Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
- Authors: Lazarev N.P.1, Kovtunenko V.A.2,3
-
Affiliations:
- Северо-Восточный Федеральный университет им. М. К. Аммосова
- Институт гидродинамики им. М. А. Лаврентьева Сибирского отделения РАН
- Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz
- Issue: Vol 227 (2023)
- Pages: 51-60
- Section: Статьи
- URL: https://journals.rcsi.science/2782-4438/article/view/261832
- DOI: https://doi.org/10.36535/0233-6723-2023-227-51-60
- ID: 261832
Cite item
Full Text
Abstract
A new nonlinear mathematical model is proposed that describes the equilibrium of a two-dimensional elastic body with two thin rigid inclusions. The problem is formulated as a minimizing problem for the energy functional over a nonconvex set of possible displacements defined in a suitable Sobolev space. The existence of a variational solution to the problem is proved. Optimality conditions and differential relations are obtained that characterize the properties of the solution in the domain and on the inclusion; these conditions are satisfied for sufficiently smooth solutions.
About the authors
N. P. Lazarev
Северо-Восточный Федеральный университет им. М. К. Аммосова
Author for correspondence.
Email: nyurgun@ngs.ru
Russian Federation, Якутск
V. A. Kovtunenko
Институт гидродинамики им. М. А. ЛаврентьеваСибирского отделения РАН; Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz
Email: kovtunenko@hydro.nsc.ru
Russian Federation, Новосибирск; Austria
References
- Байокки К., Капело А. Вариационные и квазивариационные неравенства. Приложения к задачам со свободной границей. — М.: Физматлит, 1988.
- Морозов Н. Ф. Математические вопросы теории трещин. — М.: Наука, 1984.
- Неустроева Н. В., Лазарев Н. П. Оптимальное управление углом наклона трещины в задаче о равновесии пластины Тимошенко с упругим включением// Мат. заметки СВФУ. — 2021. — 28, № 4. — С. 58–70.
- Николаева Н. А. О равновесии упругих тел с трещинами, пересекающими тонкие включения// Сиб. ж. индустр. мат. — 2019. — 22, № 4. — С. 68–80.
- Хлуднев А. М., Попова Т. С. Об иерархии тонких включений в упругих телах// Мат. заметки СВФУ. — 2016. — 23, № 1. — С. 87–107.
- Furtsev A. I. On contact between a thin obstacle and a plate containing a thin inclusion// J. Math. Sci. — 2019. — 237, № 4. — P. 530–545.
- Hinterm¨uller M., Kovtunenko V. A., Kunisch K. A. Papkovich–Neuber-based numerical approach to cracks with contact in 3D// IMA J. Appl. Math. — 2009. — 74, № 3. — P. 325–343.
- Hu K. X., Chandra A. Interactions among general systems of cracks and anticracks: An integral equation approach// J. Appl. Mech. — 1993. — 60, № 4. — P. 920–928.
- Itou H., Khludnev A. M., Rudoy E. M., Tani A. Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity// Z. Angew. Math. Mech. — 2012. — 92, № 9. — P. 716–730.
- Itou H., Kovtunenko V. A., Lazarev N. P. Asymptotic series solution for plane poroelastic model with non-penetrating crack driven by hydraulic fracture// Appl. Eng. Sci. — 2022. — 10. — P. 100089.
- Itou H., Kovtunenko V. A., Rudoy E. M. Three-field mixed formulation of elasticity model nonlinear in the mean normal stress for the problem of non-penetrating cracks in bodies// Appl. Eng. Sci. — 2021. — 7. — P. 100060.
- Jobin T. M., Ramji M., Khaderi S. N. Numerical evaluation of the interaction of rigid line inclusions using strain intensity factors// Int. J. Mech. Sci. — 2019. — 153–154. — P. 10–20.
- Khludnev A. M. Optimal control of crack growth in elastic body with inclusions// Eur. J. Mech. A. Solids. — 2010. — 29, № 3. — P. 392–399.
- Khludnev A. M. Shape control of thin rigid inclusions and cracks in elastic bodies// Arch. Appl. Mech. — 2013. — 83, № 10. — P. 1493–1509.
- Khludnev A. M. Junction problem for thin elastic and volume rigid inclusions in elastic body// Phil. Trans. Roy. Soc. A. — 2022. — 380, № 2236. — P. 20210360.
- Khludnev A., Esposito A. C., Faella L. Optimal control of parameters for elastic body with thin inclusions// J. Optim. Theory Appl. — 2020. — 184, № 1. — P. 293–314.
- Khludnev A. M., Itou H. On delaminated thin Timoshenko inclusions inside elastic bodies// Math. Meth. Appl. Sci. — 2016. — 39, № 17. — P. 4980–4993.
- Khludnev A. M., Kovtunenko V. A. Analysis of Cracks in Solids. — Southampton, Boston: WIT-Press, 2000.
- Khludnev A., Leugering G. On elastic bodies with thin rigid inclusions and cracks// Math. Meth. Appl. Sci. — 2010. — 3. — P. 1955–1967.
- Khludnev A. M., Leugering G. Delaminated thin elastic inclusion inside elastic bodies// Math. Mech. complex Syst. — 2014. — 2, № 1. — P. 1–21.
- Khludnev A. M., Popova T. S. On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body// Z. Angew. Math. Mech. — 2020. — 100, № 8. — 202000063.
- Khludnev A. M., Shcherbakov V. V. A note on crack propagation paths inside elastic bodies// Appl. Math. Lett. — 2018. — 79, № 1. — P. 80–84.
- Kovtunenko V. A., Kunisch K. Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: cohesive crack problem// J. Optim. Theory Appl. — 2022. — 194. — P. 597–635.
- Kovtunenko V. A., Leugering G. A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model// SIAM J. Control Optim. — 2016. — 54, № 3. — P. 1329–1351.
- Lazarev N. Inverse problem for cracked inhomogeneous Kirchhoff–Love plate with two hinged rigid inclusions// Bound. Value Probl. — 2021. — 2021, № 1. — P. 88.
- Lazarev N., Neustroeva N. Optimal control of rigidity parameter of elastic inclusions in composite plate with a crack// in: Mathematics and Computing (Ghosh D., Giri D., Mohapatra R., Sakurai K., Savas E., Som T., eds.). — Singapore: Springer, 2018. — 253. — P. 67–77.
- Lazarev N., Rudoy E. Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies// J. Comput. Appl. Math. — 2022. — 403. — P. 113710.
- Lazarev N. P., Semenova G. M., Romanova N. A. On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff–Love plate with a crack// J. Sib. Fed. Univ. Math. Phys. — 2021. — 14, № 1. — P. 28–41.
- Popova T. S. Numerical solution of the equilibrium problem for a two-dimensional elastic body with a thin semirigid inclusion// Math. Notes NEFU. — 2021. — 28, № 1. — P. 51–66.
- Rudoy E. M., Shcherbakov V. V. Domain decomposition method for a membrane with a delaminated thin rigid inclusion// Sib. Electron. Math. Rep. — 2016. — 13, № 1. — P. 395–410.
- Rudoy E. M., Shcherbakov V. V. First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks// Appl. Math. Optim. — 2021. — 84. — P. 2775–2802.
- Shcherbakov V. V. Shape optimization of rigid inclusions for elastic plates with cracks// Z. Angew. Math. Phys. — 2016. — 67, № 3. — P. 71.
Supplementary files
