F 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaakiaa i2datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=f tigjaayIW7daahaaWcbeqaaiaaiodaaaGcdaqdaaqaaiaadIeaaaWa a0baaSqaaiaadshaaeaacaaIXaaaaOGae8xmHy0aaWbaaSqabeaacq GHsislcaaIXaaaaaaa@49DC@ . В квазиимпульсном представлении оператор 3 H ¯ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaqdaa qaaiaadIeaaaWaa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3574@  действует в гильбертовом пространстве L 2 as (( T ν ) 4 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaaca WGHbGaam4CaaaakiaaiIcacaaIOaGaamivamaaCaaaleqabaGaeqyV d4gaaOGaaGykamaaCaaaleqabaGaaGinaaaakiaaiMcaaaa@3BEA@ , где L 2 as MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaaca WGHbGaam4Caaaaaaa@3559@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ подпространство антисимметричных функций в L 2 (( T ν ) 4 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaaiIcacaWGubWaaWbaaSqabeaacqaH9oGBaaGccaaIPaWa aWbaaSqabeaacaaI0aaaaOGaaGykaaaa@3A0B@ .

Положим ε 1 = A 0 A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaamyqamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadgea aaa@3889@ , ε 2 = B 0 B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaamOqamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadkea aaa@388C@  и ε 3 = U 0 U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaG4maaqaba GccaaI9aGaamyvamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadwfa aaa@38B3@ .

Теорема 2  Преобразование Фурье оператора 3 H ¯ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaqdaa qaaiaadIeaaaWaa0baaSqaaiaadshaaeaacaaIXaaaaaaa@3574@  есть оператор 3 H ˜ t 1 =F 3 H ¯ t 1 F 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaakiaa i2datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=f tigjaayIW7daahaaWcbeqaaiaaiodaaaGcdaqdaaqaaiaadIeaaaWa a0baaSqaaiaadshaaeaacaaIXaaaaOGae8xmHy0aaWbaaSqabeaacq GHsislcaaIXaaaaaaa@49DC@ , который действует в пространстве L 2 as (( T ν ) 4 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaaca WGHbGaam4CaaaakiaaiIcacaaIOaGaamivamaaCaaaleqabaGaeqyV d4gaaOGaaGykamaaCaaaleqabaGaaGinaaaakiaaiMcaaaa@3BEA@  по формуле

             3 H ˜ t 1 3 ψ t 1 =h(λ,μ,γ,θ)f(λ,μ,γ,θ)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaakiaa yIW7daahaaWcbeqaaiaaiodaaaGccqaHipqEdaqhaaWcbaGaamiDaa qaaiaaigdaaaGccaaI9aGaamiAaiaaiIcacqaH7oaBcaaISaGaeqiV d0MaaGilaiabeo7aNjaaiYcacqaH4oqCcaaIPaGaamOzaiaaiIcacq aH7oaBcaaISaGaeqiVd0MaaGilaiabeo7aNjaaiYcacqaH4oqCcaaI PaGaey4kaScaaa@548A@

+U T ν f(s,λ+μs,γ,θ)ds+ T ν f(λ,s,μ+γs,θ)ds+ T ν f(λ,s,γ,μ+θs)ds + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGvbWaamWaaeaadaWdra qabSqaaiaadsfadaahaaqabeaacqaH9oGBaaaabeqdcqGHRiI8aOGa amOzaiaaiIcacaWGZbGaaGilaiabeU7aSjabgUcaRiabeY7aTjabgk HiTiaadohacaaISaGaeq4SdCMaaGilaiabeI7aXjaaiMcacaWGKbGa am4CaiabgUcaRmaapebabeWcbaGaamivamaaCaaabeqaaiabe27aUb aaaeqaniabgUIiYdGccaWGMbGaaGikaiabeU7aSjaaiYcacaWGZbGa aGilaiabeY7aTjabgUcaRiabeo7aNjabgkHiTiaadohacaaISaGaeq iUdeNaaGykaiaadsgacaWGZbGaey4kaSYaa8qeaeqaleaacaWGubWa aWbaaeqabaGaeqyVd4gaaaqab0Gaey4kIipakiaadAgacaaIOaGaeq 4UdWMaaGilaiaadohacaaISaGaeq4SdCMaaGilaiabeY7aTjabgUca RiabeI7aXjabgkHiTiaadohacaaIPaGaamizaiaadohaaiaawUfaca GLDbaacqGHRaWkaaa@78F8@

  + ε 1 T ν f(s,μ,γ,θ)ds+ T ν f(λ,t,γ,θ)dt+ T ν f(λ,μ,k,θ)dk+ T ν f(λ,μ,γ,ξ)dξ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaH1oqzdaWgaaWcbaGaaG ymaaqabaGcdaWadaqaamaapebabeWcbaGaamivamaaCaaabeqaaiab e27aUbaaaeqaniabgUIiYdGccaWGMbGaaGikaiaadohacaaISaGaeq iVd0MaaGilaiabeo7aNjaaiYcacqaH4oqCcaaIPaGaamizaiaadoha cqGHRaWkdaWdraqabSqaaiaadsfadaahaaqabeaacqaH9oGBaaaabe qdcqGHRiI8aOGaamOzaiaaiIcacqaH7oaBcaaISaGaamiDaiaaiYca cqaHZoWzcaaISaGaeqiUdeNaaGykaiaadsgacaWG0bGaey4kaSYaa8 qeaeqaleaacaWGubWaaWbaaeqabaGaeqyVd4gaaaqab0Gaey4kIipa kiaadAgacaaIOaGaeq4UdWMaaGilaiabeY7aTjaaiYcacaWGRbGaaG ilaiabeI7aXjaaiMcacaWGKbGaam4AaiabgUcaRmaapebabeWcbaGa amivamaaCaaabeqaaiabe27aUbaaaeqaniabgUIiYdGccaWGMbGaaG ikaiabeU7aSjaaiYcacqaH8oqBcaaISaGaeq4SdCMaaGilaiabe67a 4jaaiMcacaWGKbGaeqOVdGhacaGLBbGaayzxaaGaey4kaScaaa@80DE@

      +2 ε 2 [ T ν i=1 ν [cos λ i +cos s i ]f(s,μ,γ,θ)ds+ T ν i=1 ν [cos μ i +cos t i ]f(λ,t,γ,θ)dt+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaGaeqyTdu2aaSbaaS qaaiaaikdaaeqaaOGaaG4wamaapebabeWcbaGaamivamaaCaaabeqa aiabe27aUbaaaeqaniabgUIiYdGcdaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiabe27aUbqdcqGHris5aOGaaG4waiGacogacaGGVbGa ai4CaiabeU7aSnaaBaaaleaacaWGPbaabeaakiabgUcaRiGacogaca GGVbGaai4CaiaadohadaWgaaWcbaGaamyAaaqabaGccaaIDbGaamOz aiaaiIcacaWGZbGaaGilaiabeY7aTjaaiYcacqaHZoWzcaaISaGaeq iUdeNaaGykaiaadsgacaWGZbGaey4kaSYaa8qeaeqaleaacaWGubWa aWbaaeqabaGaeqyVd4gaaaqab0Gaey4kIipakmaaqahabeWcbaGaam yAaiaai2dacaaIXaaabaGaeqyVd4ganiabggHiLdGccaaIBbGaci4y aiaac+gacaGGZbGaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaey4kaS Iaci4yaiaac+gacaGGZbGaamiDamaaBaaaleaacaWGPbaabeaakiaa i2facaWGMbGaaGikaiabeU7aSjaaiYcacaWG0bGaaGilaiabeo7aNj aaiYcacqaH4oqCcaaIPaGaamizaiaadshacqGHRaWkaaa@826A@

       + T ν i=1 ν [cos γ i +cos k i ]f(λ,μ,k,θ)dk+ T ν i=1 ν [cos θ i +cos ξ i ]f(λ,μ,γ,ξ)dξ]+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdraqabSqaaiaadsfada ahaaqabeaacqaH9oGBaaaabeqdcqGHRiI8aOWaaabCaeqaleaacaWG PbGaaGypaiaaigdaaeaacqaH9oGBa0GaeyyeIuoakiaaiUfaciGGJb Gaai4BaiaacohacqaHZoWzdaWgaaWcbaGaamyAaaqabaGccqGHRaWk ciGGJbGaai4BaiaacohacaWGRbWaaSbaaSqaaiaadMgaaeqaaOGaaG yxaiaadAgacaaIOaGaeq4UdWMaaGilaiabeY7aTjaaiYcacaWGRbGa aGilaiabeI7aXjaaiMcacaWGKbGaam4AaiabgUcaRmaapebabeWcba GaamivamaaCaaabeqaaiabe27aUbaaaeqaniabgUIiYdGcdaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiabe27aUbqdcqGHris5aOGaaG 4waiGacogacaGGVbGaai4CaiabeI7aXnaaBaaaleaacaWGPbaabeaa kiabgUcaRiGacogacaGGVbGaai4Caiabe67a4naaBaaaleaacaWGPb aabeaakiaai2facaWGMbGaaGikaiabeU7aSjaaiYcacqaH8oqBcaaI SaGaeq4SdCMaaGilaiabe67a4jaaiMcacaWGKbGaeqOVdGNaaGyxai abgUcaRaaa@815D@

         + ε 3 [ T ν T ν f(s,t,γ,θ)dsdt+ T ν T ν f(λ,s,t,θ)dsdt+ T ν T ν f(λ,s,γ,t)dsdt], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaH1oqzdaWgaaWcbaGaaG 4maaqabaGccaaIBbWaa8qeaeqaleaacaWGubWaaWbaaeqabaGaeqyV d4gaaaqab0Gaey4kIipakmaapebabeWcbaGaamivamaaCaaabeqaai abe27aUbaaaeqaniabgUIiYdGccaWGMbGaaGikaiaadohacaaISaGa amiDaiaaiYcacqaHZoWzcaaISaGaeqiUdeNaaGykaiaayIW7caWGKb Gaam4CaiaayIW7caWGKbGaamiDaiabgUcaRmaapebabeWcbaGaamiv amaaCaaabeqaaiabe27aUbaaaeqaniabgUIiYdGcdaWdraqabSqaai aadsfadaahaaqabeaacqaH9oGBaaaabeqdcqGHRiI8aOGaamOzaiaa iIcacqaH7oaBcaaISaGaam4CaiaaiYcacaWG0bGaaGilaiabeI7aXj aaiMcacaaMi8UaamizaiaadohacaaMi8UaamizaiaadshacqGHRaWk daWdraqabSqaaiaadsfadaahaaqabeaacqaH9oGBaaaabeqdcqGHRi I8aOWaa8qeaeqaleaacaWGubWaaWbaaeqabaGaeqyVd4gaaaqab0Ga ey4kIipakiaadAgacaaIOaGaeq4UdWMaaGilaiaadohacaaISaGaeq 4SdCMaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWGZbGaaGjcVlaa dsgacaWG0bGaaGyxaiaaiYcaaaa@882D@                (6)

где

                        h(λ,μ,γ,θ)=4A+2B i=1 ν [cos λ i +cos μ i +cos γ i +cos θ i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGikaiabeU7aSjaaiYcacq aH8oqBcaaISaGaeq4SdCMaaGilaiabeI7aXjaaiMcacaaI9aGaaGin aiaadgeacqGHRaWkcaaIYaGaamOqamaaqahabeWcbaGaamyAaiaai2 dacaaIXaaabaGaeqyVd4ganiabggHiLdGccaaIBbGaci4yaiaac+ga caGGZbGaeq4UdW2aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaci4yai aac+gacaGGZbGaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIa ci4yaiaac+gacaGGZbGaeq4SdC2aaSbaaSqaaiaadMgaaeqaaOGaey 4kaSIaci4yaiaac+gacaGGZbGaeqiUde3aaSbaaSqaaiaadMgaaeqa aOGaaGyxaaaa@6336@

и L 2 as MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaa0baaSqaaiaaikdaaeaaca WGHbGaam4Caaaaaaa@3559@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ подпространство антисимметричных функций в L 2 (( T ν ) 4 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaaiIcacaWGubWaaWbaaSqabeaacqaH9oGBaaGccaaIPaWa aWbaaSqabeaacaaI0aaaaOGaaGykaaaa@3A0B@ .

Учитывая, что функция f(λ,μ,γ,θ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeU7aSjaaiYcacq aH8oqBcaaISaGaeq4SdCMaaGilaiabeI7aXjaaiMcaaaa@3CFA@  является антисимметрической, и используя тензорные произведения гильбертовых пространств и тензорные произведения операторов в гильбертовых пространствах (см. [14]), нетрудно убедиться, что оператор 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  можно представить в виде

             3 H ˜ t 1 3 ψ t 1 = H ˜ 1 III+I H ˜ 1 II+II H ˜ 1 I+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaakiaa yIW7daahaaWcbeqaaiaaiodaaaGccqaHipqEdaqhaaWcbaGaamiDaa qaaiaaigdaaaGccaaI9aWaaacaaeaacaWGibaacaGLdmaadaWgaaWc baGaaGymaaqabaGccqGHxkcXcaWGjbGaey4LIqSaamysaiabgEPiel aadMeacqGHRaWkcaWGjbGaey4LIq8aaacaaeaacaWGibaacaGLdmaa daWgaaWcbaGaaGymaaqabaGccqGHxkcXcaWGjbGaey4LIqSaamysai abgUcaRiaadMeacqGHxkcXcaWGjbGaey4LIq8aaacaaeaacaWGibaa caGLdmaadaWgaaWcbaGaaGymaaqabaGccqGHxkcXcaWGjbGaey4kaS caaa@60E9@

                  +III H ˜ 1 +U T ν f(s,λ+μs)ds+ ε 3 T ν T ν f(s,t)dsdt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGjbGaey4LIqSaamysai abgEPielaadMeacqGHxkcXdaaiaaqaaiaadIeaaiaawoWaamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadwfadaWdraqabSqaaiaadsfada ahaaqabeaacqaH9oGBaaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG ZbGaaGilaiabeU7aSjabgUcaRiabeY7aTjabgkHiTiaadohacaaIPa GaamizaiaadohacqGHRaWkcqaH1oqzdaWgaaWcbaGaaG4maaqabaGc daWdraqabSqaaiaadsfadaahaaqabeaacqaH9oGBaaaabeqdcqGHRi I8aOWaa8qeaeqaleaacaWGubWaaWbaaeqabaGaeqyVd4gaaaqab0Ga ey4kIipakiaadAgacaaIOaGaam4CaiaaiYcacaWG0bGaaGykaiaayI W7caWGKbGaam4CaiaayIW7caWGKbGaamiDaiaai2daaaa@69EB@

         = H ˜ 1 I+I H ˜ 1 +U T ν f(s,λ+μs)ds+ ε 3 T ν T ν f(s,t)dsdt II+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaiWaaeaadaaiaaqaaiaadI eaaiaawoWaamaaBaaaleaacaaIXaaabeaakiabgEPielaadMeacqGH RaWkcaWGjbGaey4LIq8aaacaaeaacaWGibaacaGLdmaadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGvbWaa8qeaeqaleaacaWGubWaaWba aeqabaGaeqyVd4gaaaqab0Gaey4kIipakiaadAgacaaIOaGaam4Cai aaiYcacqaH7oaBcqGHRaWkcqaH8oqBcqGHsislcaWGZbGaaGykaiaa dsgacaWGZbGaey4kaSIaeqyTdu2aaSbaaSqaaiaaiodaaeqaaOWaa8 qeaeqaleaacaWGubWaaWbaaeqabaGaeqyVd4gaaaqab0Gaey4kIipa kmaapebabeWcbaGaamivamaaCaaabeqaaiabe27aUbaaaeqaniabgU IiYdGccaWGMbGaaGikaiaadohacaaISaGaamiDaiaaiMcacaaMi8Ua amizaiaadohacaaMi8UaamizaiaadshaaiaawUhacaGL9baacqGHxk cXcaWGjbGaey4LIqSaamysaiabgUcaRaaa@7255@

                                              +II{ H ˜ 1 I+I H ˜ 1 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGjbGaey4LIqSaamysai abgEPielaaiUhadaaiaaqaaiaadIeaaiaawoWaamaaBaaaleaacaaI XaaabeaakiabgEPielaadMeacqGHRaWkcaWGjbGaey4LIq8aaacaae aacaWGibaacaGLdmaadaWgaaWcbaGaaGymaaqabaGccaaI9bGaaGil aaaa@46A3@                                                     (7)

где

  ( H ˜ 1 f)(λ)= A+2B i=1 ν cos λ i f(λ)+ ε 1 T ν f(s)ds+2B T ν i=1 ν [cos λ i +cos s i ]f(s)ds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWaaacaaeaacaWGibaacaGLdm aadaWgaaWcbaGaaGymaaqabaGccaWGMbGaaGykaiaaiIcacqaH7oaB caaIPaGaaGypamaacmaabaGaamyqaiabgUcaRiaaikdacaWGcbWaaa bCaeqaleaacaWGPbGaaGypaiaaigdaaeaacqaH9oGBa0GaeyyeIuoa kiGacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWGPbaabeaaaO Gaay5Eaiaaw2haaiaadAgacaaIOaGaeq4UdWMaaGykaiabgUcaRiab ew7aLnaaBaaaleaacaaIXaaabeaakmaapebabeWcbaGaamivamaaCa aabeqaaiabe27aUbaaaeqaniabgUIiYdGccaWGMbGaaGikaiaadoha caaIPaGaamizaiaadohacqGHRaWkcaaIYaGaamOqamaapebabeWcba GaamivamaaCaaabeqaaiabe27aUbaaaeqaniabgUIiYdGcdaaeWbqa bSqaaiaadMgacaaI9aGaaGymaaqaaiabe27aUbqdcqGHris5aOGaaG 4waiGacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWGPbaabeaa kiabgUcaRiGacogacaGGVbGaai4CaiaadohadaWgaaWcbaGaamyAaa qabaGccaaIDbGaamOzaiaaiIcacaWGZbGaaGykaiaadsgacaWGZbGa aGilaaaa@7E25@         (8)

и I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbaaaa@328F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ единичный оператор в пространстве H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83cHGeacaGLdmaadaWgaaWcbaGa aGymaaqabaaaaa@3DEC@  одноэлектронных состояний.

Спектр оператора AI+IB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaey4LIqSaamysaiabgUcaRi aadMeacqGHxkcXcaWGcbaaaa@39DE@ , где A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  и B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ плотно определенные ограниченные линейные операторы, был изучен в [5-7]. В этих работах даны явные формулы, выражающие существенный спектр σ ess (AI+IB) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamyzaiaado hacaWGZbaabeaakiaaiIcacaWGbbGaey4LIqSaamysaiabgUcaRiaa dMeacqGHxkcXcaWGcbGaaGykaaaa@4016@  и дискретный спектр σ disc (AI+IB) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaGaamyqaiabgEPielaadMeacqGH RaWkcaWGjbGaey4LIqSaamOqaiaaiMcaaaa@40F3@  оператора AI+IB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaey4LIqSaamysaiabgUcaRi aadMeacqGHxkcXcaWGcbaaaa@39DE@  через спектр σ(A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaGaamyqaiaaiMcaaa a@35AF@  и дискретный спектр σ disc (A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaGaamyqaiaaiMcaaaa@399C@  оператора A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  и через спектр σ(B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaGaamOqaiaaiMcaaa a@35B0@  и дискретный спектр σ disc (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaGaamOqaiaaiMcaaaa@399D@  оператора B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@ :

             σ disc (AI+IB)={σ(A)\ σ ess (A)+σ(B)\ σ ess (B)}\ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaGaamyqaiabgEPielaadMeacqGH RaWkcaWGjbGaey4LIqSaamOqaiaaiMcacaaI9aGaaG4Eaiabeo8aZj aaiIcacaWGbbGaaGykaiaacYfacqaHdpWCdaWgaaWcbaGaamyzaiaa dohacaWGZbaabeaakiaaiIcacaWGbbGaaGykaiabgUcaRiabeo8aZj aaiIcacaWGcbGaaGykaiaacYfacqaHdpWCdaWgaaWcbaGaamyzaiaa dohacaWGZbaabeaakiaaiIcacaWGcbGaaGykaiaai2hacaGGCbaaaa@5D22@                                          

             \{( σ ess (A)+σ(B))(σ(A)+ σ ess (B))}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGCbGaaG 4EaiaaiIcacqaHdpWCdaWgaaWcbaGaamyzaiaadohacaWGZbaabeaa kiaaiIcacaWGbbGaaGykaiabgUcaRiabeo8aZjaaiIcacaWGcbGaaG ykaiaaiMcacqGHQicYcaaIOaGaeq4WdmNaaGikaiaadgeacaaIPaGa ey4kaSIaeq4Wdm3aaSbaaSqaaiaadwgacaWGZbGaam4CaaqabaGcca aIOaGaamOqaiaaiMcacaaIPaGaaGyFaiaaiYcaaaa@D307@ (9)

             σ ess (AI+IB)=( σ ess (A)+σ(B))(σ(A)+ σ ess (B)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamyzaiaado hacaWGZbaabeaakiaaiIcacaWGbbGaey4LIqSaamysaiabgUcaRiaa dMeacqGHxkcXcaWGcbGaaGykaiaai2dacaaIOaGaeq4Wdm3aaSbaaS qaaiaadwgacaWGZbGaam4CaaqabaGccaaIOaGaamyqaiaaiMcacqGH RaWkcqaHdpWCcaaIOaGaamOqaiaaiMcacaaIPaGaeyOkIGSaaGikai abeo8aZjaaiIcacaWGbbGaaGykaiabgUcaRiabeo8aZnaaBaaaleaa caWGLbGaam4CaiaadohaaeqaaOGaaGikaiaadkeacaaIPaGaaGykai aai6caaaa@5D9D@                                    (10)

Ясно, что

                              σ(AI+IB)={λ+μ:λσ(A),μσ(B)}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCcaaIOaGaamyqaiabgEPiel aadMeacqGHRaWkcaWGjbGaey4LIqSaamOqaiaaiMcacaaI9aGaaG4E aiabeU7aSjabgUcaRiabeY7aTjaaiQdacqaH7oaBcqGHiiIZcqaHdp WCcaaIOaGaamyqaiaaiMcacaaISaGaaGjbVlabeY7aTjabgIGiolab eo8aZjaaiIcacaWGcbGaaGykaiaai2hacaaIUaaaaa@5633@

Следовательно, сначала необходимо исследовать спектр оператора одноэлектронных систем в примесной модели Хаббарда H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

3 Одноэлектронная система в примесной модели Хаббарда

Гамильтониан одноэлектронных систем в примесной модели Хаббарда имеет вид

H=A m,γ a m,γ + a m,γ +B m,τ,γ a m,γ + a m+τ,γ +( A 0 A) γ a 0,γ + a 0,γ +( B 0 B) τ,γ ( a 0,γ + a τ,γ + a τ,γ + a 0,γ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGypaiaadgeadaaeqbqabS qaaiaad2gacaaISaGaeq4SdCgabeqdcqGHris5aOGaamyyamaaDaaa leaacaWGTbGaaGilaiabeo7aNbqaaiabgUcaRaaakiaadggadaWgaa WcbaGaamyBaiaaiYcacqaHZoWzaeqaaOGaey4kaSIaamOqamaaqafa beWcbaGaamyBaiaaiYcacqaHepaDcaaISaGaeq4SdCgabeqdcqGHri s5aOGaamyyamaaDaaaleaacaWGTbGaaGilaiabeo7aNbqaaiabgUca RaaakiaadggadaWgaaWcbaGaamyBaiabgUcaRiabes8a0jaaiYcacq aHZoWzaeqaaOGaey4kaSIaaGikaiaadgeadaWgaaWcbaGaaGimaaqa baGccqGHsislcaWGbbGaaGykamaaqafabeWcbaGaeq4SdCgabeqdcq GHris5aOGaamyyamaaDaaaleaacaaIWaGaaGilaiabeo7aNbqaaiab gUcaRaaakiaadggadaWgaaWcbaGaaGimaiaaiYcacqaHZoWzaeqaaO Gaey4kaSIaaGikaiaadkeadaWgaaWcbaGaaGimaaqabaGccqGHsisl caWGcbGaaGykamaaqafabeWcbaGaeqiXdqNaaGilaiabeo7aNbqab0 GaeyyeIuoakiaaiIcacaWGHbWaa0baaSqaaiaaicdacaaISaGaeq4S dCgabaGaey4kaScaaOGaamyyamaaBaaaleaacqaHepaDcaaISaGaeq 4SdCgabeaakiabgUcaRiaadggadaqhaaWcbaGaeqiXdqNaaGilaiab eo7aNbqaaiabgUcaRaaakiaadggadaWgaaWcbaGaaGimaiaaiYcacq aHZoWzaeqaaOGaaGykaiaaiYcaaaa@8FC7@     (11)

 где A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbaaaa@3287@  ( A 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaaicdaaeqaaa aa@336D@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ энергия электрона в узле решетке, B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3288@  ( B 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaaicdaaeqaaa aa@336E@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ интеграл переноса между соседними узлами (между электрона и примесями); для удобства считаем, что B>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbGaaGOpaiaaicdaaaa@340A@  ( B 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@34FA@  ), τ=± e j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeyySaeRaamyzam aaBaaaleaacaWGQbaabeaaaaa@3840@ , j=1,2,,ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaeqyVd4gaaa@39EA@ , где e j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaadQgaaeqaaa aa@33C6@ - единичные орты, т.е. суммирование ведется по ближайшим соседям; γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3368@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ спиновый индекс ( MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHrgsRaaa@33AC@  или MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHtgYRaaa@33B0@  ); a m,γ + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaa0baaSqaaiaad2gacaaISa Gaeq4SdCgabaGaey4kaScaaaaa@3705@  и a m,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad2gacaaISa Gaeq4SdCgabeaaaaa@3622@ соответственно MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ операторы рождения и уничтожения электрона в узле m Z ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaeyicI4SaamOwamaaCaaale qabaGaeqyVd4gaaaaa@36FB@ , через MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHrgsRaaa@33AC@  и MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHtgYRaaa@33B0@ обозначены значения спина 1/2 и 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaG4laiaaikdaaa a@34DE@ 1/2.

Через H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaaIXaaabeaaaaa@3D2A@  обозначим гильбертово пространство, натянутое на векторы вида

                                                         ψ= p a p, + φ 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaI9aWaaabuaeqaleaaca WGWbaabeqdcqGHris5aOGaamyyamaaDaaaleaacaWGWbGaaGilaiab ggziTcqaaiabgUcaRaaakiabeA8aQnaaBaaaleaacaaIWaaabeaaki aai6caaaa@4073@

Это пространство называется пространством одноэлектронных состояний оператора H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@ . Пространство H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaaIXaaabeaaaaa@3D2A@ инвариантно относительно действий оператора H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@ . Обозначим через H 1 =H | H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIeacaaI8bWaaSbaaSqaamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbaceaGae83cHG0aaSbaaeaacaaIXaaabeaaae qaaaaa@41A3@  сужение оператора H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@  на подпространство H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaaIXaaabeaaaaa@3D2A@ .

Как и в доказательстве теоремы 2, используя антикоммутационные соотношения между операторами рождения и уничтожения электрона в узле решетке, докажем следующее утверждение.

Теорема 3  Пространство H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaaIXaaabeaaaaa@3D2A@  инвариантно относительно оператора H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328E@ . Сужение H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaaigdaaeqaaa aa@3375@  является линейным ограниченным самосопряженным оператором, действующим в H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaaIXaaabeaaaaa@3D2A@  по формуле

                                       H 1 ψ= p ( H ¯ 1 f)(p) a p, + φ 0 ,ψ H 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaaigdaaeqaaO GaeqiYdKNaaGypamaaqafabeWcbaGaamiCaaqab0GaeyyeIuoakiaa iIcadaqdaaqaaiaadIeaaaWaaSbaaSqaaiaaigdaaeqaaOGaamOzai aaiMcacaaIOaGaamiCaiaaiMcacaWGHbWaa0baaSqaaiaadchacaaI SaGaeyyKH0kabaGaey4kaScaaOGaeqOXdO2aaSbaaSqaaiaaicdaae qaaOGaaGilaiaaywW7cqaHipqEcqGHiiIZtuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabaiab=TqiinaaBaaaleaacaaIXaaabe aakiaaiYcaaaa@59B1@                                           (12)

где H ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadIeaaaWaaSbaaSqaai aaigdaaeqaaaaa@3386@  является линейным ограниченным оператором, действующим в пространстве l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaSbaaSqaaiaaikdaaeqaaa aa@339A@  по формуле

         ( H ¯ 1 f)(p)=Af(p)+B τ f(p+τ)+ ε 1 δ p,0 f(p)+ ε 2 τ ( δ p,τ f(0)+ δ p,0 f(τ)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWaa0aaaeaacaWGibaaamaaBa aaleaacaaIXaaabeaakiaadAgacaaIPaGaaGikaiaadchacaaIPaGa aGypaiaadgeacaWGMbGaaGikaiaadchacaaIPaGaey4kaSIaamOqam aaqafabeWcbaGaeqiXdqhabeqdcqGHris5aOGaamOzaiaaiIcacaWG WbGaey4kaSIaeqiXdqNaaGykaiabgUcaRiabew7aLnaaBaaaleaaca aIXaaabeaakiabes7aKnaaBaaaleaacaWGWbGaaGilaiaaicdaaeqa aOGaamOzaiaaiIcacaWGWbGaaGykaiabgUcaRiabew7aLnaaBaaale aacaaIYaaabeaakmaaqafabeWcbaGaeqiXdqhabeqdcqGHris5aOGa aGikaiabes7aKnaaBaaaleaacaWGWbGaaGilaiabes8a0bqabaGcca WGMbGaaGikaiaaicdacaaIPaGaey4kaSIaeqiTdq2aaSbaaSqaaiaa dchacaaISaGaaGimaaqabaGccaWGMbGaaGikaiabes8a0jaaiMcaca aIPaGaaGOlaaaa@6EAA@            (13)

Лемма 2  Спектры операторов H ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadIeaaaWaaSbaaSqaai aaigdaaeqaaaaa@3386@  и H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaaigdaaeqaaa aa@3375@  совпадают.

Доказательство леммы 2 аналогично доказательству леммы 1.

Как и выше, обозначим через F: l 2 ( Z ν ) L 2 ( T ν ) H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ftigjaaiQdacaWGSbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadQfadaahaaWcbeqaaiabe27aUbaakiaaiMcacq GHsgIRcaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadsfadaah aaWcbeqaaiabe27aUbaakiaaiMcacqGHHjIUdaaiaaqaaiab=Tqiib Gaay5adaWaaSbaaSqaaiaaigdaaeqaaaaa@4F89@  преобразование Фурье. Положим H ˜ 1 =F H ¯ 1 F 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaakiaai2datuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGabaiab=ftignaanaaabaGaamisaaaadaWgaaWcba GaaGymaaqabaGccqWFXeIrdaahaaWcbeqaaiabgkHiTiaaigdaaaaa aa@446F@ . Оператор H ¯ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadIeaaaWaaSbaaSqaai aaigdaaeqaaaaa@3386@ действует в гильбертовом пространстве L 2 ( T ν ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadsfadaahaaWcbeqaaiabe27aUbaakiaaiMcaaaa@37B1@ .

Используя формулы (14) и свойства преобразования Фурье, получаем следующее утверждение.

Теорема 4  Оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  действует в пространстве H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83cHGeacaGLdmaadaWgaaWcbaGa aGymaaqabaaaaa@3DEC@  по формуле

( H ˜ 1 f)(μ)= A+2B i=1 ν cos μ i f(μ)+ ε 1 T ν f(s)ds+2 ε 2 T ν i=1 ν [cos μ i +cos s i ]f(s)ds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWaaacaaeaacaWGibaacaGLdm aadaWgaaWcbaGaaGymaaqabaGccaWGMbGaaGykaiaaiIcacqaH8oqB caaIPaGaaGypamaadmaabaGaamyqaiabgUcaRiaaikdacaWGcbWaaa bCaeqaleaacaWGPbGaaGypaiaaigdaaeaacqaH9oGBa0GaeyyeIuoa kiGacogacaGGVbGaai4CaiabeY7aTnaaBaaaleaacaWGPbaabeaaaO Gaay5waiaaw2faaiaadAgacaaIOaGaeqiVd0MaaGykaiabgUcaRiab ew7aLnaaBaaaleaacaaIXaaabeaakmaapebabeWcbaGaamivamaaCa aabeqaaiabe27aUbaaaeqaniabgUIiYdGccaWGMbGaaGikaiaadoha caaIPaGaamizaiaadohacqGHRaWkcaaIYaGaeqyTdu2aaSbaaSqaai aaikdaaeqaaOWaa8qeaeqaleaacaWGubWaaWbaaeqabaGaeqyVd4ga aaqab0Gaey4kIipakmaaqahabeWcbaGaamyAaiaai2dacaaIXaaaba GaeqyVd4ganiabggHiLdGccaaIBbGaci4yaiaac+gacaGGZbGaeqiV d02aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZb Gaam4CamaaBaaaleaacaWGPbaabeaakiaai2facaWGMbGaaGikaiaa dohacaaIPaGaamizaiaadohacaaISaaaaa@7FC0@     (14)

где μ=( μ 1 ,, μ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaI9aGaaGikaiabeY7aTn aaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeqiVd02a aSbaaSqaaiaad6gaaeqaaOGaaGykaaaa@3DB7@ , s=( s 1 ,, s n ) T ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaaiIcacaWGZbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWGZbWaaSba aSqaaiaad6gaaeqaaOGaaGykaiabgIGiolaadsfadaahaaWcbeqaai abe27aUbaaaaa@3FBF@ .

Известно, что непрерывный спектр оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не зависит от чисел ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba aaaa@344F@  и ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba aaaa@3450@  и заполняет весь отрезок

                                            [ m ν , M ν ]=[A2Bν,A+2Bν], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyBamaaBaaaleaacqaH9o GBaeqaaOGaaGilaiaad2eadaWgaaWcbaGaeqyVd4gabeaakiaai2fa caaI9aGaaG4waiaadgeacqGHsislcaaIYaGaamOqaiabe27aUjaaiY cacaWGbbGaey4kaSIaaGOmaiaadkeacqaH9oGBcaaIDbGaaGilaaaa @47B3@

где

                     m ν = min x T ν h(x), M ν = max x T ν h(x),h(x)=A+2B i=1 ν cos x i ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbWaaSbaaSqaaiabe27aUbqaba GccaaI9aWaaybuaeqaleaacaWG4bGaeyicI4SaamivamaaCaaabeqa aiabe27aUbaaaeqakeaaciGGTbGaaiyAaiaac6gaaaGaaGPaVlaadI gacaaIOaGaamiEaiaaiMcacaaISaGaaGzbVlaad2eadaWgaaWcbaGa eqyVd4gabeaakiaai2dadaGfqbqabSqaaiaadIhacqGHiiIZcaWGub WaaWbaaeqabaGaeqyVd4gaaaqabOqaaiGac2gacaGGHbGaaiiEaiaa ykW7aaGaamiAaiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaamiAai aaiIcacaWG4bGaaGykaiaai2dacaWGbbGaey4kaSIaaGOmaiaadkea daaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiabe27aUbqdcqGHri s5aOGaci4yaiaac+gacaGGZbGaamiEamaaBaaaleaacaWGPbaabeaa kiaaiMcacaaIUaaaaa@6C56@

Для нахождения собственных значений и собственных функций оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  запишем (15) в следующем виде:

     A+2B i=1 ν cos μ i z f(μ)+ ε 1 T ν f(s)ds+2 ε 2 T ν i=1 ν [cos μ i +cos s i ]f(s)ds=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGadaqaaiaadgeacqGHRaWkcaaIYa GaamOqamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaeqyVd4ga niabggHiLdGcciGGJbGaai4BaiaacohacqaH8oqBdaWgaaWcbaGaam yAaaqabaGccqGHsislcaWG6baacaGL7bGaayzFaaGaamOzaiaaiIca cqaH8oqBcaaIPaGaey4kaSIaeqyTdu2aaSbaaSqaaiaaigdaaeqaaO Waa8qeaeqaleaacaWGubWaaWbaaeqabaGaeqyVd4gaaaqab0Gaey4k IipakiaadAgacaaIOaGaam4CaiaaiMcacaWGKbGaam4CaiabgUcaRi aaikdacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGcdaWdraqabSqaaiaa dsfadaahaaqabeaacqaH9oGBaaaabeqdcqGHRiI8aOWaaabCaeqale aacaWGPbGaaGypaiaaigdaaeaacqaH9oGBa0GaeyyeIuoakiaaiUfa ciGGJbGaai4BaiaacohacqaH8oqBdaWgaaWcbaGaamyAaaqabaGccq GHRaWkciGGJbGaai4BaiaacohacaWGZbWaaSbaaSqaaiaadMgaaeqa aOGaaGyxaiaadAgacaaIOaGaam4CaiaaiMcacaWGKbGaam4Caiaai2 dacaaIWaGaaGilaaaa@7ABA@         (15)

где zR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyicI4SaamOuaaaa@351B@ .

Сначала рассмотрим случай ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@ . Введем обозначения

                       a= T f(s)ds,b= T f(s)cossds,h(μ)=A+2Bcosμ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypamaapebabeWcbaGaam ivaaqab0Gaey4kIipakiaadAgacaaIOaGaam4CaiaaiMcacaWGKbGa am4CaiaaiYcacaaMf8UaamOyaiaai2dadaWdraqabSqaaiaadsfaae qaniabgUIiYdGccaWGMbGaaGikaiaadohacaaIPaGaci4yaiaac+ga caGGZbGaam4CaiaadsgacaWGZbGaaGilaiaaywW7caWGObGaaGikai abeY7aTjaaiMcacaaI9aGaamyqaiabgUcaRiaaikdacaWGcbGaci4y aiaac+gacaGGZbGaeqiVd0MaaGOlaaaa@5AD8@

Из (16) следует, что

                                         f(μ)= ( ε 1 +2 ε 2 cosμ)a+2 ε 2 b h(μ)z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeY7aTjaaiMcaca aI9aGaeyOeI0YaaSaaaeaacaaIOaGaeqyTdu2aaSbaaSqaaiaaigda aeqaaOGaey4kaSIaaGOmaiabew7aLnaaBaaaleaacaaIYaaabeaaki GacogacaGGVbGaai4CaiabeY7aTjaaiMcacaWGHbGaey4kaSIaaGOm aiabew7aLnaaBaaaleaacaaIYaaabeaakiaadkgaaeaacaWGObGaaG ikaiabeY7aTjaaiMcacqGHsislcaWG6baaaiaai6caaaa@50F8@                                             (16)

Используя (16), выразим a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A7@  и b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A8@  и получим следующую систему двух линейных однородных алгебраических уравнений:

                               1+ T ε 1 +2 ε 2 coss h(s)z ds a+2 ε 2 T ds h(s)z b=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaaigdacqGHRaWkdaWdra qabSqaaiaadsfaaeqaniabgUIiYdGcdaWcaaqaaiabew7aLnaaBaaa leaacaaIXaaabeaakiabgUcaRiaaikdacqaH1oqzdaWgaaWcbaGaaG OmaaqabaGcciGGJbGaai4BaiaacohacaWGZbaabaGaamiAaiaaiIca caWGZbGaaGykaiabgkHiTiaadQhaaaGaamizaiaadohaaiaawIcaca GLPaaacaWGHbGaey4kaSIaaGOmaiabew7aLnaaBaaaleaacaaIYaaa beaakmaapebabeWcbaGaamivaaqab0Gaey4kIipakmaalaaabaGaam izaiaadohaaeaacaWGObGaaGikaiaadohacaaIPaGaeyOeI0IaamOE aaaacaWGIbGaaGypaiaaicdacaaISaaaaa@5BE6@

                          T coss( ε 1 +2 ε 2 coss) h(s)z dsa+ 1+2 ε 2 T cossds h(s)z b=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdraqabSqaaiaadsfaaeqaniabgU IiYdGcdaWcaaqaaiGacogacaGGVbGaai4CaiaadohacaaIOaGaeqyT du2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGOmaiabew7aLnaaBa aaleaacaaIYaaabeaakiGacogacaGGVbGaai4CaiaadohacaaIPaaa baGaamiAaiaaiIcacaWGZbGaaGykaiabgkHiTiaadQhaaaGaamizai aadohacaWGHbGaey4kaSYaaeWaaeaacaaIXaGaey4kaSIaaGOmaiab ew7aLnaaBaaaleaacaaIYaaabeaakmaapebabeWcbaGaamivaaqab0 Gaey4kIipakmaalaaabaGaci4yaiaac+gacaGGZbGaam4Caiaadsga caWGZbaabaGaamiAaiaaiIcacaWGZbGaaGykaiabgkHiTiaadQhaaa aacaGLOaGaayzkaaGaamOyaiaai2dacaaIWaGaaGOlaaaa@64E3@

Эта система имеет нетривиальное решение тогда и только тогда, когда детерминант системы Δ 1 (z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaIOaGaamOEaiaaiMcaaaa@367C@  равен нулю, где

             Δ 1 (z)= 1+ T ( ε 1 +2 ε 2 coss)ds h(s)z 1+2 ε 2 T cossds h(s)z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabfs5aenaaBaaale aacaaIXaaabeaakiaaiIcacaWG6bGaaGykaiaai2dadaqadaqaaiaa igdacqGHRaWkdaWdraqabSqaaiaadsfaaeqaniabgUIiYdGcdaWcaa qaaiaaiIcacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaI YaGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaci4yaiaac+gacaGGZb Gaam4CaiaaiMcacaWGKbGaam4CaaqaaiaadIgacaaIOaGaam4Caiaa iMcacqGHsislcaWG6baaaaGaayjkaiaawMcaaiabgwSixpaabmaaba GaaGymaiabgUcaRiaaikdacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGc daWdraqabSqaaiaadsfaaeqaniabgUIiYdGcdaWcaaqaaiGacogaca GGVbGaai4CaiaadohacaWGKbGaam4CaaqaaiaadIgacaaIOaGaam4C aiaaiMcacqGHsislcaWG6baaaaGaayjkaiaawMcaaiabgkHiTaaa@6B2B@

                                 2 ε 2 T ds h(s)z T coss( ε 1 +2 ε 2 coss) h(s)z ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaeqyTdu2aaSbaaS qaaiaaikdaaeqaaOWaa8qeaeqaleaacaWGubaabeqdcqGHRiI8aOWa aSaaaeaacaWGKbGaam4CaaqaaiaadIgacaaIOaGaam4CaiaaiMcacq GHsislcaWG6baaamaapebabeWcbaGaamivaaqab0Gaey4kIipakmaa laaabaGaci4yaiaac+gacaGGZbGaam4CaiaaiIcacqaH1oqzdaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaaIYaGaeqyTdu2aaSbaaSqaaiaa ikdaaeqaaOGaam4yaiaad+gacaWGZbGaam4CaiaaiMcaaeaacaWGOb GaaGikaiaadohacaaIPaGaeyOeI0IaamOEaaaacaWGKbGaam4Caiaa i6cacaaMf8UaaGzbVdaa@5DCC@

Поэтому имеет место следующее утверждение.

Лемма 3  Действительное число z[ m 1 , M 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyycI8SaaG4waiaad2gada WgaaWcbaGaaGymaaqabaGccaaISaGaamytamaaBaaaleaacaaIXaaa beaakiaai2faaaa@3A6E@  является собственным значением оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  тогда и только тогда, когда оно является нулем функции Δ 1 (z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaIOaGaamOEaiaaiMcaaaa@367C@ .

Следующая теорема описывает спектр оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  в случае, когда ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@ .

Теорема 5  Пусть ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@ .

A.    Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@378F@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaadkeaaaa@36A4@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ , лежащее ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

B.     Если ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  и ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  (соответственно, ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@  и ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z=A 4 B 2 + ε 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHsislda GcaaqaaiaaisdacaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa eqyTdu2aa0baaSqaaiaaigdaaeaacaaIYaaaaaqabaaaaa@3BEF@  (соответственно, z=A+ 4 B 2 + ε 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda GcaaqaaiaaisdacaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa eqyTdu2aa0baaSqaaiaaigdaaeaacaaIYaaaaaqabaaaaa@3BE4@  ), лежащее ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

C.     Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  или ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения

                          z 1 =A 2BE E 2 1 , z 2 =A+ 2BE E 2 1 ,гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaamyraaqa amaakaaabaGaamyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaig daaSqabaaaaOGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaamyraa qaamaakaaabaGaamyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa igdaaSqabaaaaOGaaGilaiaaywW7caqGZqGaaeineiaabwdbcaaMf8 Uaamyraiaai2dadaWcaaqaaiaaiIcacaWGcbGaey4kaSIaeqyTdu2a aSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaaaO qaaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaa ikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaakiaaiYcaaa a@5FE5@

лежащих ниже и выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@

D.    Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4115@  (соответственно, ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4202@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение

z=A+ 2B( E 2 +1) E 2 1 (соответственно,z=A 2B( E 2 +1) E 2 1 ),гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda WcaaqaaiaaikdacaWGcbGaaGikaiaadweadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaGaaGykaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaaaaiaaywW7caqGOaGaaeyqeiaab6dbcaqG +qGaaeOqeiaabkdbcaqG1qGaaeOqeiaabgebcaqGcrGaaeOmeiaabw dbcaqG9qGaaeypeiaab6dbcaqGSaGaaGzbVlaadQhacaaI9aGaamyq aiabgkHiTmaalaaabaGaaGOmaiaadkeacaaIOaGaamyramaaCaaale qabaGaaGOmaaaakiabgUcaRiaaigdacaaIPaaabaGaamyramaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaigdaaaGaaGykaiaaiYcacaaMf8 Uaae4meiaabsdbcaqG1qGaaGzbVlaadweacaaI9aWaaSaaaeaacaaI OaGaamOqaiabgUcaRiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiM cadaahaaWcbeqaaiaaikdaaaaakeaacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaaaaGccaaISaaaaa@7333@

лежащее выше (соответственно, ниже) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

E.     Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение

1.      z=A+ 2B(α+E E 2 1+ α 2 ) E 2 1 ,гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda WcaaqaaiaaikdacaWGcbGaaGikaiabeg7aHjabgUcaRiaadweadaGc aaqaaiaadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaaqabaGccaaIPaaabaGa amyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaaGaaGilai aaywW7caqGZqGaaeineiaabwdbcaaMf8Uaamyraiaai2dadaWcaaqa aiaaiIcacaWGcbGaey4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaO GaaGykamaaCaaaleqabaGaaGOmaaaaaOqaaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaaaakiaaiYcaaaa@5D08@

лежащее выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ ; здесь α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGymaaaa@34E3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ действительное число.

F.      Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение

1.      z=A 2B(α+E E 2 1+ α 2 ) E 2 1 < m 1 ,гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHsislda WcaaqaaiaaikdacaWGcbGaaGikaiabeg7aHjabgUcaRiaadweadaGc aaqaaiaadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaaqabaGccaaIPaaabaGa amyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaaGaaGipai aad2gadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGzbVlaabodbcaqG 0qGaaeyneiaaywW7caWGfbGaaGypamaalaaabaGaaGikaiaadkeacq GHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqa beaacaaIYaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYa aaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqa baaaaOGaaGilaaaa@5FBC@

лежащее ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ ; здесь α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGymaaaa@34E3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ действительное число.

G.    Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения

1.      z 1 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 < m 1 , z 2 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 > M 1 , гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOEamaaBa aaleaacaaIXaaabeaakiaai2dacaWGbbGaey4kaSYaaSaaaeaacaaI YaGaamOqaiaaiIcacqaHXoqycqGHsislcaWGfbWaaOaaaeaacaWGfb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiabgUcaRiabeg7a HnaaCaaaleqabaGaaGOmaaaaaeqaaOGaaGykaaqaaiaadweadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaaiYdacaWGTbWaaSba aSqaaiaaigdaaeqaaOGaaGilaaqaaaqaaiaadQhadaWgaaWcbaGaaG OmaaqabaGccaaI9aGaamyqaiabgUcaRmaalaaabaGaaGOmaiaadkea caaIOaGaeqySdeMaey4kaSIaamyramaakaaabaGaamyramaaCaaale qabaGaaGOmaaaakiabgkHiTiaaigdacqGHRaWkcqaHXoqydaahaaWc beqaaiaaikdaaaaabeaakiaaiMcaaeaacaWGfbWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaaGymaaaacaaI+aGaamytamaaBaaaleaacaaI XaaabeaakiaaiYcaaaGaaGzbVlaabodbcaqG0qGaaeyneiaaywW7ca WGfbGaaGypamaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOm aiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaaaaOGaaGilaaaa@78EE@

лежащих соответственно ниже и выше непрерывного спектра H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ ; здесь 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@  - действительное число.

H.    Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения

1.      z 1 =A 2B(α+E E 2 1+ α 2 ) E 2 1 < m 1 , z 2 =A 2B(αE E 2 1+ α 2 ) E 2 1 > M 1 , гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOEamaaBa aaleaacaaIXaaabeaakiaai2dacaWGbbGaeyOeI0YaaSaaaeaacaaI YaGaamOqaiaaiIcacqaHXoqycqGHRaWkcaWGfbWaaOaaaeaacaWGfb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiabgUcaRiabeg7a HnaaCaaaleqabaGaaGOmaaaaaeqaaOGaaGykaaqaaiaadweadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaaiYdacaWGTbWaaSba aSqaaiaaigdaaeqaaOGaaGilaaqaaaqaaiaadQhadaWgaaWcbaGaaG OmaaqabaGccaaI9aGaamyqaiabgkHiTmaalaaabaGaaGOmaiaadkea caaIOaGaeqySdeMaeyOeI0IaamyramaakaaabaGaamyramaaCaaale qabaGaaGOmaaaakiabgkHiTiaaigdacqGHRaWkcqaHXoqydaahaaWc beqaaiaaikdaaaaabeaakiaaiMcaaeaacaWGfbWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaaGymaaaacaaI+aGaamytamaaBaaaleaacaaI XaaabeaakiaaiYcaaaGaaGzbVlaabodbcaqG0qGaaeyneiaaywW7ca WGfbGaaGypamaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOm aiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaaaaOGaaGilaaaa@7904@

лежащих соответственно ниже и выше непрерывного спектра H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ ; здесь 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@  - действительное число.

I.        Если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

Proof. В случае, когда ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@ , непрерывный спектр оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  совпадает с отрезком [ m 1 , M 1 ]=[A2B,A+2B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyBamaaBaaaleaacaaIXa aabeaakiaaiYcacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiaa i2dacaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaaGilaiaadgeacq GHRaWkcaaIYaGaamOqaiaai2faaaa@4193@ . Выражая все интегралы, входящие в уравнение Δ 1 (z)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaIOaGaamOEaiaaiMcacaaI9aGaaGimaaaa@37FD@ , через интеграл

                                                J(z)= T ds A+2Bcossz , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypamaapebabeWcbaGaamivaaqab0Gaey4kIipakmaalaaabaGaamiz aiaadohaaeaacaWGbbGaey4kaSIaaGOmaiaadkeaciGGJbGaai4Bai aacohacaWGZbGaeyOeI0IaamOEaaaacaaISaaaaa@4432@                                                   (17)

получаем, что уравнение Δ 1 (z)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGymaaqaba GccaaIOaGaamOEaiaaiMcacaaI9aGaaGimaaaa@37FD@  эквивалентно уравнению

                               [ ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)]J(z)+ (B+ ε 2 ) 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaeqyTdu2aaSbaaSqaaiaaig daaeqaaOGaamOqamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIca cqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYa GaamOqaiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiMcacaaIOaGa amOEaiabgkHiTiaadgeacaaIPaGaaGyxaiaadQeacaaIOaGaamOEai aaiMcacqGHRaWkcaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaaleaa caaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI9aGaaG imaiaai6caaaa@5379@                                   (18)

Поскольку функция (17) является дифференцируемой на множестве \[ m 1 , M 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risjaacYfacaaIBbGaamyBamaaBaaaleaa caaIXaaabeaakiaaiYcacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaaG yxaaaa@4380@  и

                              J (z)= T ds [A+2Bcossz] 2 >0,z[ m 1 , M 1 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGkbGbauaacaaIOaGaamOEaiaaiM cacaaI9aWaa8qeaeqaleaacaWGubaabeqdcqGHRiI8aOWaaSaaaeaa caWGKbGaam4CaaqaaiaaiUfacaWGbbGaey4kaSIaaGOmaiaadkeaci GGJbGaai4BaiaacohacaWGZbGaeyOeI0IaamOEaiaai2fadaahaaWc beqaaiaaikdaaaaaaOGaaGOpaiaaicdacaaISaGaaGzbVlaadQhacq GHjiYZcaaIBbGaamyBamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG nbWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiaaiYcaaaa@5370@

функция J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaaaaa@34F4@  является монотонно возрастающей функцией z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  в (, m 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aad2gadaWgaaWcbaGaaGymaaqabaGccaaIPaaaaa@381D@  и в ( M 1 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamytamaaBaaaleaacaaIXa aabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@37F2@ . Кроме того,

       J(z)+0 при z, J(z)+ при z m 1 0, J(z) при z M 1 +0, J(z)0 при z+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaiaaaaaqaaaqaaiaadQeaca aIOaGaamOEaiaaiMcacqGHsgIRcqGHRaWkcaaIWaaabaaabaGaae4p eiaabcebcaqG4qGaaeiiaiaadQhacqGHsgIRcqGHsislcqGHEisPca aISaaabaGaaGzbVdqaaiaadQeacaaIOaGaamOEaiaaiMcacqGHsgIR cqGHRaWkcqGHEisPaeaaaeaacaqG=qGaaeiqeiaabIdbcaqGGaGaam OEaiabgkziUkaad2gadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaI WaGaaGilaaqaaaqaaiaadQeacaaIOaGaamOEaiaaiMcacqGHsgIRcq GHsislcqGHEisPaeaaaeaacaqG=qGaaeiqeiaabIdbcaqGGaGaamOE aiabgkziUkaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIWa GaaGilaaqaaiaaywW7aeaacaWGkbGaaGikaiaadQhacaaIPaGaeyOK H4QaeyOeI0IaaGimaaqaaaqaaiaab+dbcaqGarGaaeioeiaabccaca WG6bGaeyOKH4Qaey4kaSIaeyOhIuQaaGOlaaaaaaa@7752@

Если ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiabew7a LnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcb GaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiIcacaWG6bGa eyOeI0IaamyqaiaaiMcacqGHGjsUcaaIWaaaaa@4746@ , то из (18) вытекает, что

                                        J(z)= (B+ ε 2 ) 2 ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaamOqamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiMcacaaIOaGaamOEaiabgkHiTiaadgeacaaIPaaaai aai6caaaa@510E@

Функция

                                         ψ(z)= (B+ ε 2 ) 2 ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aGaeyOeI0YaaSaaaeaacaaIOaGaamOqaiabgUcaRiabew7aLnaa BaaaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaaake aacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaWGcbWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGikaiabew7aLnaaDaaaleaacaaIYaaaba GaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaa ikdaaeqaaOGaaGykaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcaaa aaaa@5155@

имеет точку разрыва z 0 =A B 2 ε 1 ε 2 2 +2B ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaadkeadaahaaWcbeqaaiaa ikdaaaGccqaH1oqzdaWgaaWcbaGaaGymaaqabaaakeaacqaH1oqzda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiab ew7aLnaaBaaaleaacaaIYaaabeaaaaaaaa@42D6@ . Так как

                                        ψ (z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 ) [ ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)] 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHipqEgaqbaiaaiIcacaWG6bGaaG ykaiaai2dadaWcaaqaaiaaiIcacaWGcbGaey4kaSIaeqyTdu2aaSba aSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiI cacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaI YaGaamOqaiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiMcaaeaaca aIBbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaamOqamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaa qaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaa caaIYaaabeaakiaaiMcacaaIOaGaamOEaiabgkHiTiaadgeacaaIPa GaaGyxamaaCaaaleqabaGaaGOmaaaaaaaaaa@5CE2@

для всех z z 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyiyIKRaamOEamaaBaaale aacaaIWaaabeaaaaa@366C@ , отсюда следует, что функция ψ(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaaa a@35F3@  является монотонно возрастающей (убывающей) функцией z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  в (, z 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aadQhadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3829@  и в ( z 0 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEamaaBaaaleaacaaIWa aabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@381E@  в случае, когда ε 2 2 +2B ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI Yaaabeaakiaai6dacaaIWaaaaa@3B97@  (соответственно, ε 2 2 +2B ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiYdacaaIWaaaaa@3B95@  ). Кроме того, если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  или ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , то

       ψ(z)+0 при z, ψ(z)+ при z z 0 0, ψ(z) при z z 0 +0, ψ(z)0 при z+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaiaaaaaqaaaqaaiabeI8a5j aaiIcacaWG6bGaaGykaiabgkziUkabgUcaRiaaicdaaeaaaeaacaqG =qGaaeiqeiaabIdbcaqGGaGaamOEaiabgkziUkabgkHiTiabg6HiLk aaiYcaaeaacaaMf8oabaGaeqiYdKNaaGikaiaadQhacaaIPaGaeyOK H4Qaey4kaSIaeyOhIukabaaabaGaae4peiaabcebcaqG4qGaaeiiai aadQhacqGHsgIRcaWG6bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Ia aGimaiaaiYcaaeaaaeaacqaHipqEcaaIOaGaamOEaiaaiMcacqGHsg IRcqGHsislcqGHEisPaeaaaeaacaqG=qGaaeiqeiaabIdbcaqGGaGa amOEaiabgkziUkaadQhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkca aIWaGaaGilaaqaaiaaywW7aeaacqaHipqEcaaIOaGaamOEaiaaiMca cqGHsgIRcqGHsislcaaIWaaabaaabaGaae4peiaabcebcaqG4qGaae iiaiaadQhacqGHsgIRcqGHRaWkcqGHEisPcaaIUaaaaaaa@7B86@

Соответственно, если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то

       ψ(z)0 при z, ψ(z) при z z 0 0, ψ(z)+ при z z 0 +0, ψ(z)+0 при z+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaiaaaaaqaaaqaaiabeI8a5j aaiIcacaWG6bGaaGykaiabgkziUkabgkHiTiaaicdaaeaaaeaacaqG =qGaaeiqeiaabIdbcaqGGaGaamOEaiabgkziUkabgkHiTiabg6HiLk aaiYcaaeaacaaMf8oabaGaeqiYdKNaaGikaiaadQhacaaIPaGaeyOK H4QaeyOeI0IaeyOhIukabaaabaGaae4peiaabcebcaqG4qGaaeiiai aadQhacqGHsgIRcaWG6bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Ia aGimaiaaiYcaaeaaaeaacqaHipqEcaaIOaGaamOEaiaaiMcacqGHsg IRcqGHRaWkcqGHEisPaeaaaeaacaqG=qGaaeiqeiaabIdbcaqGGaGa amOEaiabgkziUkaadQhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkca aIWaGaaGilaaqaaiaaywW7aeaacqaHipqEcaaIOaGaamOEaiaaiMca cqGHsgIRcqGHRaWkcaaIWaaabaaabaGaae4peiaabcebcaqG4qGaae iiaiaadQhacqGHsgIRcqGHRaWkcqGHEisPcaaIUaaaaaaa@7B86@

A. Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@378F@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaadkeaaaa@36A4@  ), то уравнение для собственных значений и собственных функций (19) имеет вид

                                              { ε 1 B 2 B 2 (zA)}J(z)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeqyTdu2aaSbaaSqaaiaaig daaeqaaOGaamOqamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadkea daahaaWcbeqaaiaaikdaaaGccaaIOaGaamOEaiabgkHiTiaadgeaca aIPaGaaGyFaiaadQeacaaIOaGaamOEaiaaiMcacaaI9aGaaGimaiaa i6caaaa@4449@                                                  (19)

Ясно, что J(z)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaey iyIKRaaGimaaaa@3775@  для значений z σ cont ( H ˜ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyycI8Saeq4Wdm3aaSbaaS qaaiaadogacaWGVbGaamOBaiaadshaaeqaaOGaaGikamaaGaaabaGa amisaaGaay5adaWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3DEC@ . Поэтому ε 1 z+A=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccqGHsislcaWG6bGaey4kaSIaamyqaiaai2dacaaIWaaaaa@396E@ , т.е. z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ . Если ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@378F@ , то это собственное значение лежит ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ ; если же ε 1 >2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaadkeaaaa@36A4@ , то это собственное значение лежит выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

B. Если ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  и ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  (соответственно, ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@  и ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  ), то уравнение для собственных значений и собственных функций (18) имеет вид

                                                      ε 1 B 2 J(z)+ B 2 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaWGcbWaaWbaaSqabeaacaaIYaaaaOGaamOsaiaaiIcacaWG6bGa aGykaiabgUcaRiaadkeadaahaaWcbeqaaiaaikdaaaGccaaI9aGaaG imaiaaiYcaaaa@3E19@

т.е. J(z)=1/ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTiaaigdacaaIVaGaeqyTdu2aaSbaaSqaaiaaigdaaeqa aaaa@3AAA@ . Ясно, что интеграл J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaaaaa@34F4@  вычисляется в квадратурах, и ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем J(z)>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG Opaiaaicdaaaa@3676@  (соответственно, J(z)<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ipaiaaicdaaaa@3674@  ); следовательно, ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  (соответственно, ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@  ). Вычисляя интеграл

                                                J(z)= T ν ds A+2Bcossz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypamaapebabeWcbaGaamivamaaCaaabeqaaiabe27aUbaaaeqaniab gUIiYdGcdaWcaaqaaiaadsgacaWGZbaabaGaamyqaiabgUcaRiaaik dacaWGcbGaci4yaiaac+gacaGGZbGaam4CaiabgkHiTiaadQhaaaaa aa@4556@

для z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@ , лежащих ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , получаем уравнение

                                                 1 (Az) 2 4 B 2 = 1 ε 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dacqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzdaWgaaWc baGaaGymaaqabaaaaOGaaGilaaaa@40D8@

имеющее решение z=A ε 1 2 +4 B 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHsislda Gcaaqaaiabew7aLnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUca RiaaisdacaWGcbWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@3BEF@ , лежащее ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Для значений z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@ , лежащих выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , имеем уравнение

                                                1 (zA) 2 4 B 2 = 1 ε 1 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaai2dacqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqz daWgaaWcbaGaaGymaaqabaaaaOGaaG4oaaaa@41D4@

его решение, лежащее выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , имеет вид z=A+ ε 1 2 +4 B 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda Gcaaqaaiabew7aLnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUca RiaaisdacaWGcbWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@3BE4@ .

C. Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  или ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , то уравнение для собственных значений и собственных функций принимает вид

          ( ε 2 2 +2B ε 2 )(zA)J(z)= (B+ ε 2 ) 2 илиJ(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaaG ykaiaadQeacaaIOaGaamOEaiaaiMcacaaI9aGaeyOeI0IaaGikaiaa dkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaW baaSqabeaacaaIYaaaaOGaaGzbVlaabIdbcaqG7qGaaeioeiaaywW7 caWGkbGaaGikaiaadQhacaaIPaGaaGypaiabgkHiTmaalaaabaGaaG ikaiaadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI PaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGikaiabew7aLnaaDaaale aacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2a aSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiIcacaWG6bGaeyOeI0Iaam yqaiaaiMcaaaGaaGOlaaaa@6A87@

Положим E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypamaalaaabaGaaGikai aadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWa aWbaaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaaaaaaa@4246@ ; тогда J(z)= E zA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamyraaqaaiaadQhacqGHsislcaWGbbaa aaaa@3A34@  или J(z)= E Az MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypamaalaaabaGaamyraaqaaiaadgeacqGHsislcaWG6baaaaaa@3947@ . Если z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  лежит ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , имеем уравнение вида

                                                1 (Az) 2 4 B 2 = E Az , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaaaa caaISaaaaa@4014@

имеющее решение вида

                                                       z=A 2BE E 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHsislda WcaaqaaiaaikdacaWGcbGaamyraaqaamaakaaabaGaamyramaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaigdaaSqabaaaaOGaaGOlaaaa@3BD9@

Ясно, что E 2 >1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaaWbaaSqabeaacaaIYaaaaO GaaGOpaiaaigdaaaa@3501@ . Это собственное значение лежит ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Если z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  лежит выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , уравнение для собственных значений и его решение имеют соответственно вид

                              1 (zA) 2 4 B 2 = E zA ,z=A+ 2BE E 2 1 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaai2dacqGHsisldaWcaaqaaiaadweaaeaacaWG6bGa eyOeI0IaamyqaaaacaaISaGaaGzbVlaadQhacaaI9aGaamyqaiabgU caRmaalaaabaGaaGOmaiaadkeacaWGfbaabaWaaOaaaeaacaWGfbWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaWcbeaaaaGccaaI7a aaaa@4D96@

это собственное значение лежит выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

D. Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4115@ , то уравнение для собственных значений имеет вид

  ( ε 2 2 +2B ε 2 )(zA+2B)J(z)= (B+ ε 2 ) 2 илиJ(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA+2B) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey 4kaSIaaGOmaiaadkeacaaIPaGaamOsaiaaiIcacaWG6bGaaGykaiaa i2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaaleaaca aIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaMf8Uaaeio eiaabUdbcaqG4qGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcacaaI9a GaeyOeI0YaaSaaaeaacaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaa leaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaaca aIOaGaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIa aGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaG ikaiaadQhacqGHsislcaWGbbGaey4kaSIaaGOmaiaadkeacaaIPaaa aiaai6caaaa@6F51@      (20)

Положим E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ . Сначала рассмотрим уравнение (21) в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Из (20) получаем уравнение вида

                                            1 (Az) 2 4 B 2 = E Az2B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gkHiTiaaikdacaWGcbaaaiaaiYcaaaa@4284@

решения которого суть

                                        z 1 =A+ 2B( E 2 +1) E 2 1 , z 2 =A2B. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiaa dweadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGykaaqaai aadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaaiYca caaMf8UaamOEamaaBaaaleaacaaIYaaabeaakiaai2dacaWGbbGaey OeI0IaaGOmaiaadkeacaaIUaaaaa@48C1@

Неравенства z i <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37E0@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@ , не выполняются. Рассмотрим уравнение (20) в области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ :

                                         1 (zA) 2 4 B 2 = E zA+2B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaai2dacqGHsisldaWcaaqaaiaadweaaeaacaWG6bGa eyOeI0IaamyqaiabgUcaRiaaikdacaWGcbaaaiaai6caaaa@4455@

Проверяя условия z i >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37D7@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@ , обнаруживаем, что неравенство z 1 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A4@  выполняется, а неравенство z 2 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A5@ нет. Следовательно, в этом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 =A+2B( E 2 +1)/( E 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkcaaIYaGaamOqaiaaiIcacaWGfbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaiMcacaaIVaGaaGikai aadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaGykaaaa @41E5@ , лежащее выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

Пусть ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4202@ ; тогда уравнение для собственных значений и собственных функций имеет вид

                                 J(z)= E zA2B ,гдеE= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamyraaqaaiaadQhacqGHsislcaWGbbGa eyOeI0IaaGOmaiaadkeaaaGaaGilaiaaywW7caqGZqGaaeineiaabw dbcaaMf8Uaamyraiaai2dadaWcaaqaaiaaiIcacaWGcbGaey4kaSIa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqabaGaaG OmaaaaaOqaaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiab gUcaRiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaaaki aai6caaaa@53EE@

В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем уравнение вида

                                            1 (Az) 2 4 B 2 = E Az+2B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gUcaRiaaikdacaWGcbaaaiaaiYcaaaa@4279@

корни которого суть

                                        z 1 =A 2B( E 2 +1) E 2 1 , z 2 =A+2B. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaGikaiaa dweadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGykaaqaai aadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaaiaaiYca caaMf8UaamOEamaaBaaaleaacaaIYaaabeaakiaai2dacaWGbbGaey 4kaSIaaGOmaiaadkeacaaIUaaaaa@48C1@

Неравенство z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@  верно, а неравенство z 2 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AE@  нет. В области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем

            1 (zA) 2 4 B 2 = E zA2B , z 1 =A 2B( E 2 +1) E 2 1 , z 2 =A+2B. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaai2dacqGHsisldaWcaaqaaiaadweaaeaacaWG6bGa eyOeI0IaamyqaiabgkHiTiaaikdacaWGcbaaaiaaiYcacaaMf8Uaam OEamaaBaaaleaacaaIXaaabeaakiaai2dacaWGbbGaeyOeI0YaaSaa aeaacaaIYaGaamOqaiaaiIcacaWGfbWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGymaiaaiMcaaeaacaWGfbWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaaGymaaaacaaISaGaaGzbVlaadQhadaWgaaWcbaGaaG OmaaqabaGccaaI9aGaamyqaiabgUcaRiaaikdacaWGcbGaaGOlaaaa @5CEC@

Неравенства z 1 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A4@  и z 2 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A5@  не выполняются. Поэтому в рассматриваемом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@ , лежащее ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

E. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  или, соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  ), то, положив ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@42B4@ , где α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGymaaaa@34E3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ действительное число, получим уравнение для собственных значений в виде

                  α 2( ε 2 2 +2B ε 2 ) B B 2 +( ε 2 2 +2B ε 2 )(zA) J(z)+ (B+ ε 2 ) 2 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGadaqaaiabeg7aHnaalaaabaGaaG OmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH RaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiM caaeaacaWGcbaaaiabgwSixlaadkeadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIOaGaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaO Gaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGc caaIPaGaaGikaiaadQhacqGHsislcaWGbbGaaGykaaGaay5Eaiaaw2 haaiaadQeacaaIOaGaamOEaiaaiMcacqGHRaWkcaaIOaGaamOqaiab gUcaRiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiMcadaahaaWcbe qaaiaaikdaaaGccaaI9aGaaGimaiaaiYcaaaa@6079@

или

                                ( ε 2 2 +2B ε 2 )(zA+2αB)J(z)+ (B+ ε 2 ) 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey 4kaSIaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiabgUcaRiaaiIcacaWGcbGaey4kaSIaeqyTdu2aaSbaaSqaai aaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2dacaaI WaGaaGOlaaaa@507D@

Отсюда находим

                                        J(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA+2αB) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGikaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUca RiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykai aaiIcacaWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWG cbGaaGykaaaacaaIUaaaaa@4FDE@

Положив E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ , запишем

                                                   J(z)= E zA+2αB . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamyraaqaaiaadQhacqGHsislcaWGbbGa ey4kaSIaaGOmaiabeg7aHjaadkeaaaGaaGOlaaaa@3EF0@                                                      (21)

Сначала рассмотрим это выражение в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , где

                                          1 (Az) 2 4 B 2 = E Az2αB ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gkHiTiaaikdacqaHXoqycaWGcbaaaiaaiUdaaaa@4432@

решения имеют вид

              z 1 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGOlaaaa@5EA9@

Решение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  не удовлетворяет условию z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@ , в то время как z 2 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AE@ , но неравенство z 2 <A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394D@  не выполняется. Неравенство z 1 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A4@  верно, а z 2 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A5@  нет. Поскольку A2αB<A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaeyOeI0IaaGOmaiabeg7aHj aadkeacaaI8aGaamyqaiabgUcaRiaaikdacaWGcbaaaa@3A87@ , получаем, что z 1 >A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394E@ . Следовательно, в рассматриваемом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 =A+2B(α+E E 2 1+ α 2 )/( E 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkcaaIYaGaamOqaiaaiIcacqaHXoqycqGH RaWkcaWGfbWaaOaaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGymaiabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaaaeqa aOGaaGykaiaai+cacaaIOaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdacaaIPaaaaa@48BF@ , лежащее выше непрерывного спектра.

F. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  или, соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@ , то положим ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLn aaBaaaleaacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@43A1@ , где α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGymaaaa@34E3@ . Уравнение для собственных значений имеет вид

    ( ε 2 2 +2B ε 2 )(zA2αB)J(z)= (B+ ε 2 ) 2 ,J(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA2αB) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey OeI0IaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiaai2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBa aaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI SaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcacaaI9aGaeyOeI0YaaS aaaeaacaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaaleaacaaIYaaa beaakiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaIOaGaeqyTdu 2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkea cqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacq GHsislcaWGbbGaeyOeI0IaaGOmaiabeg7aHjaadkeacaaIPaaaaiaa i6caaaa@6F8D@

Положив E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ , запишем

                                                   J(z)= E zA2αB . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamyraaqaaiaadQhacqGHsislcaWGbbGa eyOeI0IaaGOmaiabeg7aHjaadkeaaaGaaGOlaaaa@3EFB@                                                      (22)

В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  уравнение

                                           1 (Az) 2 4 B 2 = E Az+2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gUcaRiaaikdacqaHXoqycaWGcbaaaaaa@4362@

примет вид

                             ( E 2 1)(Az ) 2 4αB(Az)4 B 2 ( E 2 + α 2 )=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyramaaCaaaleqabaGaaG OmaaaakiabgkHiTiaaigdacaaIPaGaaGikaiaadgeacqGHsislcaWG 6bGaaGykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdacqaHXo qycaWGcbGaaGikaiaadgeacqGHsislcaWG6bGaaGykaiabgkHiTiaa isdacaWGcbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadweadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqydaahaaWcbeqaaiaaikda aaGccaaIPaGaaGypaiaaicdacaaIUaaaaa@4FF1@

Отсюда находим

              z 1 =A 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A 2B(αE E 2 1+ α 2 ) E 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGOlaaaa@5EBF@

Проверим условия z i < m 1 =A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaO GaaGipaiaad2gadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyqaiab gkHiTiaaikdacaWGcbaaaa@3A8A@ , i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A3@ . Неравенство z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@  верно, а z 2 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AE@  нет. Уравнение (22) в области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет вид

                                        1 (zA) 2 4 B 2 = E zA2αB ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaai2dacqGHsisldaWcaaqaaiaadweaaeaacaWG6bGa eyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaaiaaiUdaaa a@460C@

его корни суть

             z 1 =A 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabgkHiTiabeg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaah aaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaW baaSqabeaacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaigdaaaGaaGOlaaaa@5F96@

Условие z>A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGOpaiaadgeacqGHRaWkca aIYaGaamOqaaaa@36B3@  не выполняется для z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и выполняется для z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@  верно. Неравенство z 2 >A+2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaeqySdeMaamOqaaaa@3944@  не выполнено. Следовательно, в рассматриваемом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 =A2B(α+E E 2 1+ α 2 )/( E 2 1)< m 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsislcaaIYaGaamOqaiaaiIcacqaHXoqycqGH RaWkcaWGfbWaaOaaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGymaiabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaaaeqa aOGaaGykaiaai+cacaaIOaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdacaaIPaGaaGipaiaad2gadaWgaaWcbaGaaGymaaqa baaaaa@4B69@ , лежащее ниже непрерывного спектра.

G. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  или, соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@ , то, положив ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@42B4@ , где 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@ , получим уравнение для собственных значений

                        ( ε 2 2 +2B ε 2 )(zA+2αB)J(z)= (B+ ε 2 ) 2 ,0<α<1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey 4kaSIaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiaai2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBa aaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI SaGaaGzbVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIUaaaaa@56B2@                            (23)

Положив E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ , перепишем уравнение (23) в виде (21). В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем уравнение

                                 1 (Az) 2 4 B 2 = E Az2αB ,0<α<1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gkHiTiaaikdacqaHXoqycaWGcbaaaiaaiYcacaaMf8UaaGimaiaaiY dacqaHXoqycaaI8aGaaGymaiaaiYcaaaa@4B07@

корни которого суть

              z 1 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGOlaaaa@5EA9@

Неравенства z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@ , z 1 <A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394C@ , z 2 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AE@  и z 2 <A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394D@  выполняются, а неравенство z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@  нет. В области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ уравнение (23) принимает вид

                                        1 (zA) 2 4 B 2 = E zA+2αB ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaai2dacqGHsisldaWcaaqaaiaadweaaeaacaWG6bGa eyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaaiaaiUdaaa a@4601@

его корни равны

              z 1 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGOlaaaa@5EA9@

Неравенства z 1 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A4@ , z 1 >A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394E@ , z 1 >A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394E@  выполнены, а неравенства z 2 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A5@  и z 2 >A+2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaeqySdeMaamOqaaaa@3944@  нет. Следовательно, в рассматриваемом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения

              z 1 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGilaaaa@5EA7@

лежащих соответственно ниже и выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

H. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  или, соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@ , то, полагая ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLn aaBaaaleaacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@43A1@ , где 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@ , получаем уравнение для собственных значений

                        ( ε 2 2 +2B ε 2 )(zA2αB)J(z)= (B+ ε 2 ) 2 ,0<α<1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey OeI0IaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiaai2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBa aaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI SaGaaGzbVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaISaaaaa@56BB@

которое примет вид (23), где E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ . В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  получаем уравнение

                                 1 (Az) 2 4 B 2 = E Az+2αB ,0<α<1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaadaGcaaqaai aaiIcacaWGbbGaeyOeI0IaamOEaiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHsislcaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gUcaRiaaikdacqaHXoqycaWGcbaaaiaaiYcacaaMf8UaaGimaiaaiY dacqaHXoqycaaI8aGaaGymaiaaiYcaaaa@4AFC@

с корнями

              z 1 =A 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A 2B(αE E 2 1+ α 2 ) E 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGilaaaa@5EBD@

для которых z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@ , z 1 <A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394C@ , z 2 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AE@  и z 1 <A2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaamOqaaaa@37AD@ , но неравенство z 2 <A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGipaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394D@  не выполняется. В области выше непрерывного спектра имеем уравнение

                                         1 (zA) 2 4 B 2 = E zA+2αB , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaada GcaaqaaiaaiIcacaWG6bGaeyOeI0IaamyqaiaaiMcadaahaaWcbeqa aiaaikdaaaGccaaI0aGaamOqamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiaai2dacqGHsisldaWcaaqaaiaadweaaeaacaWG6bGaeyOeI0Ia amyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaaiaaiYcaaaa@4505@

решения которого

                z 1 =A 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A 2B(αE E 2 1+ α 2 ) E 2 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI9aGaamyqaiabgkHiTmaalaaabaGaaGOmaiaadkeacaaIOaGaeq ySdeMaeyOeI0IaamyramaakaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdacqGHRaWkcqaHXoqydaahaaWcbeqaaiaaik daaaaabeaakiaaiMcaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaaGymaaaaaaa@5C79@

удовлетворяют условиям для которых z 1 >A2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaadgeacqGHsislcaaIYaGaeqySdeMaamOqaaaa@394E@ , z 2 >A+2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaamOqaaaa@37A5@ , z 2 >A+2αB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaadgeacqGHRaWkcaaIYaGaeqySdeMaamOqaaaa@3944@ . Следовательно, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственные значения

              z 1 =A 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A 2B(αE E 2 1+ α 2 ) E 2 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGilaaaa@5EBD@

лежащие соответственно ниже и выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

I. Если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то ε 2 2 +2B ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiYdacaaIWaaaaa@3B95@ , и функция

                                         ψ(z)= (B+ ε 2 ) 2 ε 1 B+( ε 2 2 +2B ε 2 )(zA) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aGaeyOeI0YaaSaaaeaacaaIOaGaamOqaiabgUcaRiabew7aLnaa BaaaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaaake aacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaWGcbGaey4kaSIaaGik aiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaik dacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiIca caWG6bGaeyOeI0IaamyqaiaaiMcaaaaaaa@5062@

является монотонно убывающей в интервалах (, z 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aadQhadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3829@  и ( z 0 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEamaaBaaaleaacaaIWa aabeaakiaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@381E@ . Кроме того,

   ψ(z) z 0,ψ(z) z z 0 0 ,ψ(z) z+ +0,ψ(z) z z 0 +0 +. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcada GdOaWcbeqaaiaadQhacqGHsgIRcqGHsislcqGHEisPaOGaayPKHaGa eyOeI0IaaGimaiaaiYcacaaMf8UaeqiYdKNaaGikaiaadQhacaaIPa Waa4akaSqabeaacaWG6bGaeyOKH4QaamOEamaaBaaabaGaaGimaaqa baGaeyOeI0IaaGimaaGccaGLsgcacqGHsislcqGHEisPcaaISaGaaG zbVlabeI8a5jaaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiab gkziUkabgUcaRiabg6HiLcGccaGLsgcacqGHRaWkcaaIWaGaaGilai aaywW7cqaHipqEcaaIOaGaamOEaiaaiMcadaGdOaWcbeqaaiaadQha cqGHsgIRcaWG6bWaaSbaaeaacaaIWaaabeaacqGHRaWkcaaIWaaaki aawkziaiabgUcaRiabg6HiLkaai6caaaa@6FC9@

Для функции J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaaaaa@34F4@  имеем

    J(z) z 0,J(z) z m 1 0 +,J(z) z M 1 +0 ,J(z) z+ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiaa icdacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOaWcbe qaaiaadQhacqGHsgIRcaWGTbWaaSbaaeaacaaIXaaabeaacqGHsisl caaIWaaakiaawkziaiabgUcaRiabg6HiLkaaiYcacaaMf8UaamOsai aaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiabgkziUkaad2ea daWgaaqaaiaaigdaaeqaaiabgUcaRiaaicdaaOGaayPKHaGaeyOeI0 IaeyOhIuQaaGilaiaaywW7caWGkbGaaGikaiaadQhacaaIPaWaa4ak aSqabeaacaWG6bGaeyOKH4Qaey4kaSIaeyOhIukakiaawkziaiabgk HiTiaaicdacaaIUaaaaa@6AB3@

Поэтому уравнение ψ(z)=J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aGaamOsaiaaiIcacaWG6bGaaGykaaaa@39ED@  не может имеет решения вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Следовательно, в этом случае, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

Теперь рассмотрим двумерный случай. Уравнение Δ 2 (z)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamOEaiaaiMcacaaI9aGaaGimaaaa@37FE@  эквивалентно уравнению

                               ( ε 2 +B) 2 +{ ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)}J(z)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aaSbaaSqaaiaaik daaeqaaOGaey4kaSIaamOqaiaaiMcadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaI7bGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaamOqam aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIcacqaH1oqzdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLn aaBaaaleaacaaIYaaabeaakiaaiMcacaaIOaGaamOEaiabgkHiTiaa dgeacaaIPaGaaGyFaiaadQeacaaIOaGaamOEaiaaiMcacaaI9aGaaG imaiaaiYcaaaa@53B7@

где

                                       J(z)= T 2 d s 1 d s 2 A+2B(cos s 1 +cos s 2 )z . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypamaapebabeWcbaGaamivamaaCaaabeqaaiaaikdaaaaabeqdcqGH RiI8aOWaaSaaaeaacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaaki aadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyqaiabgUca RiaaikdacaWGcbGaaGikaiGacogacaGGVbGaai4CaiaadohadaWgaa WcbaGaaGymaaqabaGccqGHRaWkciGGJbGaai4BaiaacohacaWGZbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiabgkHiTiaadQhaaaGaaGOlaa aa@50CB@

В этом случае

   J(z) z +0,J(z) z m 2 0 +,J(z) z M 2 +0 ,J(z) z+ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcada GdOaWcbeqaaiaadQhacqGHsgIRcaWGTbWaaSbaaeaacaaIYaaabeaa cqGHsislcaaIWaaakiaawkziaiabgUcaRiabg6HiLkaaiYcacaaMf8 UaamOsaiaaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiabgkzi Ukaad2eadaWgaaqaaiaaikdaaeqaaiabgUcaRiaaicdaaOGaayPKHa GaeyOeI0IaeyOhIuQaaGilaiaaywW7caWGkbGaaGikaiaadQhacaaI PaWaa4akaSqabeaacaWG6bGaeyOKH4Qaey4kaSIaeyOhIukakiaawk ziaiabgkHiTiaaicdacaaIUaaaaa@6B97@

В одномерном и двумерном случаях поведение функции J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaaaaa@34F4@  идентично. Поэтому имеем результаты, аналогичные результатам для одномерного случая.

Рассмотрим трехмерный случай. Обозначим через W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbaaaa@329D@ интеграл Ватсона (см. [19])

                             W= 1 π 3 π π π π π π 3dxdydz 3cosxcosycosz 1,516. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGypamaalaaabaGaaGymaa qaaiabec8aWnaaCaaaleqabaGaaG4maaaaaaGcdaWdXaqabSqaaiab gkHiTiabec8aWbqaaiabec8aWbqdcqGHRiI8aOWaa8qmaeqaleaacq GHsislcqaHapaCaeaacqaHapaCa0Gaey4kIipakmaapedabeWcbaGa eyOeI0IaeqiWdahabaGaeqiWdahaniabgUIiYdGcdaWcaaqaaiaaio dacaaMi8UaamizaiaadIhacaaMi8UaamizaiaadMhacaaMi8Uaamiz aiaadQhaaeaacaaIZaGaeyOeI0Iaci4yaiaac+gacaGGZbGaamiEai abgkHiTiGacogacaGGVbGaai4CaiaadMhacqGHsislciGGJbGaai4B aiaacohacaWG6baaaebbfv3ySLgzGueE0jxyaGabaiab=nKi7iaaig dacaaISaGaaGynaiaaigdacaaI2aGaaGOlaaaa@6F00@                                 (24)

Теорема 6 Пусть ν=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaG4maaaa@34FD@ .

A.   1. Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOnaiaadkeaaaa@3793@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOnaiaadkeaaaa@36A8@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ , лежащее ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

        2.  Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и 6B ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiabgsMiJk abew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacqGHsislcaaIYaGa amOqaaaa@3BB8@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и 2B< ε 1 6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOqaiaaiYdacqaH1oqzda WgaaWcbaGaaGymaaqabaGccqGHKjYOcaaI2aGaamOqaaaa@39DE@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

B.   Если ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@ , ε 1 6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccqGHKjYOcqGHsislcaaI2aGaamOqaiaai+cacaWGxbaaaa@3A17@ , (соответственно, ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@ , ε 1 6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccqGHLjYScaaI2aGaamOqaiaai+cacaWGxbaaaa@393B@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  (соответственно, z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@  ), лежащих ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Если ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  и 6B/W ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiaai+caca WGxbGaeyizImQaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGipaiaa icdaaaa@3B97@  (соответственно, ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@ , 0< ε 1 6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiabgsMiJkaaiAdacaWGcbGaaG4laiaadEfaaaa@3AAA@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

C. Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , E<W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaadEfaaaa@342D@  (соответственно, ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , E<W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaadEfaaaa@342D@  ), где E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ , то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  (соответственно, z ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadQhaaiaawoWaaaaa@3382@  ), лежащее ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , E>W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaadEfaaaa@342F@  (соответственно, ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , E>W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaadEfaaaa@342F@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

D.   Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4115@  и E<4W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaisdacaWGxbGaaG 4laiaaiodaaaa@3661@  (соответственно, ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4202@  и E<4W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaisdacaWGxbGaaG 4laiaaiodaaaa@3661@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  (соответственно, z ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadQhaaiaawoWaaaaa@3382@  ), лежащее выше (соответственно, ниже) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

E.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@ , лежащее выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

F.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@ , лежащее ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

G.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  и (1α/3)W<E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGymaiabgkHiTiabeg7aHj aai+cacaaIZaGaaGykaiaadEfacaaI8aGaamyraiaaiYdacaaIOaGa aGymaiabgUcaRiabeg7aHjaai+cacaaIZaGaaGykaiaadEfaaaa@4208@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  и (1α/3)W<E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGymaiabgkHiTiabeg7aHj aai+cacaaIZaGaaGykaiaadEfacaaI8aGaamyraiaaiYdacaaIOaGa aGymaiabgUcaRiabeg7aHjaai+cacaaIZaGaaGykaiaadEfaaaa@4208@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@ , лежащих соответственно выше и ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

H.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  и (1α/3)W<E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGymaiabgkHiTiabeg7aHj aai+cacaaIZaGaaGykaiaadEfacaaI8aGaamyraiaaiYdacaaIOaGa aGymaiabgUcaRiabeg7aHjaai+cacaaIZaGaaGykaiaadEfaaaa@4208@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  и (1α/3)W<E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGymaiabgkHiTiabeg7aHj aai+cacaaIZaGaaGykaiaadEfacaaI8aGaamyraiaaiYdacaaIOaGa aGymaiabgUcaRiabeg7aHjaai+cacaaIZaGaaGykaiaadEfaaaa@4208@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@ , лежащих соответственно выше и ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

I.   Если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

Proof. В случае, когда ν=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaG4maaaa@34FD@ , непрерывный спектр оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  представляет собой отрезок [ m 3 , M 3 ]=[A6B,A+6B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyBamaaBaaaleaacaaIZa aabeaakiaaiYcacaWGnbWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiaa i2dacaaIBbGaamyqaiabgkHiTiaaiAdacaWGcbGaaGilaiaadgeacq GHRaWkcaaI2aGaamOqaiaai2faaaa@419F@ . Выражая все интегралы, выходящие в уравнение

             Δ 3 (z)= 1+ T 3 ε 1 +2 ε 2 i=1 3 cos s i d s 1 d s 2 d s 3 A+2B i=1 3 cos s i z 1+6 ε 2 T 3 cos s i d s 1 d s 2 d s 3 A+2B i=1 3 cos s i z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaG4maaqaba GccaaIOaGaamOEaiaaiMcacaaI9aWaaeWaaeaacaaIXaGaey4kaSYa a8qeaeqaleaacaWGubWaaWbaaeqabaGaaG4maaaaaeqaniabgUIiYd GcdaWcaaqaamaabmaabaGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaaGOmaiabew7aLnaaBaaaleaacaaIYaaabeaakmaaqahabe WcbaGaamyAaiaai2dacaaIXaaabaGaaG4maaqdcqGHris5aOGaci4y aiaac+gacaGGZbGaam4CamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaiaadsgacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaa dohadaWgaaWcbaGaaGOmaaqabaGccaWGKbGaam4CamaaBaaaleaaca aIZaaabeaaaOqaaiaadgeacqGHRaWkcaaIYaGaamOqamaaqahabeWc baGaamyAaiaai2dacaaIXaaabaGaaG4maaqdcqGHris5aOGaci4yai aac+gacaGGZbGaam4CamaaBaaaleaacaWGPbaabeaakiabgkHiTiaa dQhaaaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaaGOnai abew7aLnaaBaaaleaacaaIYaaabeaakmaapebabeWcbaGaamivamaa CaaabeqaaiaaiodaaaaabeqdcqGHRiI8aOWaaSaaaeaaciGGJbGaai 4BaiaacohacaWGZbWaaSbaaSqaaiaadMgaaeqaaOGaaGjcVlaadsga caWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcba GaaGOmaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIZaaabeaaaOqa aiaadgeacqGHRaWkcaaIYaGaamOqamaaqahabeWcbaGaamyAaiaai2 dacaaIXaaabaGaaG4maaqdcqGHris5aOGaci4yaiaac+gacaGGZbGa am4CamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadQhaaaaacaGLOa GaayzkaaGaeyOeI0caaa@92C4@

             6 ε 2 T 3 d s 1 d s 2 d s 3 A+2B i=1 3 cos s i z T 3 ε 1 +2 ε 2 i=1 3 cos s i cos s 1 d s 1 d s 2 d s 3 A+2B i=1 3 cos s i z =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaeqyTdu2aaSbaaS qaaiaaikdaaeqaaOWaa8qeaeqaleaacaWGubWaaWbaaeqabaGaaG4m aaaaaeqaniabgUIiYdGcdaWcaaqaaiaadsgacaWGZbWaaSbaaSqaai aaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccaWG KbGaam4CamaaBaaaleaacaaIZaaabeaaaOqaaiaadgeacqGHRaWkca aIYaGaamOqamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaaG4m aaqdcqGHris5aOGaci4yaiaac+gacaGGZbGaam4CamaaBaaaleaaca WGPbaabeaakiabgkHiTiaadQhaaaGaaGjbVpaapebabeWcbaGaamiv amaaCaaabeqaaiaaiodaaaaabeqdcqGHRiI8aOWaaSaaaeaadaqada qaaiabew7aLnaaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacqaH 1oqzdaWgaaWcbaGaaGOmaaqabaGcdaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaaiodaa0GaeyyeIuoakiGacogacaGGVbGaai4Caiaa dohadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaciGGJbGaai 4BaiaacohacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGjcVlaadsga caWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcba GaaGOmaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIZaaabeaaaOqa aiaadgeacqGHRaWkcaaIYaGaamOqamaaqahabeWcbaGaamyAaiaai2 dacaaIXaaabaGaaG4maaqdcqGHris5aOGaci4yaiaac+gacaGGZbGa am4CamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadQhaaaGaaGypai aaicdacaaISaaaaa@8A85@

через интеграл

                                            J(z)= T 3 d s 1 d s 2 d s 3 A+2B i=1 3 cos s i z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypamaapebabeWcbaGaamivamaaCaaabeqaaiaaiodaaaaabeqdcqGH RiI8aOWaaSaaaeaacaWGKbGaam4CamaaBaaaleaacaaIXaaabeaaki aadsgacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaamizaiaadohadaWg aaWcbaGaaG4maaqabaaakeaacaWGbbGaey4kaSIaaGOmaiaadkeada aeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaaiodaa0GaeyyeIuoa kiGacogacaGGVbGaai4CaiaadohadaWgaaWcbaGaamyAaaqabaGccq GHsislcaWG6baaaiaaiYcaaaa@5247@                                                (25)

получаем, что уравнение Δ 3 (z)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaG4maaqaba GccaaIOaGaamOEaiaaiMcacaaI9aGaaGimaaaa@37FF@  эквивалентно уравнению

                               [ ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)]J(z)+ (B+ ε 2 ) 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaeqyTdu2aaSbaaSqaaiaaig daaeqaaOGaamOqamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiIca cqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYa GaamOqaiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiMcacaaIOaGa amOEaiabgkHiTiaadgeacaaIPaGaaGyxaiaadQeacaaIOaGaamOEai aaiMcacqGHRaWkcaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaaleaa caaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI9aGaaG imaiaai6caaaa@5379@

Функция (25) дифференцируема по z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  на множестве \[ m 3 , M 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risjaacYfacaaIBbGaamyBamaaBaaaleaa caaIZaaabeaakiaaiYcacaWGnbWaaSbaaSqaaiaaiodaaeqaaOGaaG yxaaaa@4384@  и

                          J (z)= T 3 d s 1 d s 2 d s 3 A+2B i=1 3 cos s i z 2 >0,z[ m 3 , M 3 ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGkbGbauaacaaIOaGaamOEaiaaiM cacaaI9aWaa8qeaeqaleaacaWGubWaaWbaaeqabaGaaG4maaaaaeqa niabgUIiYdGcdaWcaaqaaiaadsgacaWGZbWaaSbaaSqaaiaaigdaae qaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGccaWGKbGaam4C amaaBaaaleaacaaIZaaabeaaaOqaamaadmaabaGaamyqaiabgUcaRi aaikdacaWGcbWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaaI ZaaaniabggHiLdGcciGGJbGaai4BaiaacohacaWGZbWaaSbaaSqaai aadMgaaeqaaOGaeyOeI0IaamOEaaGaay5waiaaw2faamaaCaaaleqa baGaaGOmaaaaaaGccaaI+aGaaGimaiaaiYcacaaMf8UaamOEaiabgM GiplaaiUfacaWGTbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaad2ea daWgaaWcbaGaaG4maaqabaGccaaIDbGaaGOlaaaa@61B1@

В трехмерном случае интеграл

                      T 3 d s 1 d s 2 d s 3 3+cos s 1 +cos s 2 +cos s 2 = T 3 d s 1 d s 2 d s 3 3cos s 1 cos s 2 cos s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdraqabSqaaiaadsfadaahaaqabe aacaaIZaaaaaqab0Gaey4kIipakmaalaaabaGaamizaiaadohadaWg aaWcbaGaaGymaaqabaGccaWGKbGaam4CamaaBaaaleaacaaIYaaabe aakiaadsgacaWGZbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaG4maiab gUcaRiGacogacaGGVbGaai4CaiaadohadaWgaaWcbaGaaGymaaqaba GccqGHRaWkciGGJbGaai4BaiaacohacaWGZbWaaSbaaSqaaiaaikda aeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaam4CamaaBaaaleaaca aIYaaabeaaaaGccaaI9aWaa8qeaeqaleaacaWGubWaaWbaaeqabaGa aG4maaaaaeqaniabgUIiYdGcdaWcaaqaaiaadsgacaWGZbWaaSbaaS qaaiaaigdaaeqaaOGaamizaiaadohadaWgaaWcbaGaaGOmaaqabaGc caWGKbGaam4CamaaBaaaleaacaaIZaaabeaaaOqaaiaaiodacqGHsi slciGGJbGaai4BaiaacohacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0Iaci4yaiaac+gacaGGZbGaam4CamaaBaaaleaacaaIYaaabe aakiabgkHiTiGacogacaGGVbGaai4CaiaadohadaWgaaWcbaGaaGOm aaqabaaaaaaa@6E7D@

имеет конечное значение. Выражая этот интеграл через интеграл Ватсона (24) и учитывая, что рассматриваемая мера нормирована, находим J(z)=W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiaadEfacaaIVaGaaGikaiaaiAdacaWGcbGaaGykaaaa@3A3C@ . Кроме того, функция J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaaaaa@34F4@  монотонно возрастает на множестве (, m 3 )( M 3 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aad2gadaWgaaWcbaGaaG4maaqabaGccaaIPaGaeyOkIGSaaGikaiaa d2eadaWgaaWcbaGaaG4maaqabaGccaaISaGaey4kaSIaeyOhIuQaaG ykaaaa@3FF2@ , и в трехмерном случае

      J(z) z +0,J(A6B)= W 6B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOa WcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaOGaayPKHaGaeyOe I0IaaGimaiaaiYcacaaMf8UaamOsaiaaiIcacaWGbbGaey4kaSIaaG OnaiaadkeacaaIPaGaaGypaiabgkHiTmaalaaabaGaam4vaaqaaiaa iAdacaWGcbaaaiaai6caaaa@62E1@

Если ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiabew7a LnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcb GaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiIcacaWG6bGa eyOeI0IaamyqaiaaiMcacqGHGjsUcaaIWaaaaa@4746@ , то из уравнения (19) следует

                                        J(z)= (B+ ε 2 ) 2 ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaamOqamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiMcacaaIOaGaamOEaiabgkHiTiaadgeacaaIPaaaai aai6caaaa@510E@

Функция в правой части последнего равенства имеет точку разрыва

                                                     z 0 =A B 2 ε 1 ε 2 2 +2B ε 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaadkeadaahaaWcbeqaaiaa ikdaaaGccqaH1oqzdaWgaaWcbaGaaGymaaqabaaakeaacqaH1oqzda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiab ew7aLnaaBaaaleaacaaIYaaabeaaaaGccaaIUaaaaa@4398@

Так как

                                        ψ (z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 ) [ ε 1 B 2 +( ε 2 2 +2B ε 2 )(zA)] 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHipqEgaqbaiaaiIcacaWG6bGaaG ykaiaai2dadaWcaaqaaiaaiIcacaWGcbGaey4kaSIaeqyTdu2aaSba aSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiI cacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaI YaGaamOqaiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiMcaaeaaca aIBbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaamOqamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaa qaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaa caaIYaaabeaakiaaiMcacaaIOaGaamOEaiabgkHiTiaadgeacaaIPa GaaGyxamaaCaaaleqabaGaaGOmaaaaaaaaaa@5CE2@

для всех z z 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyiyIKRaamOEamaaBaaale aacaaIWaaabeaaaaa@366C@ , заключаем, что функция ψ(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaaa a@35F3@  монотонно возрастает на множестве (, z 0 )( z 0 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aadQhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOkIGSaaGikaiaa dQhadaWgaaWcbaGaaGimaaqabaGccaaISaGaey4kaSIaeyOhIuQaaG ykaaaa@4026@ , в случае ε 2 2 +2B ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI Yaaabeaakiaai6dacaaIWaaaaa@3B97@  (соответственно, ε 2 2 +2B ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiYdacaaIWaaaaa@3B95@  ). Кроме того, если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  или ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , то

   ψ(z) z +0,ψ(z) z z 0 0 +,ψ(z) z z 0 +0 ,ψ(z) z+ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcada GdOaWcbeqaaiaadQhacqGHsgIRcqGHsislcqGHEisPaOGaayPKHaGa ey4kaSIaaGimaiaaiYcacaaMf8UaeqiYdKNaaGikaiaadQhacaaIPa Waa4akaSqabeaacaWG6bGaeyOKH4QaamOEamaaBaaabaGaaGimaaqa baGaeyOeI0IaaGimaaGccaGLsgcacqGHRaWkcqGHEisPcaaISaGaaG zbVlabeI8a5jaaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiab gkziUkaadQhadaWgaaqaaiaaicdaaeqaaiabgUcaRiaaicdaaOGaay PKHaGaeyOeI0IaeyOhIuQaaGilaiaaywW7cqaHipqEcaaIOaGaamOE aiaaiMcadaGdOaWcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaO GaayPKHaGaeyOeI0IaaGimaiaai6caaaa@6FC9@

Соответственно, если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то

   ψ(z) z 0,ψ(z) z z 0 0 ,ψ(z) z z 0 +0 +,ψ(z) z+ +0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcada GdOaWcbeqaaiaadQhacqGHsgIRcqGHsislcqGHEisPaOGaayPKHaGa eyOeI0IaaGimaiaaiYcacaaMf8UaeqiYdKNaaGikaiaadQhacaaIPa Waa4akaSqabeaacaWG6bGaeyOKH4QaamOEamaaBaaabaGaaGimaaqa baGaeyOeI0IaaGimaaGccaGLsgcacqGHsislcqGHEisPcaaISaGaaG zbVlabeI8a5jaaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiab gkziUkaadQhadaWgaaqaaiaaicdaaeqaaiabgUcaRiaaicdaaOGaay PKHaGaey4kaSIaeyOhIuQaaGilaiaaywW7cqaHipqEcaaIOaGaamOE aiaaiMcadaGdOaWcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaO GaayPKHaGaey4kaSIaaGimaiaai6caaaa@6FC9@

A. Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOnaiaadkeaaaa@3793@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOnaiaadkeaaaa@36A8@  ), то уравнение для собственных значений и собственных функций (18) имеет вид (19). Ясно, что J(z)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaey iyIKRaaGimaaaa@3775@  для значений z σ cont ( H ˜ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyycI8Saeq4Wdm3aaSbaaS qaaiaadogacaWGVbGaamOBaiaadshaaeqaaOGaaGikamaaGaaabaGa amisaaGaay5adaWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3DEC@ . Следовательно, ε 1 z+A=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccqGHsislcaWG6bGaey4kaSIaamyqaiaai2dacaaIWaaaaa@396E@ , т.е. z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ . Если ε 1 <6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOnaiaadkeaaaa@3793@ , то это собственное значение лежит ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , а если ε 1 >6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOnaiaadkeaaaa@36A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ то выше. Если 6B ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiabgsMiJk abew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacqGHsislcaaIYaGa amOqaaaa@3BB8@  (соответственно, 2B< ε 1 6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOqaiaaiYdacqaH1oqzda WgaaWcbaGaaGymaaqabaGccqGHKjYOcaaI2aGaamOqaaaa@39DE@  ), то указанное собственное значение не лежит вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

B. Если ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  (соответственно, ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@  ), то уравнение для собственных значений имеет вид

                                      ε 1 B 2 J(z)+ B 2 =0илиJ(z)= 1 ε 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaWGcbWaaWbaaSqabeaacaaIYaaaaOGaamOsaiaaiIcacaWG6bGa aGykaiabgUcaRiaadkeadaahaaWcbeqaaiaaikdaaaGccaaI9aGaaG imaiaaywW7caqG4qGaae4oeiaabIdbcaaMf8UaamOsaiaaiIcacaWG 6bGaaGykaiaai2dacqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzda WgaaWcbaGaaGymaaqabaaaaOGaaGOlaaaa@4BC1@

В трехмерном случае

      J(z) z +0,J(A6B)= W 6B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOa WcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaOGaayPKHaGaeyOe I0IaaGimaiaaiYcacaaMf8UaamOsaiaaiIcacaWGbbGaey4kaSIaaG OnaiaadkeacaaIPaGaaGypaiabgkHiTmaalaaabaGaam4vaaqaaiaa iAdacaWGcbaaaiaai6caaaa@62E1@

Следовательно, для того, чтобы уравнение J(z)=1/ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTiaaigdacaaIVaGaeqyTdu2aaSbaaSqaaiaaigdaaeqa aaaa@3AAA@ в области ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имело решение, должно выполнятся неравенство 1/ ε 1 <W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaG4laiabew7aLn aaBaaaleaacaaIXaaabeaakiaaiYdacaWGxbGaaG4laiaaiIcacaaI 2aGaamOqaiaaiMcaaaa@3C01@  (соответственно, 1/ ε 1 >W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIXaGaaG4laiabew7aLn aaBaaaleaacaaIXaaabeaakiaai6dacqGHsislcaWGxbGaaG4laiaa iIcacaaI2aGaamOqaiaaiMcaaaa@3CF0@  ), т.е. ε 1 <6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOnaiaadkeacaaIVaGaam4vaaaa@3928@ , ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  (соответственно, ε 1 >6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOnaiaadkeacaaIVaGaam4vaaaa@383D@ , ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@  ). Если 6B/W< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiaai+caca WGxbGaaGipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaI Waaaaa@3AA8@  (соответственно, 0< ε 1 <6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaI2aGaamOqaiaai+cacaWGxbaaaa@39BB@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений вне области непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

C. Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@ =0 и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ >0 (соответственно, ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@ =0 и ε2<2B ), то уравнение для собственных значений примет вид (ε22+2Bε2)(zA)J(z)=(B+ε2)2илиJ(z)(B+ε2)2(ε22+2Bε2)(zA).

Положим E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ . Тогда

                                       J(z)= E zA илиJ(z)= E Az . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamyraaqaaiaadQhacqGHsislcaWGbbaa aiaaywW7caqG4qGaae4oeiaabIdbcaaMf8UaamOsaiaaiIcacaWG6b GaaGykaiaai2dadaWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOE aaaacaaIUaaaaa@47CE@

В трехмерном случае

      J(z) z +0,J(A6B)= W 6B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOa WcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaOGaayPKHaGaeyOe I0IaaGimaiaaiYcacaaMf8UaamOsaiaaiIcacaWGbbGaey4kaSIaaG OnaiaadkeacaaIPaGaaGypaiabgkHiTmaalaaabaGaam4vaaqaaiaa iAdacaWGcbaaaiaai6caaaa@62E1@

Следовательно, для того, чтобы уравнение J(z)=E/(zA) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTiaadweacaaIVaGaaGikaiaadQhacqGHsislcaWGbbGa aGykaaaa@3C42@  в области ниже (соответственно, выше) непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имело решение, должно выполняться неравенство E/(6B)<W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaI2aGaam OqaiaaiMcacaaI8aGaam4vaiaai+cacaaIOaGaaGOnaiaadkeacaaI Paaaaa@3B77@  (соответственно, E/(6B)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aI2aGaamOqaiaaiMcacaaI+aGaeyOeI0Iaam4vaiaai+cacaaIOaGa aGOnaiaadkeacaaIPaaaaa@3D53@ ,) т.е. E<W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaadEfaaaa@342D@ . Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , E>W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaadEfaaaa@342F@  (соответственно, ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , E>W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaadEfaaaa@342F@  ), то оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений вне области непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

D. Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4115@ , то уравнение для собственных значений имеет вид

                                   ( ε 2 2 +2B ε 2 )(zA+2B)J(z)= (B+ ε 2 ) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey 4kaSIaaGOmaiaadkeacaaIPaGaamOsaiaaiIcacaWG6bGaaGykaiaa i2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaaleaaca aIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaISaaaaa@4E2D@

откуда получаем уравнение в виде (21):

                                         J(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA+2B) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGikaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUca RiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykai aaiIcacaWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacaWGcbGaaGyk aaaacaaIUaaaaa@4E3F@

Положим E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ . Сначала рассмотрим уравнение (20) в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . В этой области

                             E Az2B z +0, E Az2B | z=A6B = E 4B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadweaaeaacaWGbbGaey OeI0IaamOEaiabgkHiTiaaikdacaWGcbaaamaaoGcaleqabaGaamOE aiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacqGHRaWkcaaIWaGaaG ilaiaaywW7daWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gkHiTiaaikdacaWGcbaaaiaaiYhadaWgaaWcbaGaamOEaiaai2daca WGbbGaeyOeI0IaaGOnaiaadkeaaeqaaOGaaGypamaalaaabaGaamyr aaqaaiaaisdacaWGcbaaaiaaiYcaaaa@5297@

      J(z) z +0,J(A6B)= W 6B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOa WcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaOGaayPKHaGaeyOe I0IaaGimaiaaiYcacaaMf8UaamOsaiaaiIcacaWGbbGaey4kaSIaaG OnaiaadkeacaaIPaGaaGypaiabgkHiTmaalaaabaGaam4vaaqaaiaa iAdacaWGcbaaaiaai6caaaa@62E1@

Итак, в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  уравнение J(z)=E/(Az2B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiaadweacaaIVaGaaGikaiaadgeacqGHsislcaWG6bGaeyOeI0Ia aGOmaiaadkeacaaIPaaaaa@3DC5@  имеет единственное решение, если E/(4B)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaI0aGaam OqaiaaiMcacaaI+aGaam4vaiaai+cacaaIOaGaaGOnaiaadkeacaaI Paaaaa@3B77@ , т.е. E>2W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaaikdacaWGxbGaaG 4laiaaiodaaaa@3661@ . Это неравенство неверно; следовательно, в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , это уравнение не имеет решения.

Теперь рассмотрим уравнение J(z)=E/(zA+2B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTiaadweacaaIVaGaaGikaiaadQhacqGHsislcaWGbbGa ey4kaSIaaGOmaiaadkeacaaIPaaaaa@3EA7@  в области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . В этой области

       E Az2B z+ 0, E Az2B | z=A+6B = E 8B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadweaaeaacaWGbbGaey OeI0IaamOEaiabgkHiTiaaikdacaWGcbaaamaaoGcaleqabaGaamOE aiabgkziUkabgUcaRiabg6HiLcGccaGLsgcacqGHsislcaaIWaGaaG ilaiaaywW7daWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gkHiTiaaikdacaWGcbaaaiaaiYhadaWgaaWcbaGaamOEaiaai2daca WGbbGaey4kaSIaaGOnaiaadkeaaeqaaOGaaGypaiabgkHiTmaalaaa baGaamyraaqaaiaaiIdacaWGcbaaaiaaiYcacaaMf8UaamOsaiaaiI cacaWG6bGaaGykamaaoGcaleqabaGaamOEaiabgkziUkabgUcaRiab g6HiLcGccaGLsgcacqGHsislcaaIWaGaaGilaiaaywW7caWGkbGaaG ikaiaadgeacqGHRaWkcaaI2aGaamOqaiaaiMcacaaI9aGaeyOeI0Ya aSaaaeaacaWGxbaabaGaaGOnaiaadkeaaaGaaGOlaaaa@6D46@

Итак, в области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  уравнение J(z)=E/(Az2B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiaadweacaaIVaGaaGikaiaadgeacqGHsislcaWG6bGaeyOeI0Ia aGOmaiaadkeacaaIPaaaaa@3DC5@  имеет единственное решение, если E/(8B)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aI4aGaamOqaiaaiMcacaaI+aGaeyOeI0Iaam4vaiaai+cacaaIOaGa aGOnaiaadkeacaaIPaaaaa@3D55@ , т.е. E<4W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaisdacaWGxbGaaG 4laiaaiodaaaa@3661@ . Это неравенство верно; следовательно, в рассматриваемой области уравнение имеет единственное собственное значение z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@ .

           E. Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4202@ , то уравнение для собственных значений имеет вид

                                   ( ε 2 2 +2B ε 2 )(zA2B)J(z)= (B+ ε 2 ) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey OeI0IaaGOmaiaadkeacaaIPaGaamOsaiaaiIcacaWG6bGaaGykaiaa i2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBaaaleaaca aIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaIUaaaaa@4E3A@

Отсюда получаем уравнение в виде (20):

                                         J(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA+2B) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGikaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUca RiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykai aaiIcacaWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacaWGcbGaaGyk aaaacaaIUaaaaa@4E3F@

Положим E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ . Сначала рассмотрим уравнение (20) в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . В этой области

                             E Az+2B z +0, E Az+2B | z=A6B = E 8B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadweaaeaacaWGbbGaey OeI0IaamOEaiabgUcaRiaaikdacaWGcbaaamaaoGcaleqabaGaamOE aiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacqGHRaWkcaaIWaGaaG ilaiaaywW7daWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gUcaRiaaikdacaWGcbaaaiaaiYhadaWgaaWcbaGaamOEaiaai2daca WGbbGaeyOeI0IaaGOnaiaadkeaaeqaaOGaaGypamaalaaabaGaamyr aaqaaiaaiIdacaWGcbaaaiaaiYcaaaa@5285@

      J(z) z +0,J(A6B)= W 6B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOa WcbeqaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaOGaayPKHaGaeyOe I0IaaGimaiaaiYcacaaMf8UaamOsaiaaiIcacaWGbbGaey4kaSIaaG OnaiaadkeacaaIPaGaaGypaiabgkHiTmaalaaabaGaam4vaaqaaiaa iAdacaWGcbaaaiaai6caaaa@62E1@

Итак, ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , уравнение J(z)=E/(Az+2B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiaadweacaaIVaGaaGikaiaadgeacqGHsislcaWG6bGaey4kaSIa aGOmaiaadkeacaaIPaaaaa@3DBA@  имеет единственное решение, если E/(8B)<W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaI4aGaam OqaiaaiMcacaaI8aGaam4vaiaai+cacaaIOaGaaGOnaiaadkeacaaI Paaaaa@3B79@ , т.е. E<4W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaisdacaWGxbGaaG 4laiaaiodaaaa@3661@ . Это неравенство верно; следовательно, в области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , уравнение имеет единственное решение.

Теперь рассмотрим уравнение для собственных значений J(z)=E/(zA2B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTiaadweacaaIVaGaaGikaiaadQhacqGHsislcaWGbbGa eyOeI0IaaGOmaiaadkeacaaIPaaaaa@3EB2@  в области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . В этой области

E Az+2B z+ 0, E Az+2B | z=A+6B = E 4B ,J(z) z+ 0,J(A+6B)= W 6B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadweaaeaacaWGbbGaey OeI0IaamOEaiabgUcaRiaaikdacaWGcbaaamaaoGcaleqabaGaamOE aiabgkziUkabgUcaRiabg6HiLcGccaGLsgcacqGHsislcaaIWaGaaG ilaiaaywW7daWcaaqaaiaadweaaeaacaWGbbGaeyOeI0IaamOEaiab gUcaRiaaikdacaWGcbaaaiaaiYhadaWgaaWcbaGaamOEaiaai2daca WGbbGaey4kaSIaaGOnaiaadkeaaeqaaOGaaGypaiabgkHiTmaalaaa baGaamyraaqaaiaaisdacaWGcbaaaiaaiYcacaaMf8UaamOsaiaaiI cacaWG6bGaaGykamaaoGcaleqabaGaamOEaiabgkziUkabgUcaRiab g6HiLcGccaGLsgcacqGHsislcaaIWaGaaGilaiaaywW7caWGkbGaaG ikaiaadgeacqGHRaWkcaaI2aGaamOqaiaaiMcacaaI9aGaeyOeI0Ya aSaaaeaacaWGxbaabaGaaGOnaiaadkeaaaGaaGOlaaaa@6D2C@

Итак, в области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  уравнение J(z)=E/(Az+2B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiaadweacaaIVaGaaGikaiaadgeacqGHsislcaWG6bGaey4kaSIa aGOmaiaadkeacaaIPaaaaa@3DBA@  имеет единственное решение, если E/(4B)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aI0aGaamOqaiaaiMcacaaI+aGaeyOeI0Iaam4vaiaai+cacaaIOaGa aGOnaiaadkeacaaIPaaaaa@3D51@ , т.е. E<2W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaikdacaWGxbGaaG 4laiaaiodaaaa@365F@ . Это неравенство неверно. Следовательно, в рассматриваемой области уравнение не имеет решений.

F. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  ), то положим ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@42B4@ , где α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGymaaaa@34E3@ . Тогда уравнение для собственных значений имеет вид

                   α 2( ε 2 2 +2B ε 2 ) B B 2 +( ε 2 2 +2B ε 2 )(zA) J(z)+ (B+ ε 2 ) 2 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGadaqaaiabeg7aHnaalaaabaGaaG OmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH RaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiM caaeaacaWGcbaaaiaadkeadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaIOaGaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaS IaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaGa aGikaiaadQhacqGHsislcaWGbbGaaGykaaGaay5Eaiaaw2haaiaadQ eacaaIOaGaamOEaiaaiMcacqGHRaWkcaaIOaGaamOqaiabgUcaRiab ew7aLnaaBaaaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaik daaaGccaaI9aGaaGimaiaaiYcaaaa@5E2F@

или

                                ( ε 2 2 +2B ε 2 )(zA+2αB)J(z)+ (B+ ε 2 ) 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey 4kaSIaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiabgUcaRiaaiIcacaWGcbGaey4kaSIaeqyTdu2aaSbaaSqaai aaikdaaeqaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2dacaaI WaGaaGOlaaaa@507D@

Отсюда следует, что

                                        J(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA+2αB) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGikaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUca RiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykai aaiIcacaWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWG cbGaaGykaaaacaaIUaaaaa@4FDE@

Положив E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ , получим уравнение (21). В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем

                                       J(z) z +0,J(A6B)= W 6B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaaaaa@4918@

                  E zA+2αB z +0, E zA+2αB | z=A6B = E (62α)B . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacq GHRaWkcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaeyOeI0IaaGOnaiaa dkeaaeqaaOGaaGypamaalaaabaGaamyraaqaaiaaiIcacaaI2aGaey OeI0IaaGOmaiabeg7aHjaaiMcacaWGcbaaaiaai6caaaa@5C4A@

Уравнение (21) имеет единственное решение, если E/(62α)B<W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaI2aGaey OeI0IaaGOmaiabeg7aHjaaiMcacaWGcbGaaGipaiaadEfacaaIVaGa aGikaiaaiAdacaWGcbGaaGykaaaa@3EBF@ , т.е. E<(3α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIZaGaey OeI0IaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A51@ . Поскольку это неравенство не выполняется, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений в области ниже своего непрерывного спектра.

В области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем

                                      J(z) z+ 0,J(A6B)= W 6B , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4Qaey4kaSIaeyOhIukakiaawkziaiab gkHiTiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dacqGHsisldaWcaaqaaiaadEfaaeaa caaI2aGaamOqaaaacaaISaaaaa@4A05@

                E zA+2αB z+ 0, E zA+2αB | z=A+6B = E 6B+2αB . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgUcaRiabg6HiLcGccaGLsgcacq GHsislcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaey4kaSIaaGOnaiaa dkeaaeqaaOGaaGypaiabgkHiTmaalaaabaGaamyraaqaaiaaiAdaca WGcbGaey4kaSIaaGOmaiabeg7aHjaadkeaaaGaaGOlaaaa@5C83@

Решение уравнения (21) единственно, если E/((6+2α)B)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aIOaGaaGOnaiabgUcaRiaaikdacqaHXoqycaaIPaGaamOqaiaaiMca caaI+aGaeyOeI0Iaam4vaiaai+cacaaIOaGaaGOnaiaadkeacaaIPa aaaa@41F5@ , т.е. E<(3+α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIZaGaey 4kaSIaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A46@ . Поскольку это неравенство не выполняется, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@ , расположенное выше непрерывного спектра.

Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@ , (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  ), положим ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLn aaBaaaleaacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@43A1@ , где α>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI+aGaaGymaaaa@34E3@ . Уравнение для собственных значений примет вид

                                        J(z)= (B+ ε 2 ) 2 ( ε 2 2 +2B ε 2 )(zA2αB) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypaiabgkHiTmaalaaabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWg aaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcba GaaGikaiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUca RiaaikdacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykai aaiIcacaWG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWG cbGaaGykaaaacaaIUaaaaa@4FE9@

Пусть E=(B+ ε 2 ) 2 / ε 2 2 +2B ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaaik daaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYaaa beaaaaa@42EF@ . Тогда получим уравнение вида (22). В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеем уравнение

                                                    J(z)= E A+2αBz , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaGaaG ypamaalaaabaGaamyraaqaaiaadgeacqGHRaWkcaaIYaGaeqySdeMa amOqaiabgkHiTiaadQhaaaGaaGilaaaa@3E01@

причем

                  E zA2αB z +0, E zA2αB | z=A6B = E 6B+2αB . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacq GHRaWkcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaeyOeI0IaaGOnaiaa dkeaaeqaaOGaaGypamaalaaabaGaamyraaqaaiaaiAdacaWGcbGaey 4kaSIaaGOmaiabeg7aHjaadkeaaaGaaGOlaaaa@5BB7@

Уравнение (21) имеет единственное решение, если E/((6+2α)B)<W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaIOaGaaG OnaiabgUcaRiaaikdacqaHXoqycaaIPaGaamOqaiaaiMcacaaI8aGa am4vaiaai+cacaaIOaGaaGOnaiaadkeacaaIPaaaaa@4019@ , т.е. E<(3+α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIZaGaey 4kaSIaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A46@ . Поскольку это неравенство выполняется, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение, расположенное ниже непрерывного спектра.

В области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  

                 E zA2αB z 0, E zA2αB | z=A+6B = E 6B2αB . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacq GHsislcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaey4kaSIaaGOnaiaa dkeaaeqaaOGaaGypaiabgkHiTmaalaaabaGaamyraaqaaiaaiAdaca WGcbGaeyOeI0IaaGOmaiabeg7aHjaadkeaaaGaaGOlaaaa@5CAF@

Следовательно, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение в области выше непрерывного спектра, если E/(6B2αB)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aI2aGaamOqaiabgkHiTiaaikdacqaHXoqycaWGcbGaaGykaiaai6da cqGHsislcaWGxbGaaG4laiaaiIcacaaI2aGaamOqaiaaiMcaaaa@4162@ , т.е. E<(3α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIZaGaey OeI0IaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A51@ . Поскольку последнее неравенство не выполняется, оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений выше непрерывного спектра.

G. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  ), то положим ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@42B4@ , где 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@ . Тогда уравнение для собственных значений имеет вид (23):

                        ( ε 2 2 +2B ε 2 )(zA+2αB)J(z)= (B+ ε 2 ) 2 ,0<α<1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey 4kaSIaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiaai2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBa aaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI SaGaaGzbVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIUaaaaa@56B2@

Обозначим E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ ; тогда уравнение (23) примет вид (21).

В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  

                  E zA+2αB z +0, E zA+2αB | z=A6B = E 2B(3α) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacq GHRaWkcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaeyOeI0IaaGOnaiaa dkeaaeqaaOGaaGypamaalaaabaGaamyraaqaaiaaikdacaWGcbGaaG ikaiaaiodacqGHsislcqaHXoqycaaIPaaaaiaai6caaaa@5C47@

Уравнение (21) имеет единственное решение, лежащее ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , если E/((62α)B)>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaIOaGaaG OnaiabgkHiTiaaikdacqaHXoqycaaIPaGaamOqaiaaiMcacaaI+aGa am4vaiaai+cacaaIOaGaaGOnaiaadkeacaaIPaaaaa@4026@ , т.е. E>(3α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaaiIcacaaIZaGaey OeI0IaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A53@ . Это неравенство верно, так что оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  в области ниже непрерывного спектра.

В области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  

                E zA+2αB z+ 0, E zA+2αB | z=A+6B = E 2B(3+α) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgUcaRiabg6HiLcGccaGLsgcacq GHsislcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgUcaRiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaey4kaSIaaGOnaiaa dkeaaeqaaOGaaGypaiabgkHiTmaalaaabaGaamyraaqaaiaaikdaca WGcbGaaGikaiaaiodacqGHRaWkcqaHXoqycaaIPaaaaiaai6caaaa@5D1E@

Уравнение (21) имеет единственное решение, расположенное выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , если E/(2B(3+α))>W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aIYaGaamOqaiaaiIcacaaIZaGaey4kaSIaeqySdeMaaGykaiaaiMca caaI+aGaeyOeI0Iaam4vaiaai+cacaaIOaGaaGOnaiaadkeacaaIPa aaaa@41F2@ , т.е. E<(3+α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIZaGaey 4kaSIaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A46@ . Это неравенство выполнено, поэтому в этом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значений z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@ , лежащих соответственно ниже и выше непрерывного спектра.

H. Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  ), то положим ε 1 =2α( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiabeg7aHjaaiIcacqaH1oqzdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLn aaBaaaleaacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@43A1@ , где 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@ . Уравнение для собственных значений принимает вид (23):

                        ( ε 2 2 +2B ε 2 )(zA2αB)J(z)= (B+ ε 2 ) 2 ,0<α<1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGikaiaadQhacqGHsislcaWGbbGaey OeI0IaaGOmaiabeg7aHjaadkeacaaIPaGaamOsaiaaiIcacaWG6bGa aGykaiaai2dacqGHsislcaaIOaGaamOqaiabgUcaRiabew7aLnaaBa aaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaI SaGaaGzbVlaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIUaaaaa@56BD@

Пусть E=(B+ ε 2 ) 2 /( ε 2 2 +2B ε 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypaiaaiIcacaWGcbGaey 4kaSIaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykamaaCaaaleqa baGaaGOmaaaakiaai+cacaaIOaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaGccaaIPaaaaa@445E@ . Тогда уравнение (23) примет вид (22).

В области ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  

                  E zA2αB z +0, E zA2αB | z=A6B = E 2B(3+α) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgkHiTiabg6HiLcGccaGLsgcacq GHRaWkcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaeyOeI0IaaGOnaiaa dkeaaeqaaOGaaGypamaalaaabaGaamyraaqaaiaaikdacaWGcbGaaG ikaiaaiodacqGHRaWkcqaHXoqycaaIPaaaaiaai6caaaa@5C52@

Уравнение (22) имеет единственное решение, лежащее ниже непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , если E/((6+2α)B)<W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaG4laiaaiIcacaaIOaGaaG OnaiabgUcaRiaaikdacqaHXoqycaaIPaGaamOqaiaaiMcacaaI8aGa am4vaiaai+cacaaIOaGaaGOnaiaadkeacaaIPaaaaa@4019@ . Отсюда E<(3+α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIZaGaey 4kaSIaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A46@ . Это неравенство выполняется, так что оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  в области ниже непрерывного спектра оператора.

В области выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  

                 E zA2αB z+ 0, E zA2αB | z=A+6B = E 2B(3α) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadweaaeaaca WG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaamaa oGcaleqabaGaamOEaiabgkziUkabgUcaRiabg6HiLcGccaGLsgcacq GHsislcaaIWaGaaGilaiaaywW7cqGHsisldaWcaaqaaiaadweaaeaa caWG6bGaeyOeI0IaamyqaiabgkHiTiaaikdacqaHXoqycaWGcbaaai aaiYhadaWgaaWcbaGaamOEaiaai2dacaWGbbGaey4kaSIaaGOnaiaa dkeaaeqaaOGaaGypaiabgkHiTmaalaaabaGaamyraaqaaiaaikdaca WGcbGaaGikaiaaiodacqGHsislcqaHXoqycaaIPaaaaiaai6caaaa@5D3F@

Уравнение (22) имеет единственное решение, лежащее выше непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , если E/(2B(3α))<W/(6B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGfbGaaG4laiaaiIcaca aIYaGaamOqaiaaiIcacaaIZaGaeyOeI0IaeqySdeMaaGykaiaaiMca caaI8aGaeyOeI0Iaam4vaiaai+cacaaIOaGaaGOnaiaadkeacaaIPa aaaa@41FB@ , т.е. E>(3α)W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaaiIcacaaIZaGaey OeI0IaeqySdeMaaGykaiaadEfacaaIVaGaaG4maaaa@3A53@ . Это неравенство верно, так что оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значений z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@ , лежащих соответственно ниже и выше непрерывного спектра.

I. Если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то ε 2 2 +2B ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaqhaaWcbaGaaGOmaaqaai aaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaI YaaabeaakiaaiYdacaaIWaaaaa@3B95@ , функция

                                         ψ(z)= (B+ ε 2 ) 2 ε 1 B+( ε 2 2 +2B ε 2 )(zA) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aGaeyOeI0YaaSaaaeaacaaIOaGaamOqaiabgUcaRiabew7aLnaa BaaaleaacaaIYaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaaake aacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaWGcbGaey4kaSIaaGik aiabew7aLnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaik dacaWGcbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiIca caWG6bGaeyOeI0IaamyqaiaaiMcaaaaaaa@5062@

монотонно убывает на множестве (, z 0 )( z 0 ,+) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aadQhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOkIGSaaGikaiaa dQhadaWgaaWcbaGaaGimaaqabaGccaaISaGaey4kaSIaeyOhIuQaaG ykaaaa@4026@  и

    ψ(z) z 0,ψ(z) z z 0 0 ,ψ(z) z+ +0,ψ(z) z z 0 +0 +, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcada GdOaWcbeqaaiaadQhacqGHsgIRcqGHsislcqGHEisPaOGaayPKHaGa eyOeI0IaaGimaiaaiYcacaaMf8UaeqiYdKNaaGikaiaadQhacaaIPa Waa4akaSqabeaacaWG6bGaeyOKH4QaamOEamaaBaaabaGaaGimaaqa baGaeyOeI0IaaGimaaGccaGLsgcacqGHsislcqGHEisPcaaISaGaaG zbVlabeI8a5jaaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiab gkziUkabgUcaRiabg6HiLcGccaGLsgcacqGHRaWkcaaIWaGaaGilai abeI8a5jaaiIcacaWG6bGaaGykamaaoGcaleqabaGaamOEaiabgkzi UkaadQhadaWgaaqaaiaaicdaaeqaaiabgUcaRiaaicdaaOGaayPKHa Gaey4kaSIaeyOhIuQaaGilaaaa@6E39@

        J(z) z +0,J(A6B)= W 6B ,J(A+6B)= W 6B ,J(z) z+ 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadQhacaaIPaWaa4 akaSqabeaacaWG6bGaeyOKH4QaeyOeI0IaeyOhIukakiaawkziaiab gUcaRiaaicdacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgkHiTi aaiAdacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGa amOqaaaacaaISaGaaGzbVlaadQeacaaIOaGaamyqaiabgUcaRiaaiA dacaWGcbGaaGykaiaai2dadaWcaaqaaiaadEfaaeaacaaI2aGaamOq aaaacaaISaGaaGzbVlaadQeacaaIOaGaamOEaiaaiMcadaGdOaWcbe qaaiaadQhacqGHsgIRcqGHRaWkcqGHEisPaOGaayPKHaGaeyOeI0Ia aGimaiaai6caaaa@61F4@

Следовательно, уравнение ψ(z)=J(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamOEaiaaiMcaca aI9aGaamOsaiaaiIcacaWG6bGaaGykaaaa@39ED@  не может имеет решения, лежащего вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , и указанный оператор не имеет собственных значений, лежащих вне непрерывного спектра.

Из полученных результатов очевидно, что спектр оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  состоит из непрерывного спектра и не более чем двух собственных значений.

4 Структура существенного спектра и дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@

Оператор 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  представляется в виде

                                 3 H ˜ t 1 ={ H ˜ 2 t +K(λ,μ)}II+II H ˜ 2 t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaakiaa i2dacaaI7bWaaacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaaGOmaa qaaiaadshaaaGccqGHRaWkcaWGlbGaaGikaiabeU7aSjaaiYcacqaH 8oqBcaaIPaGaaGyFaiabgEPielaadMeacqGHxkcXcaWGjbGaey4kaS IaamysaiabgEPielaadMeacqGHxkcXdaaiaaqaaiaadIeaaiaawoWa amaaDaaaleaacaaIYaaabaGaamiDaaaakiaaiYcaaaa@5423@                                     (26)

где H ˜ 2 t = H ˜ 1 I+I H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaamiDaaaakiaai2dadaaiaaqaaiaadIeaaiaa woWaamaaBaaaleaacaaIXaaabeaakiabgEPielaadMeacqGHRaWkca WGjbGaey4LIq8aaacaaeaacaWGibaacaGLdmaadaWgaaWcbaGaaGym aaqabaaaaa@4189@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ оператор энергии двухэлектронной системы в примесной модели Хаббарда в триплетном состоянии. Используя полученные результаты и представления (7) и (26), опишем структуру существенного спектра и дискретный спектр оператора H ˜ 2 s = H ˜ 2 t +K(λ,μ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaakiaai2dadaaiaaqaaiaadIeaaiaa woWaamaaDaaaleaacaaIYaaabaGaamiDaaaakiabgUcaRiaadUeaca aIOaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@40B4@  и оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ .

Сначала рассмотрим оператор H ˜ (U)= H ˜ 2 t + K 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacaWGvbGaaGykaiaai2dadaaiaaqaaiaadIeaaiaawoWaamaaDaaa leaacaaIYaaabaGaamiDaaaakiabgUcaRiaadUeadaWgaaWcbaGaaG ymaaqabaaaaa@3C6A@ , где

                                      ( K 1 f)(s)=U T ν f Λ 1 (s)ds, Λ 1 =λ+μ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaBaaaleaacaaIXa aabeaakiaadAgacaaIPaGaaGikaiaadohacaaIPaGaaGypaiaadwfa daWdraqabSqaaiaadsfadaahaaqabeaacqaH9oGBaaaabeqdcqGHRi I8aOGaamOzamaaBaaaleaacqqHBoatdaWgaaqaaiaaigdaaeqaaaqa baGccaaIOaGaam4CaiaaiMcacaWGKbGaam4CaiaaiYcacaaMf8Uaeu 4MdW0aaSbaaSqaaiaaigdaaeqaaOGaaGypaiabeU7aSjabgUcaRiab eY7aTjaai6caaaa@50BD@

Семейство операторов H ˜ (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacaWGvbGaaGykaaaa@358F@  является семейством ограниченных операторнозначных аналитических функций, поэтому можно применить теорему Като MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ Реликса.

Теорема 7 (теорема Като-Реллиха)  Пусть T(β) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabek7aIjaaiMcaaa a@35A0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ аналитическое семейство в смысле Като. Пусть E 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaaSbaaSqaaiaaicdaaeqaaa aa@3371@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ невырожденное собственное значение оператора T( β 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabek7aInaaBaaale aacaaIWaaabeaakiaaiMcaaaa@3690@ . Тогда при β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@3362@ , близком к β 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaaGimaaqaba aaaa@3448@ , существует в точности одна точка E(β)σ(T(β)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabek7aIjaaiMcacq GHiiIZcqaHdpWCcaaIOaGaamivaiaaiIcacqaHYoGycaaIPaGaaGyk aaaa@3E1C@  вблизи E 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbWaaSbaaSqaaiaaicdaaeqaaa aa@3371@ , причем эта точка изолирована и невырождена. При β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@3362@ , близких к β 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaaGimaaqaba aaaa@3448@ , функция E(β) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabek7aIjaaiMcaaa a@3591@  аналитична и существует аналитический собственный вектор Ω(β) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaIOaGaeqOSdiMaaGykaa aa@3655@ . Если при действительных β β 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHsislcqaHYoGydaWgaa WcbaGaaGimaaqabaaaaa@36D6@  оператор T(β) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabek7aIjaaiMcaaa a@35A0@  самосопряжен, то Ω(β) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaIOaGaeqOSdiMaaGykaa aa@3655@  можно выбрать так, что он будет нормирован при действительных β β 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHsislcqaHYoGydaWgaa WcbaGaaGimaaqabaaaaa@36D6@ .

Так как оператор H ˜ 2 t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaamiDaaaaaaa@3532@  имеет невырожденное собственное значение вблизи собственного значения 2 z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaaaaa@3463@  оператора H ˜ 2 t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaamiDaaaaaaa@3532@ , то при U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@ , близком к U 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaaicdaaaa@350C@ , оператор H ˜ (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacaWGvbGaaGykaaaa@358F@  имеет в точности одно собственное значение E(U)σ( H ˜ (U)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiaadwfacaaIPaGaey icI4Saeq4WdmNaaGikamaaGaaabaGaamisaaGaay5adaGaaGikaiaa dwfacaaIPaGaaGykaaaa@3D44@  вблизи 2 z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaaaaa@3463@ , причем оно изолировано и невырождено. Таким образом, E(U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiaadwfacaaIPaaaaa@34CA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ аналитическая функция при U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@329B@  вблизи U 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaaicdaaaa@350C@ . При больших значениях существование не более одного дополнительного собственного значения оператора H ˜ (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacaWGvbGaaGykaaaa@358F@  следует из того, что возмущение

                                              ( K 1 f ˜ )(λ,μ)=U T ν f Λ 1 (s)ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaBaaaleaacaaIXa aabeaakmaaGaaabaGaamOzaaGaay5adaGaaGykaiaaiIcacqaH7oaB caaISaGaeqiVd0MaaGykaiaai2dacaWGvbWaa8qeaeqaleaacaWGub WaaWbaaeqabaGaeqyVd4gaaaqab0Gaey4kIipakiaadAgadaWgaaWc baGaeu4MdW0aaSbaaeaacaaIXaaabeaaaeqaaOGaaGikaiaadohaca aIPaGaamizaiaadohaaaa@4A32@

есть одномерный оператор.

Теперь рассмотрим семейство операторов H ˜ ( ε 3 )= H ˜ (U)+ K 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacqaH1oqzdaWgaaWcbaGaaG4maaqabaGccaaIPaGaaGypamaaGaaa baGaamisaaGaay5adaGaaGikaiaadwfacaaIPaGaey4kaSIaam4sam aaBaaaleaacaaIYaaabeaaaaa@3E7E@ , где

                                           ( K 2 f)(λ,μ)= T ν T ν f(s,t)dsdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaBaaaleaacaaIYa aabeaakiaadAgacaaIPaGaaGikaiabeU7aSjaaiYcacqaH8oqBcaaI PaGaaGypamaapebabeWcbaGaamivamaaCaaabeqaaiabe27aUbaaae qaniabgUIiYdGcdaWdraqabSqaaiaadsfadaahaaqabeaacqaH9oGB aaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWGZbGaaGilaiaadshaca aIPaGaaGjcVlaadsgacaWGZbGaaGjcVlaadsgacaWG0bGaaGOlaaaa @5243@

Так как оператор H ˜ (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacaWGvbGaaGykaaaa@358F@  имеет невырожденное собственное значение, то вблизи собственного значения E(U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiaadwfacaaIPaaaaa@34CA@ оператора H ˜ (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacaWGvbGaaGykaaaa@358F@  оператор H ˜ ( ε 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaaiaaiI cacqaH1oqzdaWgaaWcbaGaaG4maaqabaGccaaIPaaaaa@374F@  вблизи точки ε 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaG4maaqaba GccaaI9aGaaGimaaaa@35DC@  имеет в точности одно собственное значение E( ε 3 )σ( H ˜ ( ε 3 )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabew7aLnaaBaaale aacaaIZaaabeaakiaaiMcacqGHiiIZcqaHdpWCcaaIOaWaaacaaeaa caWGibaacaGLdmaacaaIOaGaeqyTdu2aaSbaaSqaaiaaiodaaeqaaO GaaGykaiaaiMcaaaa@40C4@ вблизи E(U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiaadwfacaaIPaaaaa@34CA@ , которое изолировано и невырождено. Поэтому функция E( ε 3 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGikaiabew7aLnaaBaaale aacaaIZaaabeaakiaaiMcaaaa@368A@  аналитична вблизи ε 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaG4maaqaba aaaa@3451@ .

Обозначим через z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaiodaaeqaaa aa@33A9@  и z 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaisdaaeqaaa aa@33AA@  дополнительные собственные значения оператора H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@ . Докажем следующие теоремы, описывающие спектр операторов H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@  и 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ .

Теорема 8 Пусть ν=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaGymaaaa@34FB@ .

    A.   Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@378F@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaadkeaaaa@36A4@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@5B29@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                         σ disc ( 3 H ˜ t 1 )={4z,2z+ z 3 ,2z+ z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEaiaaiYcacaaMe8UaaGOm aiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilai aaysW7caaIYaGaamOEaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaI9bGaaGilaaaa@502F@

где z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ , а z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaiodaaeqaaa aa@33A9@  и z 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaisdaaeqaaa aa@33AA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дополнительные собственные значение оператора H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@ . 

    B.   Если ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@  (соответственно, ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@5B29@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                         σ disc ( 3 H ˜ t 1 )={4z,2z+ z 3 ,2z+ z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEaiaaiYcacaaIYaGaamOE aiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVl aaikdacaWG6bGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaa i2hacaaISaaaaa@4EA2@

где z=A 4 B 2 + ε 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHsislda GcaaqaaiaaisdacaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa eqyTdu2aa0baaSqaaiaaigdaaeaacaaIYaaaaaqabaaaaa@3BEF@  (соответственно, z=A+ 4 B 2 + ε 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda GcaaqaaiaaisdacaWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa eqyTdu2aa0baaSqaaiaaigdaaeaacaaIYaaaaaqabaaaaa@3BE4@  ). 

   C.   Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  или ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением шестнадцати отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 1 ,3A+6B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@6118@

                  [3A6B+ z 2 ,3A+6B+ z 2 ][2A4B+2 z 1 ,2A+4B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaG4maiaadgeacq GHsislcaaI2aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGaaGjbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaaGOmai aadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlaaikdacaWG bbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaig daaeqaaOGaaGyxaiabgQIiidaa@5A85@

           [2A4B+2 z 2 ,2A+4B+ z 2 ][2A4B+ z 1 + z 2 ,2A+4B+ z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGH QicYcaaIBbGaaGOmaiaadgeacqGHsislcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqa aiaaikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaais dacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUca RiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaIDbGaeyOkIGmaaa@6025@

                   [A2B+3 z 1 ,A+2B+3 z 1 ][A2B+3 z 2 ,A+2B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGymaaqa baGccaaISaGaaGjbVlaadgeacqGHRaWkcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEam aaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8UaamyqaiabgUcaRiaa ikdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGOmaaqaba GccaaIDbGaeyOkIGmaaa@59BF@

     [A2B+ z 1 +2 z 2 ,A+2B+ z 1 +2 z 2 ][A2B+2 z 1 + z 2 ,A+2B+2 z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaays W7caWGbbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGOmaa qabaGccaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOq aiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyx aiabgQIiidaa@6505@

                   [2A4B+ z 3 ,2A+4B+ z 3 ][2A4B+ z 4 ,2A+4B+ z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaamOEam aaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOmaiaadgeacqGH RaWkcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqaba GccaaIDbGaeyOkIGmaaa@59CB@

        [A2B+ z 1 + z 3 ,2A+4B+ z 1 + z 3 ][A2B+ z 1 + z 4 ,2A+4B+ z 1 + z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaik dacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIa aGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facqGHQicYaaa@6397@

        [A2B+ z 2 + z 3 ,2A+4B+ z 2 + z 3 ][A2B+ z 2 + z 4 ,2A+4B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaik dacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIa aGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facaaISaaaaa@62B1@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из одиннадцати собственных значений:

             σ disc ( 3 H ˜ t 1 )={4 z 1 ,3 z 1 + z 2 ,4 z 2 ,2 z 1 +2 z 2 , z 1 +3 z 2 ,2 z 1 + z 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGKbGaamyAaiaadohacaWGJbaabeaakiaaiIcadaahaaWcbeqa aiaaiodaaaGcdaaiaaqaaiaadIeaaiaawoWaamaaDaaaleaacaWG0b aabaGaaGymaaaakiaaiMcacaaI9aGaaG4EaiaaisdacaWG6bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaysW7caaIZaGaamOEamaaBaaale aacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaISaGaaGjbVlaaisdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaG ilaiaaysW7caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUca RiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaysW7ca WG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaG4maiaadQhadaWg aaWcbaGaaGOmaaqabaGccaaISaGaaGjbVlaaikdacaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaa kiaaiYcaaaa@6A49@

                            z 1 + z 2 + z 3 ,2 z 2 + z 3 ,2 z 1 + z 4 , z 1 + z 2 + z 4 ,2 z 2 + z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQha daWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaikdacaWG6bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaa beaakiaaiYcacaaMe8UaaGOmaiaadQhadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGilaiaaysW7 caWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaale aacaaIYaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGc caaISaGaaGjbVlaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2hacaaISaaaaa@5C3D@

где

                         z 1 =A 2BE E 2 1 , z 2 =A+ 2BE E 2 1 ,E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHsisldaWcaaqaaiaaikdacaWGcbGaamyraaqa amaakaaabaGaamyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaig daaSqabaaaaOGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaamyraa qaamaakaaabaGaamyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa igdaaSqabaaaaOGaaGilaiaaywW7caWGfbGaaGypamaalaaabaGaaG ikaiaadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI PaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWc baGaaGOmaaqabaaaaOGaaGOlaaaa@5C28@

    D.   Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4115@  (соответственно, ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4202@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@5B29@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                         σ disc ( 3 H ˜ t 1 )={4z,2z+ z 3 ,2z+ z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEaiaaiYcacaaMe8UaaGOm aiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilai aaysW7caaIYaGaamOEaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaI9bGaaGilaaaa@502F@

где соответственно

                   z=A+ 2B( E 2 +1) E 2 1 илиz=A 2B( E 2 +1) E 2 1 ,E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda WcaaqaaiaaikdacaWGcbGaaGikaiaadweadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaGaaGykaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaaaaiaaysW7caaMc8UaaeioeiaabUdbcaqG 4qGaaGPaVlaadQhacaaI9aGaamyqaiabgkHiTmaalaaabaGaaGOmai aadkeacaaIOaGaamyramaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa igdacaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaigdaaaGaaGilaiaaywW7caWGfbGaaGypamaalaaabaGaaGikaiaa dkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaW baaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaaeaa caaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaG OmaaqabaaaaOGaaGOlaaaa@6684@

    E.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  ), то существенный спектр оператор 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@5B29@

а дискретный спектр оператор 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                                 σ disc ( 3 H ˜ t 1 )={2z, z 3 , z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaIYaGaamOEaiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8UaamOEamaaBaaale aacaaI0aaabeaakiaai2hacaaISaaaaa@4AF3@

где

                      z=A+ 2B(α+E E 2 1+ α 2 ) E 2 1 ,E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 ,α>1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkda WcaaqaaiaaikdacaWGcbGaaGikaiabeg7aHjabgUcaRiaadweadaGc aaqaaiaadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaaqabaGccaaIPaaabaGa amyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaaGaaGilai aaywW7caWGfbGaaGypamaalaaabaGaaGikaiaadkeacqGHRaWkcqaH 1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4k aSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaaaaOGaaG ilaiaaywW7cqaHXoqycaaI+aGaaGymaiaai6caaaa@5EB1@  

    F.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@5B29@

а дискретный спектр оператор 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                         σ disc ( 3 H ˜ t 1 )={4z,2z+ z 3 ,2z+ z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEaiaaiYcacaaMe8UaaGOm aiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilai aaysW7caaIYaGaamOEaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaI9bGaaGilaaaa@502F@

где

                      z=A 2B(α+E E 2 1+ α 2 ) E 2 1 ,E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 ,α>1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHsislda WcaaqaaiaaikdacaWGcbGaaGikaiabeg7aHjabgUcaRiaadweadaGc aaqaaiaadweadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaaqabaGccaaIPaaabaGa amyramaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaaGaaGilai aaywW7caWGfbGaaGypamaalaaabaGaaGikaiaadkeacqGHRaWkcqaH 1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4k aSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGaaGOmaaqabaaaaOGaaG ilaiaaywW7cqaHXoqycaaI+aGaaGymaiaai6caaaa@5EBC@

    G.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением шестнадцати отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 1 ,3A+6B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@6118@

                  [3A6B+ z 2 ,3A+6B+ z 2 ][2A4B+2 z 1 ,2A+4B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaG4maiaadgeacq GHsislcaaI2aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGaaGjbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaaGOmai aadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlaaikdacaWG bbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaig daaeqaaOGaaGyxaiabgQIiidaa@5A85@

           [2A4B+2 z 2 ,2A+4B+ z 2 ][2A4B+ z 1 + z 2 ,2A+4B+ z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGH QicYcaaIBbGaaGOmaiaadgeacqGHsislcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqa aiaaikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaais dacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUca RiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaIDbGaeyOkIGmaaa@6025@

                   [A2B+3 z 1 ,A+2B+3 z 1 ][A2B+3 z 2 ,A+2B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGymaaqa baGccaaISaGaaGjbVlaadgeacqGHRaWkcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEam aaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8UaamyqaiabgUcaRiaa ikdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGOmaaqaba GccaaIDbGaeyOkIGmaaa@59BF@

     [A2B+ z 1 +2 z 2 ,A+2B+ z 1 +2 z 2 ][A2B+2 z 1 + z 2 ,A+2B+2 z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaays W7caWGbbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGOmaa qabaGccaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOq aiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyx aiabgQIiidaa@6505@

                   [2A4B+ z 3 ,2A+4B+ z 3 ][2A4B+ z 4 ,2A+4B+ z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaamOEam aaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOmaiaadgeacqGH RaWkcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqaba GccaaIDbGaeyOkIGmaaa@59CB@

        [A2B+ z 1 + z 3 ,2A+4B+ z 1 + z 3 ][A2B+ z 1 + z 4 ,2A+4B+ z 1 + z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaik dacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIa aGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facqGHQicYaaa@6397@

        [A2B+ z 2 + z 3 ,2A+4B+ z 2 + z 3 ][A2B+ z 2 + z 4 ,2A+4B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaik dacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIa aGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facaaISaaaaa@62B1@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из одиннадцати собственных значений:

             σ disc ( 3 H ˜ t 1 )={4 z 1 ,3 z 1 + z 2 ,4 z 2 ,2 z 1 +2 z 2 , z 1 +3 z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGKbGaamyAaiaadohacaWGJbaabeaakiaaiIcadaahaaWcbeqa aiaaiodaaaGcdaaiaaqaaiaadIeaaiaawoWaamaaDaaaleaacaWG0b aabaGaaGymaaaakiaaiMcacaaI9aGaaG4EaiaaisdacaWG6bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaysW7caaIZaGaamOEamaaBaaale aacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaISaGaaGjbVlaaisdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaG ilaiaaysW7caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUca RiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaysW7ca WG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaG4maiaadQhadaWg aaWcbaGaaGOmaaqabaGccaaISaaaaa@6286@

                     2 z 1 + z 3 , z 1 + z 2 + z 3 ,2 z 2 + z 3 ,2 z 1 + z 4 , z 1 + z 2 + z 4 ,2 z 2 + z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaakiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGa aGjbVlaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaa beaakiaaiYcacaaMe8UaaGOmaiaadQhadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaaysW7 caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaGccaaISaGaaGjbVlaadQhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOm aiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaS qaaiaaisdaaeqaaOGaaGyFaiaaiYcaaaa@6400@

где

z 1 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 ,E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGilaiaaywW7caWGfbGaaGypamaala aabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqa baGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqz daWgaaWcbaGaaGOmaaqabaaaaaaa@70BA@

и 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@ .

    H.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  (соотв., ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@  и 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением шестнадцати отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 1 ,3A+6B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@6118@

                  [3A6B+ z 2 ,3A+6B+ z 2 ][2A4B+2 z 1 ,2A+4B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaG4maiaadgeacq GHsislcaaI2aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGaaGjbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaaGOmai aadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlaaikdacaWG bbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaig daaeqaaOGaaGyxaiabgQIiidaa@5A85@

           [2A4B+2 z 2 ,2A+4B+ z 2 ][2A4B+ z 1 + z 2 ,2A+4B+ z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGH QicYcaaIBbGaaGOmaiaadgeacqGHsislcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqa aiaaikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaais dacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUca RiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaIDbGaeyOkIGmaaa@6025@

                   [A2B+3 z 1 ,A+2B+3 z 1 ][A2B+3 z 2 ,A+2B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGymaaqa baGccaaISaGaaGjbVlaadgeacqGHRaWkcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEam aaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8UaamyqaiabgUcaRiaa ikdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGOmaaqaba GccaaIDbGaeyOkIGmaaa@59BF@

     [A2B+ z 1 +2 z 2 ,A+2B+ z 1 +2 z 2 ][A2B+2 z 1 + z 2 ,A+2B+2 z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaays W7caWGbbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGOmaa qabaGccaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOq aiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyx aiabgQIiidaa@6505@

                   [2A4B+ z 3 ,2A+4B+ z 3 ][2A4B+ z 4 ,2A+4B+ z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaamOEam aaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOmaiaadgeacqGH RaWkcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqaba GccaaIDbGaeyOkIGmaaa@59CB@

        [A2B+ z 1 + z 3 ,2A+4B+ z 1 + z 3 ][A2B+ z 1 + z 4 ,2A+4B+ z 1 + z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaik dacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIa aGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facqGHQicYaaa@6397@

        [A2B+ z 2 + z 3 ,2A+4B+ z 2 + z 3 ][A2B+ z 2 + z 4 ,2A+4B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaaik dacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqa aiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIa aGinaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facaaISaaaaa@62B1@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из одиннадцати собственных значений:

             σ disc ( 3 H ˜ t 1 )={4 z 1 ,3 z 1 + z 2 ,4 z 2 ,2 z 1 +2 z 2 , z 1 +3 z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGKbGaamyAaiaadohacaWGJbaabeaakiaaiIcadaahaaWcbeqa aiaaiodaaaGcdaaiaaqaaiaadIeaaiaawoWaamaaDaaaleaacaWG0b aabaGaaGymaaaakiaaiMcacaaI9aGaaG4EaiaaisdacaWG6bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaysW7caaIZaGaamOEamaaBaaale aacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaISaGaaGjbVlaaisdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaG ilaiaaysW7caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUca RiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaysW7ca WG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaG4maiaadQhadaWg aaWcbaGaaGOmaaqabaGccaaISaaaaa@6286@

                     2 z 1 + z 3 , z 1 + z 2 + z 3 ,2 z 2 + z 3 ,2 z 1 + z 4 , z 1 + z 2 + z 4 ,2 z 2 + z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaakiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGa aGjbVlaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaa beaakiaaiYcacaaMe8UaaGOmaiaadQhadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaaysW7 caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaGccaaISaGaaGjbVlaadQhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOm aiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaS qaaiaaisdaaeqaaOGaaGyFaiaaiYcaaaa@6400@

где

z 1 =A+ 2B(α+E E 2 1+ α 2 ) E 2 1 , z 2 =A+ 2B(αE E 2 1+ α 2 ) E 2 1 ,E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaGikaiab eg7aHjabgUcaRiaadweadaGcaaqaaiaadweadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabeaacaaI YaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaigdaaaGaaGilaiaaywW7caWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGypaiaadgeacqGHRaWkdaWcaaqaaiaaikdacaWGcbGaaG ikaiabeg7aHjabgkHiTiaadweadaGcaaqaaiaadweadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaey4kaSIaeqySde2aaWbaaSqabe aacaaIYaaaaaqabaGccaaIPaaabaGaamyramaaCaaaleqabaGaaGOm aaaakiabgkHiTiaaigdaaaGaaGilaiaaywW7caWGfbGaaGypamaala aabaGaaGikaiaadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqa baGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqz daWgaaWcbaGaaGOmaaqabaaaaaaa@70BA@

и 0<α<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@3661@ .

    I.   Если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYaaa@4DE2@

                [2A4B+ z 3 ,2A+4B+ z 3 ][2A4B+ z 4 ,2A+4B+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGaey4kaSIaamOEam aaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOmaiaadgeacqGH RaWkcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqaba GccaaIDbGaaGilaiaaywW7caaMf8oaaa@5BFD@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  пуст: σ disc ( 3 H ˜ t 1 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiabgwGigdaa@3F84@ .

Proof. A. Из представлений (7) и (26) и формул (9) и (10) следует, что в одномерном случае непрерывный спектр оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  состоит из одного отрезка σ cont ( H ˜ 1 )=[A2B,A+2B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaam4yaiaad+ gacaWGUbGaamiDaaqabaGccaaIOaWaaacaaeaacaWGibaacaGLdmaa daWgaaWcbaGaaGymaaqabaGccaaIPaGaaGypaiaaiUfacaWGbbGaey OeI0IaaGOmaiaadkeacaaISaGaaGjbVlaadgeacqGHRaWkcaaIYaGa amOqaiaai2faaaa@469E@ , а дискретный спектр состоит из единственного собственного значения z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ . Оператор K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbaaaa@3291@  является двумерным; поэтому существенные спектры операторов H ˜ 1 I+I H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaakiabgEPielaadMeacqGHRaWkcaWGjbGaey4L Iq8aaacaaeaacaWGibaacaGLdmaadaWgaaWcbaGaaGymaaqabaaaaa@3D47@  и H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@  совпадают (см. [9, гл. XIII, §4]) и состоят из отрезков [2A4B,2A+4B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGOmaiaadgeacqGHsislca aI0aGaamOqaiaaiYcacaaMe8UaaGOmaiaadgeacqGHRaWkcaaI0aGa amOqaiaai2faaaa@3DAD@  и [A2B+z,A+2B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyqaiabgkHiTiaaikdaca WGcbGaey4kaSIaamOEaiaaiYcacaaMe8UaamyqaiabgUcaRiaaikda caWGcbGaey4kaSIaamOEaiaai2faaaa@3FF3@ . При возмущении двумерным оператором K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbaaaa@3291@  оператор H ˜ 1 I+I H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaakiabgEPielaadMeacqGHRaWkcaWGjbGaey4L Iq8aaacaaeaacaWGibaacaGLdmaadaWgaaWcbaGaaGymaaqabaaaaa@3D47@  имеет не более двух собственных значений z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaiodaaeqaaa aa@33A9@  и z 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaisdaaeqaaa aa@33AA@ .

B. В этом случае оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет единственное собственное значение z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@ , лежащее вне непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . Поэтому существенный спектр оператора H ˜ 1 I+I H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaakiabgEPielaadMeacqGHRaWkcaWGjbGaey4L Iq8aaacaaeaacaWGibaacaGLdmaadaWgaaWcbaGaaGymaaqabaaaaa@3D47@  является объединением двух отрезков, а дискретный спектр состоит из единственного собственного значения. Остальные утверждения теоремы доказывается аналогично.

Следующие теоремы описывают структуру существенного спектра и дискретный спектр оператора H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@  в трехмерном случае.

Теорема 9  Пусть ν=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaG4maaaa@34FD@ .

    A. 1. Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOnaiaadkeaaaa@3793@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOnaiaadkeaaaa@36A8@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@5B29@

 а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений

                                         σ disc ( 3 H ˜ t 1 )={4z,2z+ z 3 ,2z+ z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEaiaaiYcacaaMe8UaaGOm aiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilai aaysW7caaIYaGaamOEaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaI9bGaaGilaaaa@502F@

где z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ , а z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaiodaaeqaaa aa@33A9@  и z 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaisdaaeqaaa aa@33AA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дополнительные собственные значение оператора H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@ . 

        2. Если ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и 6B ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiabgsMiJk abew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacqGHsislcaaIYaGa amOqaaaa@3BB8@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и 2B< ε 1 6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOqaiaaiYdacqaH1oqzda WgaaWcbaGaaGymaaqabaGccqGHKjYOcaaI2aGaamOqaaaa@39DE@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][2A4B+ z 3 ,2A+4B+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaGOmaiaadgeacqGHsislcaaI0aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaG jbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiidaa@6116@

                                        [2A4B+ z 4 ,2A+4B+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiaaiYcacaaM f8UaaGzbVdaa@48C9@

 а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  пуст: σ disc ( 3 H ˜ t 1 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiabgwGigdaa@3F84@ .

    B.   Если ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaaaa@35D9@ , ε 1 6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccqGHKjYOcqGHsislcaaI2aGaamOqaiaai+cacaWGxbaaaa@3A17@  (соответственно, ε 2 =2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaaGOmaiaadkeaaaa@3791@  или ε 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaGimaaaa@35DB@  и ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGimaaaa@35DB@ , ε 1 6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccqGHLjYScaaI2aGaamOqaiaai+cacaWGxbaaaa@393B@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 1 ,3A+6B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@6118@

                  [2A4B+2 z 1 ,2A+4B+2 z 1 ][A2B+3 z 1 ,A+2B+3 z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqabaGccaaI DbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaysW7caWG bbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEamaaBaaale aacaaIXaaabeaakiaai2facqGHQicYaaa@5B37@

              [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+ z 1 + z 3 ,A+2B+ z 1 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aG4maaqabaGccaaIDbGaeyOkIGmaaa@5DF1@

               [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+ z 1 + z 4 ,A+2B+ z 1 + z 4 ]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aGinaaqabaGccaaIDbGaaG4oaaaa@5D1A@

соответственно,

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 2 ,3A+6B+ z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgQIiidaa@611A@

                 [2A4B+2 z 2 ,2A+4B+2 z 2 ][A2B+3 z 2 ,A+2B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaI DbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaysW7caWG bbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEamaaBaaale aacaaIYaaabeaakiaai2facqGHQicYaaa@5B3B@

              [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+ z 2 + z 3 ,A+2B+ z 2 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aG4maaqabaGccaaIDbGaeyOkIGmaaa@5DF3@

               [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+ z 2 + z 4 ,A+2B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aGinaaqabaGccaaIDbGaaGilaaaa@5D0D@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                                σ disc ( 3 H ˜ t 1 )={4 z 1 , z 3 , z 4 }; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEamaaBaaaleaacaaIXaaa beaakiaaiYcacaaMe8UaamOEamaaBaaaleaacaaIZaaabeaakiaaiY cacaaMe8UaamOEamaaBaaaleaacaaI0aaabeaakiaai2hacaaI7aaa aa@4BF5@

соответственно,

                                                σ disc ( 3 H ˜ t 1 )={4 z 2 , z 3 , z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaI0aGaamOEamaaBaaaleaacaaIYaaa beaakiaaiYcacaaMe8UaamOEamaaBaaaleaacaaIZaaabeaakiaaiY cacaaMe8UaamOEamaaBaaaleaacaaI0aaabeaakiaai2hacaaISaaa aa@4BE7@

где z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  (соответственно, z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@  ) является собственным значением оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

Если 6B/W ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiaai+caca WGxbGaeyizImQaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaaGipaiaa icdaaaa@3B97@  (соответственно, 0< ε 1 6B/W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiabgsMiJkaaiAdacaWGcbGaaG4laiaadEfaaaa@3AAA@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][2A4B+ z 3 ,2A+4B+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaGOmaiaadgeacqGHsislcaaI0aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaG jbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiidaa@6116@

                                        [2A4B+ z 4 ,2A+4B+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiaaiYcacaaM f8UaaGzbVdaa@48C9@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  пуст: σ disc ( 3 H ˜ t 1 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiabgwGigdaa@3F84@ . 

    C.   Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , E<W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaadEfaaaa@342D@  (соответственно, ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , E<W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaadEfaaaa@342D@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhacaaISaGaaGjbVlaaiodacaWGbbGaey4kaS IaaGOnaiaadkeacqGHRaWkcaWG6bGaaGyxaiabgQIiidaa@5F36@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaysW7 caaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaSIaaGOmaiaadQ hacaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiab gUcaRiaaiodacaWG6bGaaGilaiaaysW7caWGbbGaey4kaSIaaGOmai aadkeacqGHRaWkcaaIZaGaamOEaiaai2facqGHQicYaaa@5773@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@5C0F@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bGaey4kaS IaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8Uaamyqaiab gUcaRiaaikdacaWGcbGaey4kaSIaamOEaiabgUcaRiaadQhadaWgaa WcbaGaaGinaaqabaGccaaIDbGaaG4oaaaa@5B38@

соответственно,

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z ˜ ,3A+6B+ z ˜ ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRmaaGaaabaGaamOEaaGaay5adaGaaGilaiaaysW7ca aIZaGaamyqaiabgUcaRiaaiAdacaWGcbGaey4kaSYaaacaaeaacaWG 6baacaGLdmaacaaIDbGaeyOkIGmaaa@60BA@

                    [2A4B+2 z ˜ ,2A+4B+2 z ˜ ][A2B+3 z ˜ ,A+2B+3 z ˜ ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdadaaiaaqaaiaadQhaaiaa woWaaiaaiYcacaaMe8UaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqai abgUcaRiaaikdadaaiaaqaaiaadQhaaiaawoWaaiaai2facqGHQicY caaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4kaSIaaG4mamaaGa aabaGaamOEaaGaay5adaGaaGilaiaaysW7caWGbbGaey4kaSIaaGOm aiaadkeacqGHRaWkcaaIZaWaaacaaeaacaWG6baacaGLdmaacaaIDb GaeyOkIGmaaa@5A7B@

               [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+ z ˜ + z 3 ,A+2B+ z ˜ + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkdaaiaaqaaiaadQ haaiaawoWaaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaI SaGaaGjbVlaadgeacqGHRaWkcaaIYaGaamOqaiabgUcaRmaaGaaaba GaamOEaaGaay5adaGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaa kiaai2facqGHQicYaaa@5D93@

                [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+ z ˜ + z 4 ,A+2B+ z ˜ + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkdaaiaaqaaiaadQ haaiaawoWaaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaI SaGaaGjbVlaadgeacqGHRaWkcaaIYaGaamOqaiabgUcaRmaaGaaaba GaamOEaaGaay5adaGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaa kiaai2facaaISaaaaa@5CAD@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                                 σ disc ( 3 H ˜ t 1 )={2z, z 3 , z 4 }; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaIYaGaamOEaiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8UaamOEamaaBaaale aacaaI0aaabeaakiaai2hacaaI7aaaaa@4B02@

соответственно,

                                                 σ disc ( 3 H ˜ t 1 )={2 z ˜ , z 3 , z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaIYaWaaacaaeaacaWG6baacaGLdmaa caaISaGaaGjbVlaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaG jbVlaadQhadaWgaaWcbaGaaGinaaqabaGccaaI9bGaaGilaaaa@4BB5@

где z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  (соответственно, z ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadQhaaiaawoWaaaaa@3382@  ) является собственным значением оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  и

                                                        E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypamaalaaabaGaaGikai aadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWa aWbaaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaaaaOGaaGOlaaaa@4308@

Если ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  и ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , E>W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaadEfaaaa@342F@  (соответственно, ε 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaaaa@35DA@  and ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , E>W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGOpaiaadEfaaaa@342F@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][2A4B+ z 3 ,2A+4B+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaGOmaiaadgeacqGHsislcaaI0aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaG jbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiidaa@6116@

                                            [2A4B+ z 4 ,2A+4B+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiaaiYcaaaa@45AD@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  пуст: σ disc ( 3 H ˜ t 1 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiabgwGigdaa@3F84@ . 

    D.   Если ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4115@  и E<4W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaisdacaWGxbGaaG 4laiaaiodaaaa@3661@  (соответственно, ε 1 =2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4202@  и E<4W/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaisdacaWGxbGaaG 4laiaaiodaaaa@3661@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaI0aGaamyqaiabgUcaRiaaiIdacaWGcbGaaG yxaiabgQIiilaaiUfacaaIZaGaamyqaiabgkHiTiaaiAdacaWGcbGa ey4kaSIaamOEaiaaiYcacaaIZaGaamyqaiabgUcaRiaaiAdacaWGcb Gaey4kaSIaamOEaiaai2facqGHQicYaaa@5C1C@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaikda caWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaaIYaGaamOEaiaai2 facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4kaSIa aG4maiaadQhacaaISaGaamyqaiabgUcaRiaaikdacaWGcbGaey4kaS IaaG4maiaadQhacaaIDbGaeyOkIGmaaa@5459@

                [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaIYaGaamOqaiabgUcaRiaadQhacqGHRaWkcaWG6b WaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaadgeacqGHRaWkcaaIYaGa amOqaiabgUcaRiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaae qaaOGaaGyxaiabgQIiidaa@58F5@

                 [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGinaaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaIYaGaamOqaiabgUcaRiaadQhacqGHRaWkcaWG6b WaaSbaaSqaaiaaisdaaeqaaOGaaGilaiaadgeacqGHRaWkcaaIYaGa amOqaiabgUcaRiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaae qaaOGaaGyxaiaaiUdaaaa@581E@

 соответственно,

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z ˜ ,3A+6B+ z ˜ ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaI0aGaamyqaiabgUcaRiaaiIdacaWGcbGaaG yxaiabgQIiilaaiUfacaaIZaGaamyqaiabgkHiTiaaiAdacaWGcbGa ey4kaSYaaacaaeaacaWG6baacaGLdmaacaaISaGaaG4maiaadgeacq GHRaWkcaaI2aGaamOqaiabgUcaRmaaGaaabaGaamOEaaGaay5adaGa aGyxaiabgQIiidaa@5DA0@

                    [2A4B+2 z ˜ ,2A+4B+2 z ˜ ][A2B+3 z ˜ ,A+2B+3 z ˜ ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdadaaiaaqaaiaadQhaaiaa woWaaiaaiYcacaaIYaGaamyqaiabgUcaRiaaisdacaWGcbGaey4kaS IaaGOmamaaGaaabaGaamOEaaGaay5adaGaaGyxaiabgQIiilaaiUfa caWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaaIZaWaaacaaeaaca WG6baacaGLdmaacaaISaGaamyqaiabgUcaRiaaikdacaWGcbGaey4k aSIaaG4mamaaGaaabaGaamOEaaGaay5adaGaaGyxaiabgQIiidaa@5761@

                [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+ z ˜ + z 3 ,A+2B+ z ˜ + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaIYaGaamOqaiabgUcaRmaaGaaabaGaamOEaaGaay 5adaGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaWG bbGaey4kaSIaaGOmaiaadkeacqGHRaWkdaaiaaqaaiaadQhaaiaawo WaaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOk IGmaaa@5A79@

                 [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+ z ˜ + z 4 ,A+2B+ z ˜ + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGinaaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaIYaGaamOqaiabgUcaRmaaGaaabaGaamOEaaGaay 5adaGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaWG bbGaey4kaSIaaGOmaiaadkeacqGHRaWkdaaiaaqaaiaadQhaaiaawo WaaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaIDbGaaGil aaaa@5993@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                                 σ disc ( 3 H ˜ t 1 )={2z, z 3 , z 4 }; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaIYaGaamOEaiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8UaamOEamaaBaaale aacaaI0aaabeaakiaai2hacaaI7aaaaa@4B02@

соответственно,

                                                 σ disc ( 3 H ˜ t 1 )={2 z ˜ , z 3 , z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiaaiUhacaaIYaWaaacaaeaacaWG6baacaGLdmaa caaISaGaaGjbVlaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaG jbVlaadQhadaWgaaWcbaGaaGinaaqabaGccaaI9bGaaGilaaaa@4BB5@

где z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32C0@  (соответственно, z ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadQhaaiaawoWaaaaa@3382@  ) является собственным значением оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  и

                                                        E= (B+ ε 2 ) 2 ε 2 2 +2B ε 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGypamaalaaabaGaaGikai aadkeacqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaIPaWa aWbaaSqabeaacaaIYaaaaaGcbaGaeqyTdu2aa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSIaaGOmaiaadkeacqaH1oqzdaWgaaWcbaGa aGOmaaqabaaaaOGaaGOlaaaa@4308@

    E.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , ε 1 >2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaaleaacaaIYa aabeaakiaaiMcacaaIVaGaamOqaaaa@4116@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 1 ,3A+6B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@6118@

                  [2A4B+2 z 1 ,2A+4B+2 z 1 ][A2B+3 z 1 ,A+2B+3 z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqabaGccaaI DbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaysW7caWG bbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEamaaBaaale aacaaIXaaabeaakiaai2facqGHQicYaaa@5B37@

              [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+ z 1 + z 3 ,A+2B+ z 1 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aG4maaqabaGccaaIDbGaeyOkIGmaaa@5DF1@

               [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+ z 1 + z 4 ,A+2B+ z 1 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aGinaaqabaGccaaIDbGaaGilaaaa@5D0B@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                                 σ disc ( H ˜ 2 s )={2 z 1 , z 3 , z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaacaaeaacaWGibaacaGLdmaa daqhaaWcbaGaaGOmaaqaaiaadohaaaGccaaIPaGaaGypaiaaiUhaca aIYaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8UaamOEamaaBaaale aacaaI0aaabeaakiaai2hacaaISaaaaa@4AF0@

где z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ собственное значение оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

    F.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOmaiaaiIcacqaH1oqzdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHRaWkcaaIYaGaamOqaiabew7aLnaaBaaale aacaaIYaaabeaakiaaiMcacaaIVaGaamOqaaaa@4201@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+ z 1 ,3A+6B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaMe8UaaGinaiaadgeacqGHRaWkcaaI4aGaam Oqaiaai2facqGHQicYcaaIBbGaaG4maiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaG jbVlaaiodacaWGbbGaey4kaSIaaGOnaiaadkeacqGHRaWkcaWG6bWa aSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@6118@

                  [2A4B+2 z 1 ,2A+4B+2 z 1 ][A2B+3 z 1 ,A+2B+3 z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaisdaca WGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqabaGccaaI DbGaeyOkIGSaaG4waiaadgeacqGHsislcaaIYaGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaysW7caWG bbGaey4kaSIaaGOmaiaadkeacqGHRaWkcaaIZaGaamOEamaaBaaale aacaaIXaaabeaakiaai2facqGHQicYaaa@5B37@

              [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+ z 1 + z 3 ,A+2B+ z 1 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aG4maaqabaGccaaIDbGaeyOkIGmaaa@5DF1@

               [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+ z 1 + z 4 ,A+2B+ z 1 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGinaiaadkeacq GHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaa kiaaiYcacaaMe8UaamyqaiabgUcaRiaaikdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aGinaaqabaGccaaIDbGaaGilaaaa@5D0B@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из трех собственных значений:

                                                 σ disc ( H ˜ 2 s )={2 z 1 , z 3 , z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaacaaeaacaWGibaacaGLdmaa daqhaaWcbaGaaGOmaaqaaiaadohaaaGccaaIPaGaaGypaiaaiUhaca aIYaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIZaaabeaakiaaiYcacaaMe8UaamOEamaaBaaale aacaaI0aaabeaakiaai2hacaaISaaaaa@4AF0@

где z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ собственное значение оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

    G.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  и E<(1α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey OeI0IaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A4F@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , 0< ε 1 <2( ε 2 2 +2B ε 2 )/B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabew7aLnaaBaaale aacaaIXaaabeaakiaaiYdacaaIYaGaaGikaiabew7aLnaaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGaeqyTdu2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbaaaa@4294@  и E<(1α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey OeI0IaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A4F@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением шестнадцати отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A48B,4A+48B][3A18B+ z 1 ,3A+18B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 0aGaaGioaiaadkeacaaISaGaaGinaiaadgeacqGHRaWkcaaI0aGaaG ioaiaadkeacaaIDbGaeyOkIGSaaG4waiaaiodacaWGbbGaeyOeI0Ia aGymaiaaiIdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabe aakiaaiYcacaaIZaGaamyqaiabgUcaRiaaigdacaaI4aGaamOqaiab gUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOkIGmaaa@60F4@

               [3A18B+ z 2 ,3A+18B+ z 2 ][2A12B+2 z 1 ,2A+12B+2 z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaG4maiaadgeacq GHsislcaaIXaGaaGioaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaiodacaWGbbGaey4kaSIaaGymaiaaiIdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGH QicYcaaIBbGaaGOmaiaadgeacqGHsislcaaIXaGaaGOmaiaadkeacq GHRaWkcaaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiYcacaaI YaGaamyqaiabgUcaRiaaigdacaaIYaGaamOqaiabgUcaRiaaikdaca WG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@5B13@

       [2A12B+2 z 2 ,2A+12B+2 z 2 ][2A12B+ z 1 + z 2 ,2A+12B+ z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaaIYaGaamOEamaaBaaa leaacaaIYaaabeaakiaaiYcacaaIYaGaamyqaiabgUcaRiaaigdaca aIYaGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqa aOGaaGyxaiabgQIiilaaiUfacaaIYaGaamyqaiabgkHiTiaaigdaca aIYaGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaikdacaWGbb Gaey4kaSIaaGymaiaaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGcca aIDbGaeyOkIGmaaa@60AB@

                    [A6B+3 z 1 ,A+6B+3 z 1 ][A6B+3 z 2 ,A+6B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyqaiabgUcaRiaaiAdacaWGcbGaey4kaSIaaG4mai aadQhadaWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaI2aGaamOqaiabgUcaRiaaiodacaWG6bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiab gUcaRiaaiodacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgQ Iiidaa@56B5@

      [A6B+2 z 1 + z 2 ,A6B+2 z 1 + z 2 ][A6B+ z 1 +2 z 2 ,A6B+ z 1 +2 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadg eacqGHsislcaaI2aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaiAdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkca aIYaGaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGHQicYaaa@6211@

             [2A12B+ z 3 ,2A+12B+ z 3 ][A6B+ z 1 + z 3 ,A+6B+ z 1 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa iodaaeqaaOGaaGilaiaaikdacaWGbbGaey4kaSIaaGymaiaaikdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaakiaai2facqGH QicYcaaIBbGaamyqaiabgkHiTiaaiAdacaWGcbGaey4kaSIaamOEam aaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaG4m aaqabaGccaaISaGaamyqaiabgUcaRiaaiAdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aG4maaqabaGccaaIDbGaeyOkIGmaaa@5C51@

             [A6B+ z 2 + z 3 ,A+6B+ z 2 + z 3 ][2A12B+ z 4 ,2A+12B+ z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaamyqaiabgU caRiaaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOkIG SaaG4waiaaikdacaWGbbGaeyOeI0IaaGymaiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaIYaGaamyqai abgUcaRiaaigdacaaIYaGaamOqaiabgUcaRiaadQhadaWgaaWcbaGa aGinaaqabaGccaaIDbGaeyOkIGmaaa@5C55@

           [A6B+ z 1 + z 4 ,A+6B+ z 1 + z 4 ][A6B+ z 2 + z 4 ,A+6B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaISaGaamyqaiabgU caRiaaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaIDbGaeyOkIG SaaG4waiaadgeacqGHsislcaaI2aGaamOqaiabgUcaRiaadQhadaWg aaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaae qaaOGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiabgUcaRiaadQha daWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaais daaeqaaOGaaGyxaiaaiYcaaaa@5E2B@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из одиннадцати собственных значений:

             σ disc ( 3 H ˜ t 1 )={4 z 1 ,3 z 1 + z 2 ,2 z 1 + z 2 , z 1 +3 z 2 ,4 z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGKbGaamyAaiaadohacaWGJbaabeaakiaaiIcadaahaaWcbeqa aiaaiodaaaGcdaaiaaqaaiaadIeaaiaawoWaamaaDaaaleaacaWG0b aabaGaaGymaaaakiaaiMcacaaI9aGaaG4EaiaaisdacaWG6bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaysW7caaIZaGaamOEamaaBaaale aacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaISaGaaGjbVlaaikdacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaaiodacaWG6bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaaysW7caaI0aGaamOEamaaBaaaleaa caaIYaaabeaakiaaiYcaaaa@61CA@

                     2 z 1 + z 3 , z 1 + z 2 + z 3 ,2 z 2 + z 3 ,2 z 1 + z 4 , z 1 + z 2 + z 4 ,2 z 2 + z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaakiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGa aGjbVlaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaa beaakiaaiYcacaaMe8UaaGOmaiaadQhadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaaysW7 caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaGccaaISaGaaGjbVlaadQhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOm aiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaS qaaiaaisdaaeqaaOGaaGyFaiaaiYcaaaa@6400@

где z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ собственные значения оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

    H.   Если ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  ), то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением шестнадцати отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A48B,4A+48B][3A18B+ z 1 ,3A+18B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 0aGaaGioaiaadkeacaaISaGaaGinaiaadgeacqGHRaWkcaaI0aGaaG ioaiaadkeacaaIDbGaeyOkIGSaaG4waiaaiodacaWGbbGaeyOeI0Ia aGymaiaaiIdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabe aakiaaiYcacaaIZaGaamyqaiabgUcaRiaaigdacaaI4aGaamOqaiab gUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOkIGmaaa@60F4@

               [3A18B+ z 2 ,3A+18B+ z 2 ][2A12B+2 z 1 ,2A+12B+2 z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaG4maiaadgeacq GHsislcaaIXaGaaGioaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaiodacaWGbbGaey4kaSIaaGymaiaaiIdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGH QicYcaaIBbGaaGOmaiaadgeacqGHsislcaaIXaGaaGOmaiaadkeacq GHRaWkcaaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiYcacaaI YaGaamyqaiabgUcaRiaaigdacaaIYaGaamOqaiabgUcaRiaaikdaca WG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiidaa@5B13@

       [2A12B+2 z 2 ,2A+12B+2 z 2 ][2A12B+ z 1 + z 2 ,2A+12B+ z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaaIYaGaamOEamaaBaaa leaacaaIYaaabeaakiaaiYcacaaIYaGaamyqaiabgUcaRiaaigdaca aIYaGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqa aOGaaGyxaiabgQIiilaaiUfacaaIYaGaamyqaiabgkHiTiaaigdaca aIYaGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaikdacaWGbb Gaey4kaSIaaGymaiaaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGcca aIDbGaeyOkIGmaaa@60AB@

                    [A6B+3 z 1 ,A+6B+3 z 1 ][A6B+3 z 2 ,A+6B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyqaiabgUcaRiaaiAdacaWGcbGaey4kaSIaaG4mai aadQhadaWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaI2aGaamOqaiabgUcaRiaaiodacaWG6bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiab gUcaRiaaiodacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgQ Iiidaa@56B5@

      [A6B+2 z 1 + z 2 ,A6B+2 z 1 + z 2 ][A6B+ z 1 +2 z 2 ,A6B+ z 1 +2 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadg eacqGHsislcaaI2aGaamOqaiabgUcaRiaaikdacaWG6bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaaki aai2facqGHQicYcaaIBbGaamyqaiabgkHiTiaaiAdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaikdacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadgeacqGHsislcaaI2aGa amOqaiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkca aIYaGaamOEamaaBaaaleaacaaIYaaabeaakiaai2facqGHQicYaaa@6211@

             [2A12B+ z 3 ,2A+12B+ z 3 ][A6B+ z 1 + z 3 ,A+6B+ z 1 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa iodaaeqaaOGaaGilaiaaikdacaWGbbGaey4kaSIaaGymaiaaikdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaIZaaabeaakiaai2facqGH QicYcaaIBbGaamyqaiabgkHiTiaaiAdacaWGcbGaey4kaSIaamOEam aaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaG4m aaqabaGccaaISaGaamyqaiabgUcaRiaaiAdacaWGcbGaey4kaSIaam OEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGa aG4maaqabaGccaaIDbGaeyOkIGmaaa@5C51@

             [A6B+ z 2 + z 3 ,A+6B+ z 2 + z 3 ][2A12B+ z 4 ,2A+12B+ z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaamyqaiabgU caRiaaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaa kiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOkIG SaaG4waiaaikdacaWGbbGaeyOeI0IaaGymaiaaikdacaWGcbGaey4k aSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaIYaGaamyqai abgUcaRiaaigdacaaIYaGaamOqaiabgUcaRiaadQhadaWgaaWcbaGa aGinaaqabaGccaaIDbGaeyOkIGmaaa@5C55@

           [A6B+ z 1 + z 4 ,A+6B+ z 1 + z 4 ][A6B+ z 2 + z 4 ,A+6B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaISaGaamyqaiabgU caRiaaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaIDbGaeyOkIG SaaG4waiaadgeacqGHsislcaaI2aGaamOqaiabgUcaRiaadQhadaWg aaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaae qaaOGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiabgUcaRiaadQha daWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaais daaeqaaOGaaGyxaiaaiYcaaaa@5E2B@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из одиннадцати собственных значений:

             σ disc ( 3 H ˜ t 1 )={4 z 1 ,3 z 1 + z 2 ,2 z 1 + z 2 , z 1 +3 z 2 ,4 z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGKbGaamyAaiaadohacaWGJbaabeaakiaaiIcadaahaaWcbeqa aiaaiodaaaGcdaaiaaqaaiaadIeaaiaawoWaamaaDaaaleaacaWG0b aabaGaaGymaaaakiaaiMcacaaI9aGaaG4EaiaaisdacaWG6bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaysW7caaIZaGaamOEamaaBaaale aacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaISaGaaGjbVlaaikdacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8UaamOE amaaBaaaleaacaaIXaaabeaakiabgUcaRiaaiodacaWG6bWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaaysW7caaI0aGaamOEamaaBaaaleaa caaIYaaabeaakiaaiYcaaaa@61CA@

                     2 z 1 + z 3 , z 1 + z 2 + z 3 ,2 z 2 + z 3 ,2 z 1 + z 4 , z 1 + z 2 + z 4 ,2 z 2 + z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaakiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGa aGjbVlaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaS baaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIZaaa beaakiaaiYcacaaMe8UaaGOmaiaadQhadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaaysW7 caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaGccaaISaGaaGjbVlaadQhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaaiYcacaaMe8UaaGOm aiaadQhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaS qaaiaaisdaaeqaaOGaaGyFaiaaiYcaaaa@6400@

где z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ собственные значения оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ . 

    I.   Если 2B< ε 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaamOqaiaaiYdacq aH1oqzdaWgaaWcbaGaaGOmaaqabaGccaaI8aGaaGimaaaa@3910@ , то существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A48B,4A+48B][2A12B+ z 3 ,2A+12B+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 0aGaaGioaiaadkeacaaISaGaaGinaiaadgeacqGHRaWkcaaI0aGaaG ioaiaadkeacaaIDbGaeyOkIGSaaG4waiaaikdacaWGbbGaeyOeI0Ia aGymaiaaikdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIZaaabe aakiaaiYcacaaIYaGaamyqaiabgUcaRiaaigdacaaIYaGaamOqaiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOkIGmaaa@60EA@

                                           [2A12B+ z 4 ,2A+12B+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa isdaaeqaaOGaaGilaiaaikdacaWGbbGaey4kaSIaaGymaiaaikdaca WGcbGaey4kaSIaamOEamaaBaaaleaacaaI0aaabeaakiaai2facaaI Saaaaa@4592@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  пуст: σ disc ( 3 H ˜ t 1 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiabgwGigdaa@3F84@ .

Proof. A. 1. Для ν=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaI9aGaaG4maaaa@34FD@  из теоремы 6 следует, что при ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 <6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI8aGaeyOeI0IaaGOnaiaadkeaaaa@3793@  (соответственно, ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и ε 1 >6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGymaaqaba GccaaI+aGaaGOnaiaadkeaaaa@36A8@  ) оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ имеет единственное собственное значение z=A+ ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadgeacqGHRaWkcq aH1oqzdaWgaaWcbaGaaGymaaqabaaaaa@37BD@ , лежащее вне области непрерывного спектра. Кроме того, непрерывный спектр является отрезком [A6B,A+6B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyqaiabgkHiTiaaiAdaca WGcbGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiaai2faaaa@3AAC@ , поэтому существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ является объединением восьми отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][3A6B+z,3A+6B+z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaI0aGaamyqaiabgUcaRiaaiIdacaWGcbGaaG yxaiabgQIiilaaiUfacaaIZaGaamyqaiabgkHiTiaaiAdacaWGcbGa ey4kaSIaamOEaiaaiYcacaaIZaGaamyqaiabgUcaRiaaiAdacaWGcb Gaey4kaSIaamOEaiaai2facqGHQicYaaa@5C1C@

                    [2A4B+2z,2A+4B+2z][A2B+3z,A+2B+3z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaaikdacaWG6bGaaGilaiaaikda caWGbbGaey4kaSIaaGinaiaadkeacqGHRaWkcaaIYaGaamOEaiaai2 facqGHQicYcaaIBbGaamyqaiabgkHiTiaaikdacaWGcbGaey4kaSIa aG4maiaadQhacaaISaGaamyqaiabgUcaRiaaikdacaWGcbGaey4kaS IaaG4maiaadQhacaaIDbGaeyOkIGmaaa@5459@

                [2A4B+ z 3 ,2A+4B+ z 3 ][A2B+z+ z 3 ,A+2B+z+ z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqa baGccaaISaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaG4maaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaIYaGaamOqaiabgUcaRiaadQhacqGHRaWkcaWG6b WaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaadgeacqGHRaWkcaaIYaGa amOqaiabgUcaRiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaae qaaOGaaGyxaiabgQIiidaa@58F5@

                 [2A4B+ z 4 ,2A+4B+ z 4 ][A2B+z+ z 4 ,A+2B+z+ z 4 ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqa baGccaaISaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGinaaqabaGccaaIDbGaeyOkIGSaaG4waiaa dgeacqGHsislcaaIYaGaamOqaiabgUcaRiaadQhacqGHRaWkcaWG6b WaaSbaaSqaaiaaisdaaeqaaOGaaGilaiaadgeacqGHRaWkcaaIYaGa amOqaiabgUcaRiaadQhacqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaae qaaOGaaGyxaiaai6caaaa@5811@

Числа 4z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaamOEaaaa@337E@ , 2z+ z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEaiabgUcaRiaadQhada WgaaWcbaGaaG4maaqabaaaaa@3646@ , 2z+ z 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOEaiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaaaaa@3647@  являются собственными значениями оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ .

A. 2. Из теоремы 6 следует, что при ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и 6B ε 1 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaI2aGaamOqaiabgsMiJk abew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacqGHsislcaaIYaGa amOqaaaa@3BB8@  (соответственно, при ε 2 =B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeyOeI0IaamOqaaaa@36D5@  и 2B< ε 1 6B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOqaiaaiYdacqaH1oqzda WgaaWcbaGaaGymaaqabaGccqGHKjYOcaaI2aGaamOqaaaa@39DE@  ) оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  не имеет собственных значений, лежащих вне области непрерывного спектра, представляющего собой отрезок [A6B,A+6B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyqaiabgkHiTiaaiAdaca WGcbGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiaai2faaaa@3AAC@ . Поэтому существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением трех отрезков:            

σ ess ( 3 H ˜ t 1 )=[4A8B,4A+8B][2A4B+ z 3 ,2A+4B+ z 3 ][2A4B+ z 4 ,2A+4B+ z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 4aGaamOqaiaaiYcacaaI0aGaamyqaiabgUcaRiaaiIdacaWGcbGaaG yxaiabgQIiilaaiUfacaaIYaGaamyqaiabgkHiTiaaisdacaWGcbGa ey4kaSIaamOEamaaBaaaleaacaaIZaaabeaakiaaiYcacaaIYaGaam yqaiabgUcaRiaaisdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaI Zaaabeaakiaai2facqGHQicYcaaIBbGaaGOmaiaadgeacqGHsislca aI0aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaI SaGaaGOmaiaadgeacqGHRaWkcaaI0aGaamOqaiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@6EBB@

где z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaiodaaeqaaa aa@33A9@  и z 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaisdaaeqaaa aa@33AA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ дополнительные собственные значения оператора H ˜ 2 s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaDa aaleaacaaIYaaabaGaam4Caaaaaaa@3531@ , а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@ пуст: σ disc ( 3 H ˜ t 1 )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamizaiaadM gacaWGZbGaam4yaaqabaGccaaIOaWaaWbaaSqabeaacaaIZaaaaOWa aacaaeaacaWGibaacaGLdmaadaqhaaWcbaGaamiDaaqaaiaaigdaaa GccaaIPaGaaGypaiabgwGigdaa@3F84@ .

H. Из теоремы 6 следует, что при ε 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI+aGaaGimaaaa@35DC@ , 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  (соответственно, ε 2 <2B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaaqaba GccaaI8aGaeyOeI0IaaGOmaiaadkeaaaa@3790@ , 2( ε 2 2 +2B ε 2 )/B< ε 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIYaGaaGikaiabew7aLn aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaikdacaWGcbGa eqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai+cacaWGcbGaaG ipaiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaaaa@4381@  и E<(1+α/3)W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGfbGaaGipaiaaiIcacaaIXaGaey 4kaSIaeqySdeMaaG4laiaaiodacaaIPaGaam4vaaaa@3A44@  ) оператор H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@  имеет ровно два собственных значения z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@ , лежащих соответственно ниже и выше области непрерывного спектра оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ , представляющего собой отрезок [A6B,A+6B] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyqaiabgkHiTiaaiAdaca WGcbGaaGilaiaadgeacqGHRaWkcaaI2aGaamOqaiaai2faaaa@3AAC@ . Поэтому существенный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  является объединением шестнадцати отрезков:

             σ ess ( 3 H ˜ t 1 )=[4A48B,4A+48B][3A18B+ z 1 ,3A+18B+ z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGLbGaam4CaiaadohaaeqaaOGaaGikamaaCaaaleqabaGaaG4m aaaakmaaGaaabaGaamisaaGaay5adaWaa0baaSqaaiaadshaaeaaca aIXaaaaOGaaGykaiaai2dacaaIBbGaaGinaiaadgeacqGHsislcaaI 0aGaaGioaiaadkeacaaISaGaaGjbVlaaisdacaWGbbGaey4kaSIaaG inaiaaiIdacaWGcbGaaGyxaiabgQIiilaaiUfacaaIZaGaamyqaiab gkHiTiaaigdacaaI4aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG ymaaqabaGccaaISaGaaGjbVlaaiodacaWGbbGaey4kaSIaaGymaiaa iIdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiaai2 facqGHQicYaaa@640E@

              [3A18B+ z 2 ,3A+18B+ z 2 ][2A12B+2 z 1 ,2A+12B+2 z 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaG4maiaadgeacq GHsislcaaIXaGaaGioaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaaysW7caaIZaGaamyqaiabgUcaRiaaigdaca aI4aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaI DbGaeyOkIGSaaG4waiaaikdacaWGbbGaeyOeI0IaaGymaiaaikdaca WGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqabaGccaaI SaGaaGjbVlaaikdacaWGbbGaey4kaSIaaGymaiaaikdacaWGcbGaey 4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOk IGmaaa@5E2D@

       [2A12B+2 z 2 ,2A+12B+2 z 2 ][2A12B+ z 1 + z 2 ,2A+12B+ z 1 + z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaaIYaGaamOEamaaBaaa leaacaaIYaaabeaakiaaiYcacaaMe8UaaGOmaiaadgeacqGHRaWkca aIXaGaaGOmaiaadkeacqGHRaWkcaaIYaGaamOEamaaBaaaleaacaaI Yaaabeaakiaai2facqGHQicYcaaIBbGaaGOmaiaadgeacqGHsislca aIXaGaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8 UaaGOmaiaadgeacqGHRaWkcaaIXaGaaGOmaiaadkeacqGHRaWkcaWG 6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOEamaaBaaaleaaca aIYaaabeaakiaai2facqGHQicYaaa@63C5@

                    [A6B+3 z 1 ,A+6B+3 z 1 ][A6B+3 z 2 ,A+6B+3 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGymaaqa baGccaaISaGaaGjbVlaadgeacqGHRaWkcaaI2aGaamOqaiabgUcaRi aaiodacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiabgQIiilaa iUfacaWGbbGaeyOeI0IaaGOnaiaadkeacqGHRaWkcaaIZaGaamOEam aaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8UaamyqaiabgUcaRiaa iAdacaWGcbGaey4kaSIaaG4maiaadQhadaWgaaWcbaGaaGOmaaqaba GccaaIDbGaeyOkIGmaaa@59CF@

      [A6B+2 z 1 + z 2 ,A6B+2 z 1 + z 2 ][A6B+ z 1 +2 z 2 ,A6B+ z 1 +2 z 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaaGOmaiaadQhadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaays W7caWGbbGaeyOeI0IaaGOnaiaadkeacqGHRaWkcaaIYaGaamOEamaa BaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaa qabaGccaaIDbGaeyOkIGSaaG4waiaadgeacqGHsislcaaI2aGaamOq aiabgUcaRiaadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYa GaamOEamaaBaaaleaacaaIYaaabeaakiaaiYcacaaMe8Uaamyqaiab gkHiTiaaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabe aakiabgUcaRiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGyx aiabgQIiidaa@652B@

             [2A12B+ z 3 ,2A+12B+ z 3 ][A6B+ z 1 + z 3 ,A+6B+ z 1 + z 3 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaaGOmaiaadgeacq GHsislcaaIXaGaaGOmaiaadkeacqGHRaWkcaWG6bWaaSbaaSqaaiaa iodaaeqaaOGaaGilaiaaysW7caaIYaGaamyqaiabgUcaRiaaigdaca aIYaGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaI DbGaeyOkIGSaaG4waiaadgeacqGHsislcaaI2aGaamOqaiabgUcaRi aadQhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqa aiaaiodaaeqaaOGaaGilaiaaysW7caWGbbGaey4kaSIaaGOnaiaadk eacqGHRaWkcaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOE amaaBaaaleaacaaIZaaabeaakiaai2facqGHQicYaaa@5F6B@

            [A6B+ z 2 + z 3 ,A+6B+ z 2 + z 3 ][2A12B+ z 4 ,2A+12B+ z 4 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGjbVlaadg eacqGHRaWkcaaI2aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGyxai abgQIiilaaiUfacaaIYaGaamyqaiabgkHiTiaaigdacaaIYaGaamOq aiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaISaGaaGjbVl aaikdacaWGbbGaey4kaSIaaGymaiaaikdacaWGcbGaey4kaSIaamOE amaaBaaaleaacaaI0aaabeaakiaai2facqGHQicYaaa@5F6F@

          [A6B+ z 1 + z 4 ,A+6B+ z 1 + z 4 ][A6B+ z 2 + z 4 ,A+6B+ z 2 + z 4 ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHQicYcaaIBbGaamyqaiabgkHiTi aaiAdacaWGcbGaey4kaSIaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaISaGaaGjbVlaadg eacqGHRaWkcaaI2aGaamOqaiabgUcaRiaadQhadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGaaGyxai abgQIiilaaiUfacaWGbbGaeyOeI0IaaGOnaiaadkeacqGHRaWkcaWG 6bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaaleaaca aI0aaabeaakiaaiYcacaaMe8UaamyqaiabgUcaRiaaiAdacaWGcbGa ey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadQhada WgaaWcbaGaaGinaaqabaGccaaIDbGaaGilaaaa@6145@

а дискретный спектр оператора 3 H ˜ t 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaiodaaaGcdaaiaa qaaiaadIeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGymaaaaaaa@3625@  состоит из одиннадцати собственных значений:

             σ disc ( 3 H ˜ t 1 )={4 z 1 ,3 z 1 + z 2 ,2 z 1 + z 2 , z 1 +3 z 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlabeo8aZnaaBaaale aacaWGKbGaamyAaiaadohacaWGJbaabeaakiaaiIcadaahaaWcbeqa aiaaiodaaaGcdaaiaaqaaiaadIeaaiaawoWaamaaDaaaleaacaWG0b aabaGaaGymaaaakiaaiMcacaaI9aGaaG4EaiaaisdacaWG6bWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaiodacaWG6bWaaSbaaSqaaiaaig daaeqaaOGaey4kaSIaamOEamaaBaaaleaacaaIYaaabeaakiaaiYca caaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhada WgaaWcbaGaaGOmaaqabaGccaaISaGaamOEamaaBaaaleaacaaIXaaa beaakiabgUcaRiaaiodacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaG ilaaaa@5831@

                   4 z 2 ,2 z 1 + z 3 , z 1 + z 2 + z 3 ,2 z 2 + z 3 ,2 z 1 + z 4 , z 1 + z 2 + z 4 ,2 z 2 + z 4 }, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaamOEamaaBaaaleaacaaIYa aabeaakiaaiYcacaaIYaGaamOEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaamOEamaaBa aaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWG6bWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiaaik dacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOEamaaBaaa leaacaaIZaaabeaakiaaiYcacaaIYaGaamOEamaaBaaaleaacaaIXa aabeaakiabgUcaRiaadQhadaWgaaWcbaGaaGinaaqabaGccaaISaGa amOEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadQhadaWgaaWcba GaaGOmaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiaaisdaaeqaaOGa aGilaiaaikdacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam OEamaaBaaaleaacaaI0aaabeaakiaai2hacaaISaaaaa@5FA4@

где z 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaa aa@33A7@  и z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaa aa@33A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ собственные значения оператора H ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadIeaaiaawoWaamaaBa aaleaacaaIXaaabeaaaaa@3437@ .

Остальные утверждения теоремы доказываются аналогично.

×

About the authors

S. М. Tashpulatov

Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan

Author for correspondence.
Email: sadullatashpulatov@yandex.ru
Uzbekistan, Tashkent

R. T. Parmanova

Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan

Email: toshpul@mail.ru
Uzbekistan, Tashkent

References

  1. Ташпулатов С. М. О спектральных свойствах трехэлектронных систем в модели Хаббарда Теор. мат. физ. 2014 179 3 387–405
  2. Anderson P. W. Localized magnetic states in metals Phys. Rev. 1961 124 41–53
  3. Gutzwiller M. C. Effect of correlation on the ferromagnetism of transition metals Phys. Rev. Lett. 1963 10 159–162
  4. Hubbard J. Electron correlations in narrow energy bands Proc. Roy. Soc. A. 1963 276 238–257
  5. Ichinose T. Spectral properties of tensor products of linear operators, 1 Trans. Am. Math. Soc. 1978 235 75–113
  6. Ichinose T. Spectral properties of tensor products of linear operators, 2. The approximate point spectrum and Kato essential spectrum Trans. Am. Math. Soc. 1978 237 223–254
  7. Ichinose T. On the spectral properties of tensor products of linear operators in Banach spaces Spectral Theory PWN-Polish Scientific Publishers Warsaw 1982 8 294–300
  8. Izyumov Yu. A., Skryabin Yu. N. Statistical Mechanics of Magnetically Ordered Systems in Russian Moscow Nauka 1988
  9. Kanamori J. Electron correlation and ferromagnetism of transition metals Prog. Theor. Phys. 1963 30 275–289
  10. Karpenko B. V., Dyakin V. V., Budrina G. L. Two electrons in the Hubbard Model Phys. Met. Metallogr. 1986 61 702–706
  11. Lieb E. Two theorems on the Hubbard Model Phys. Rev. Lett. 1989 62 1201–1204
  12. Mattis D. The few-body problems on a lattice Rev. Mod. Phys. 1986 58 370–379
  13. Reed M., Simon B. Methods of Modern Mathematical Physics. Vol. 1. Functional Analysis New York Acad. Press 1972
  14. Reed M., Simon B. Methods of Modern Mathematical Physics. Vol. 4. Operator Analysis New York Academic Press 1982
  15. Shubin S. P., Wonsowsky S. V. On the electron theory of metals Proc. Roy. Soc. A. 1934 145 159–172
  16. Tashpulatov S. M. Spectral Properties of three-electron systems in the Hubbard Model J. Phys. Conf. Ser. 2016 697 012025 1–25
  17. Tashpulatov S. M. The structure of essential spectra and discrete spectrum of four-electron systems in the Hubbard model in a singlet state Lobachevskii J. Math. 2017 38 3 530–541
  18. Tsvelick A. M., Wiegman P. B. Exact results in the theory of magnetic alloys Adv. Phys. 1983 32 4 453–713
  19. Valkov V. V., Ovchinnikov S. G., Petrakovskii O. P. The Excitation Spectra of two-magnon systems in easy-axis quasidimensional Ferromagnets Sov. Phys. Solid State. 1986 30 3044–3047

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ташпулатов С.М., Парманова Р.T.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».