Initial-value problem for an integro-differential equation with difference kernels and an inhomogeneity in the linear part

Cover Page

Cite item

Full Text

Abstract

A global theorem on the existence and uniqueness of a nonnegative solution of the initial-value problem for an integro-differential equation with difference kernels, power nonlinearity, and inhomogeneity in the linear part is proved by the method of weight metrics in the cone of the space of continuous functions. It is shown that the solution can be found by the method of successive approximations of the Picard type. An estimate of the rate of their convergence is obtained.

Full Text

1. Введение. Решение многих задач гидроаэродинамики, теории упругости, популяционной генетики и других приводит к нелинейным интегральным и интегро-дифференциальным уравнениям вольтерровского типа с разностными ядрами. При этом с теоретической и прикладной точек зрения особый интерес представляют неотрицательные решения таких уравнений (см., например, [1, 4]). В отличие от соответствующих линейных однородных уравнений нелинейные уравнения кроме тривиального решения могут иметь и нетривиальные решения, и в этом состоит принципиальное отличие нелинейных однородных уравнений от соответствующих линейных уравнений.

В данной работе рассматривается начальная задача вида

u α (x)= 0 x h(xt)u(t)dt+ 0 x k(xt) u (t)dt+f(x),α>1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadI haa0Gaey4kIipakiaadUgacaaIOaGaamiEaiabgkHiTiaadshacaaI PaGabmyDayaafaGaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG0b Gaey4kaSIaamOzaiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaeqyS deMaaGOpaiaaigdacaaISaaaaa@677E@  (1)

u(0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaaIWaGaaGykaiaai2dacaaIWaGaaGilaaaa@3B43@  (2)

где ядра h(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaaaa@3942@ , k(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaaaa@3945@  и неоднородность f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  удовлетворяют следующим условиям:

hC[0,),h(x)неубываетна[0,),h(0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadoeacaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaiaa ywW7caqGObGaaeikaiaabIhacaqGPaGaaGPaVlaab2dbcaqG1qGaaG PaVlaaboebcaqGXqGaae4seiaabkdbcaqGWqGaaeyneiaabkebcaaM c8UaaeypeiaabcdbcaaMc8Uaae4waiaabcdacaqGSaGaeyOhIuQaae ykaiaaiYcacaaMf8UaamiAaiaaiIcacaaIWaGaaGykaiaai2dacaaI WaGaaGilaaaa@5D7A@  (3)

kC1[0,),k'(x) неубываетна[0,),k(0)=0,k'(0)>0, (4)

f C 1 [0,),f(x) неубываетна [0,),f(0)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIBbGaaGimaiaaiYca cqGHEisPcaaIPaGaaGilaiaaywW7caqGMbGaaeikaiaabIhacaqGPa Gaaeiiaiaab2dbcaqG1qGaaGPaVlaaboebcaqGXqGaae4seiaabkdb caqGWqGaaeyneiaabkebcaaMc8UaaeypeiaabcdbcaqGGaGaae4wai aabcdacaqGSaGaeyOhIuQaaeykaiaaiYcacaaMf8UaamOzaiaaiIca caaIWaGaaGykaiaai2dacaaIWaGaaGOlaaaa@5C98@  (5)

Решения начальной задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) разыскиваются в классе

Q 0 1 ={u(x):uC[0,) C 1 (0,),u(0)=0,u(x)>0приx>0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaakiaai2dacaaI7bGaamyDaiaaiIca caWG4bGaaGykaiaaiQdacaaMe8UaamyDaiabgIGiolaadoeacaaIBb GaaGimaiaaiYcacqGHEisPcaaIPaGaeyykICSaam4qamaaCaaaleqa baGaaGymaaaakiaaiIcacaaIWaGaaGilaiabg6HiLkaaiMcacaaISa GaaGjbVlaadwhacaaIOaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYca caaMe8UaamyDaiaaiIcacaWG4bGaaGykaiaai6dacaaIWaGaaGPaVl aab+dbcaqGarGaaeioeiaaykW7caWG4bGaaGOpaiaaicdacaaI9bGa aGOlaaaa@66E9@

Наряду с задачей (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) рассматривается тесно связанное с ней интегральное уравнение типа свертки

u α (x)= 0 x H(xt)u(t)dt+f(x),α>1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaca aISaGaaGzbVlabeg7aHjaai6dacaaIXaGaaGilaaaa@5642@  (6)

где H(x)=h(x)+ k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGObGaaGikaiaadIhacaaIPaGaey4k aSIabm4AayaafaGaaGikaiaadIhacaaIPaaaaa@4178@ .

Из условий (3) и (4) вытекает, что ядро H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  уравнения (6) удовлетворяет условию

HC[0,),H(x) не убывает на [0,),H(0)>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI GiolaadoeacaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaiaa ywW7caqGibGaaeikaiaabIhacaqGPaGaaeiiaiaab2dbcaqG1qGaae iiaiaaboebcaqGXqGaae4seiaabkdbcaqGWqGaaeyneiaabkebcaqG GaGaaeypeiaabcdbcaqGGaGaae4waiaabcdacaqGSaGaeyOhIuQaae ykaiaaiYcacaaMf8UaamisaiaaiIcacaaIWaGaaGykaiaai6dacaaI WaGaaGOlaaaa@597D@  (7)

Решения уравнения (6) разыскиваются в классе

Q 0 ={u(x):uC[0,),u(0)=0,u(x)>0при x>0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaakiaai2dacaaI7bGaamyDaiaaiIcacaWG4bGa aGykaiaaiQdacaaMe8UaamyDaiabgIGiolaadoeacaaIBbGaaGimai aaiYcacqGHEisPcaaIPaGaaGilaiaaysW7caWG1bGaaGikaiaaicda caaIPaGaaGypaiaaicdacaaISaGaaGjbVlaadwhacaaIOaGaamiEai aaiMcacaaI+aGaaGimaiaaykW7caqG=qGaaeiqeiaabIdbcaqGGaGa amiEaiaai6dacaaIWaGaaGyFaiaai6caaaa@5DA7@

Уравнения вида (6) возникают в теории инфильтрации жидкости из цилиндрического резервуара в изотропную однородную пористую среду (см. [9]), при описании процесса распространения ударных волн в трубах, наполненных газом (см. [7, 11]), при решении задачи о нагревании полубесконечного тела при нелинейном теплопередаточном процессе, в моделях популяционной генетики и других (подробнее см. в [1, 6, 10]). В частности, к уравнению вида (6) при α=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaikdaaaa@3915@  сводится известное уравнение Буссинеска. Важно отметить, что в связи с указанными и другими приложениями особый интерес представляют непрерывные положительные при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  решения интегрального уравнения (6), т.е. решения принадлежащие классу Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@ .

На основе полученных точных нижней и верхней априорных оценок решения уравнения (6) мы строим весовое полное метрическое пространство P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  и, применяя аналог метода Белицкого (см., например, [5, гл. 3, п. 3.1.3], доказываем глобальную теорему о существовании и единственности решения уравнения (6) как в пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ , так и во всем классе непрерывных положительных при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  функций. Показано, что решение уравнения (6) может быть найдено в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  методом последовательных приближений пикаровского типа. Для последовательных приближений получены оценки скорости их сходимости к точному решению в терминах весовой метрики пространства P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Установлено, что любое решение интегрального уравнения (6) из конуса Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) в конусе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  и обратно, любое решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) является решением интегрального уравнения (6). Тем самым доказана глобальная теорема о существовании, единственности и способе нахождения решения задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) как в пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ , так и во всем классе непрерывных положительных при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  функций. Приведены также простые примеры, иллюстрирующие основные результаты.

2. Свойства неотрицательных решений

Лемма 1 Пусть выполнены условия (5) и (7). Если u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением интегрального уравнения (6), то функция u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывает и непрерывно дифференцируема на (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A39@ , т.е. u C 1 (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaGimaiaaiYca cqGHEisPcaaIPaaaaa@3E71@ .

Доказательство. Пусть u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением уравнения (6) и x 1 , x 2 [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa@4083@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  любые числа, x 1 < x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiYdacaWG4bWaaSbaaSqaaiaaikdaaeqa aaaa@3A8C@ . Так как H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  и f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  не убывают на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то

u α ( x 2 ) u α ( x 1 )= 0 x 1 [H( x 2 t)H( x 1 t)]u(t)dt+ x 1 x 2 H( x 2 t)u(t)dt+f( x 2 )f( x 1 )0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaeyOeI0IaamyDamaaCaaaleqabaGaeqySdegaaOGaaG ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhadaWgaaqaaiaaigdaaeqaaaqdcqGHRi I8aOGaaG4waiaadIeacaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiabgkHiTiaadshacaaIPaGaeyOeI0IaamisaiaaiIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamiDaiaaiMcacaaIDbGaamyD aiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaey4kaSYaa8qCaeqale aacaWG4bWaaSbaaeaacaaIXaaabeaaaeaacaWG4bWaaSbaaeaacaaI Yaaabeaaa0Gaey4kIipakiaadIeacaaIOaGaamiEamaaBaaaleaaca aIYaaabeaakiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGa aGykaiaadsgacaWG0bGaey4kaSIaamOzaiaaiIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiabgkHiTiaadAgacaaIOaGaamiEamaa BaaaleaacaaIXaaabeaakiaaiMcacqGHLjYScaaIWaGaaGOlaaaa@7CC3@

Значит, u( x 2 )u( x 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgwMiZkaadwha caaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcaaaa@4054@  при x 2 > x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaigdaaeqa aaaa@3A8E@ , т.е. u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывает на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ .

Докажем теперь, что решение u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  есть непрерывно дифференцируемая на (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A39@  функция. Так как по условию H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  не убывает на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то по теореме Лебега (см., например, [1, теорема 17.7]) почти всюду на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@  существует производная H (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaafa GaaGikaiaadIhacaaIPaaaaa@392E@ , которая, по теореме об интегрировании производной (см. [1, теорема 17.8]), локально суммируема. Следовательно, правая часть тождества (6) дифференцируема, причем в силу свойства коммутативности свертки (см. [1, §17])

0 x H(xt)u(t)dt+f(x) = 0 x H (xt)u(t)dt+H(0)u(x)+ f (x)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadIhacqGHsislcaWG0bGaaGykaiaadwhacaaIOaGaamiDaiaaiM cacaWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaaiaa wIcacaGLPaaacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcq GHRiI8aOGabmisayaafaGaaGikaiaadIhacqGHsislcaWG0bGaaGyk aiaadwhacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRiaadI eacaaIOaGaaGimaiaaiMcacaWG1bGaaGikaiaadIhacaaIPaGaey4k aSIabmOzayaafaGaaGikaiaadIhacaaIPaGaaGypaaaa@659E@

= 0 x H (t)u(xt)dt+H(0)u(x)+ f (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiqadIeagaqbaiaa iIcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiabgkHiTiaadshaca aIPaGaamizaiaadshacqGHRaWkcaWGibGaaGikaiaaicdacaaIPaGa amyDaiaaiIcacaWG4bGaaGykaiabgUcaRiqadAgagaqbaiaaiIcaca WG4bGaaGykaiaai6caaaa@515D@  (8)

 Поскольку функция u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывает, функция f (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiaadIhacaaIPaaaaa@394C@  непрерывна, а функция H (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaafa GaaGikaiaadIhacaaIPaaaaa@392E@  локально суммируема на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@  то, в силу леммы о непрерывности свертки (см. [3, лемма 1], [8, лемма 1]), производная (8) правой части тождества (6) непрерывна на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ . Но тогда существует и непрерывна производная левой части тождества (6), что влечет за собой существование и непрерывность первой производной u (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaafa GaaGikaiaadIhacaaIPaaaaa@395B@  при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ , так как

u (x)= α 1 u 1α (x) 0 x H (t)u(xt)dt+H(0)u(x)+ f (x) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaafa GaaGikaiaadIhacaaIPaGaaGypaiabeg7aHnaaCaaaleqabaGaeyOe I0IaaGymaaaakiaadwhadaahaaWcbeqaaiaaigdacqGHsislcqaHXo qyaaGccaaIOaGaamiEaiaaiMcadaWadaqaamaapehabeWcbaGaaGim aaqaaiaadIhaa0Gaey4kIipakiqadIeagaqbaiaaiIcacaWG0bGaaG ykaiaadwhacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaamizaiaa dshacqGHRaWkcaWGibGaaGikaiaaicdacaaIPaGaamyDaiaaiIcaca WG4bGaaGykaiabgUcaRiqadAgagaqbaiaaiIcacaWG4bGaaGykaaGa ay5waiaaw2faaiaai6caaaa@610F@

Следующая лемма устанавливает связь между задачей (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) и интегральным уравнением (6).

Лемма 2 Пусть выполнены условия (3), (4) и (5). Если функция u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (2), то u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  и u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36ED@  является решением интегрального уравнения (6). Обратно, если уравнение (6) имеет решение u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@ , то u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@  и u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36ED@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (2).

Доказательство. Пусть u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2). Тогда u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@ . Так как k(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaaIWaGaaGykaiaai2dacaaIWaaaaa@3A83@  и u(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaaIWaGaaGykaiaai2dacaaIWaaaaa@3A8D@ , интегрируя по частям тождество (1) и учитывая, что H(x)=h(x)+ k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGObGaaGikaiaadIhacaaIPaGaey4k aSIabm4AayaafaGaaGikaiaadIhacaaIPaaaaa@4178@ , имеем

u α (x)= 0 x h(xt)u(t)dt+ 0 x k(xt)du(t)+f(x)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadI haa0Gaey4kIipakiaadUgacaaIOaGaamiEaiabgkHiTiaadshacaaI PaGaamizaiaadwhacaaIOaGaamiDaiaaiMcacqGHRaWkcaWGMbGaaG ikaiaadIhacaaIPaGaaGypaaaa@5F93@

= 0 x h(xt)u(t)dt+ 0 x u(t) k (xt)dt+f(x)= 0 x H(xt)u(t)dt+f(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGa amiEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykai aayIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiaadwhacaaIOaGaamiDaiaaiMcaceWGRbGbau aacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaamizaiaadshacqGH RaWkcaWGMbGaaGikaiaadIhacaaIPaGaaGypamaapehabeWcbaGaaG imaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaamiEaiabgkHi TiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacaaISaaaaa@7056@ (9)

т.е. u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  является решением уравнения (6) в конусе Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@ .

Обратно, пусть u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением уравнения (6). Тогда, согласно лемме 1, u C 1 (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaGimaiaaiYca cqGHEisPcaaIPaaaaa@3E71@  и, следовательно, u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@ . Поэтому, используя свойство коммутативности свертки, формулу интегрирования по частям и равенства k(0)=u(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaaIWaGaaGykaiaai2dacaWG1bGaaGikaiaaicdacaaIPaGaaGyp aiaaicdaaaa@3E63@ , H(x)=h(x)+ k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGObGaaGikaiaadIhacaaIPaGaey4k aSIabm4AayaafaGaaGikaiaadIhacaaIPaaaaa@4178@ , из тождества (6) имеем

u α (x)= 0 x H(t)u(xt)dt+f(x)= 0 x h(t)u(xt)dt+ 0 x k(t) u (xt)dt+f(x)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaca aI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamiA aiaaiIcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiabgkHiTiaads hacaaIPaGaaGjcVlaadsgacaWG0bGaey4kaSYaa8qCaeqaleaacaaI WaaabaGaamiEaaqdcqGHRiI8aOGaam4AaiaaiIcacaWG0bGaaGykai qadwhagaqbaiaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcacaaMi8Ua amizaiaadshacqGHRaWkcaWGMbGaaGikaiaadIhacaaIPaGaaGypaa aa@772A@

= 0 x h(xt)u(t)dt+ 0 x k(xt) u (t)dt+f(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGa amiEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykai aayIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiaadUgacaaIOaGaamiEaiabgkHiTiaadshaca aIPaGabmyDayaafaGaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG 0bGaey4kaSIaamOzaiaaiIcacaWG4bGaaGykaiaaiYcaaaa@5CE6@

т.е. u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) в конусе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@ .

Из леммы 2 вытекает, что для доказательства существования и единственности в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  решения задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) достаточно доказать существование и единственность в классе Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  решения интегрального уравнения (6).

Доказательства основных результатов данной статьи основаны на априорных оценках снизу и сверху решений уравнения (6). При доказательстве верхней априорной оценки решения уравнения (6) нам понадобится следующее интегральное неравенство Чебышева (см., например, [1, лемма 17.1]):

0 x v(xt)w(t)dt 0 x v(t)w(t)dt,x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamODaiaaiIcacaWG4bGa eyOeI0IaamiDaiaaiMcacaaMi8Uaam4DaiaaiIcacaWG0bGaaGykai aayIW7caWGKbGaamiDaiabgsMiJoaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiaadAhacaaIOaGaamiDaiaaiMcacaaMi8Uaam 4DaiaaiIcacaWG0bGaaGjcVlaaiMcacaWGKbGaamiDaiaaiYcacaaM f8UaamiEaiaai6dacaaIWaGaaGilaaaa@5ECF@  (10)

справедливое для любых неубывающих на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@  функций v(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGykaaaa@3950@  и w(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaaaa@3951@ .

Лемма 3 Пусть выполнены условия (5) и (7). Если u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением интегрального уравнения (6), то u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  удовлетворяет неравенствам

α1 α H(0)x 1/(α1) u(x) α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaGaamisaiaa iIcacaaIWaGaaGykaiabgwSixlaadIhaaiaawUfacaGLDbaadaahaa WcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHiTiaaigdacaaI PaaaaOGaeyizImQaamyDaiaaiIcacaWG4bGaaGykaiabgsMiJoaadm aabaWaaSaaaeaacqaHXoqycqGHsislcaaIXaaabaGaeqySdegaamaa pehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOa GaamiDaiaaiMcacaaMi8UaamizaiaadshacqGHRaWkcaWGMbWaaWba aSqabeaacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeq ySdegaaOGaaGikaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWbaaSqa beaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaa aakiaai6caaaa@7455@  (11)

Доказательство. Пусть u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  решение уравнения (6). Так как пpи x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaaaaa@3871@  неравенства (11) обращаются в очевидные равенства, то будем считать далее, что x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ .

Докажем сначала первое неравенство из (11). Так как f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgwMiZkaaicdaaaa@3BC0@  и H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  не убывает на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то из тождества (6), имеем

u α (x) 0 x H(xt)u(t)dtH(0) 0 x u(t)dtx>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaeyyzIm7aa8qC aeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaaiIcaca WG4bGaeyOeI0IaamiDaiaaiMcacaWG1bGaaGikaiaadshacaaIPaGa aGjcVlaadsgacaWG0bGaeyyzImRaamisaiaaiIcacaaIWaGaaGykai abgwSixpaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaa dwhacaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshacaaMf8Uaey iaIiIaamiEaiaai6dacaaIWaGaaGilaaaa@647B@

или

u(x) H(0) 0 x u(t)dt 1/α x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgwMiZoaadmaabaGaamisaiaaiIcacaaIWaGa aGykamaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadw hacaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshaaiaawUfacaGL DbaadaahaaWcbeqaaiaaigdacaaIVaGaeqySdegaaOGaaGzbVlabgc GiIiaadIhacaaI+aGaaGimaiaaiYcaaaa@53C6@  (12)

или, что то же самое,

H(0) 0 t u(s)ds 1/α H(0)u(t)H(0)t>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGibGaaGikaiaaicdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiD aaqdcqGHRiI8aOGaamyDaiaaiIcacaWGZbGaaGykaiaayIW7caWGKb Gaam4CaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaiaa i+cacqaHXoqyaaGccaWGibGaaGikaiaaicdacaaIPaGaamyDaiaaiI cacaWG0bGaaGykaiabgwMiZkaadIeacaaIOaGaaGimaiaaiMcacaaM f8UaeyiaIiIaamiDaiaai6dacaaIWaGaaGOlaaaa@5A7F@

Интегрируя последнее неравенство в пределах от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36AD@  до x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , получим

H(0) 0 x u(t)dt (α1)/α α1 α H(0)xx>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGibGaaGikaiaaicdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiE aaqdcqGHRiI8aOGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaaGaay5waiaaw2faamaaCaaaleqabaGaaGikaiabeg7aHjab gkHiTiaaigdacaaIPaGaaG4laiabeg7aHbaakiabgwMiZoaalaaaba GaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacaWGibGaaGikaiaa icdacaaIPaGaeyyXICTaamiEaiaaywW7cqGHaiIicaWG4bGaaGOpai aaicdacaaISaaaaa@5F84@

откуда

H(0) 0 x u(t)dt 1/α α1 α H(0)x 1/(α1) ,x>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGibGaaGikaiaaicdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiE aaqdcqGHRiI8aOGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+cacqaH XoqyaaGccqGHLjYSdaWadaqaamaalaaabaGaeqySdeMaeyOeI0IaaG ymaaqaaiabeg7aHbaacaWGibGaaGikaiaaicdacaaIPaGaeyyXICTa amiEaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+cacaaIOa GaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaaISaGaaGzbVlabgcGi IiaadIhacaaI+aGaaGimaiaai6caaaa@6494@  (13)

Таким образом, первое неравенство из (11) непосредственно вытекает из неравенств (12) и (13).

Докажем теперь второе неравенство из (11). Так как, в силу условия (7) и леммы 1, функции H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  и u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывают на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то, используя неравенство Чебышева (10), из тождества (6) получаем

u α (x)= 0 x H(xt)u(t)dt+f(x) 0 x H(t)u(t)dt+f(x)x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacq GHKjYOdaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWG ibGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaayI W7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacaaM f8UaeyiaIiIaamiEaiaai6dacaaIWaGaaGilaaaa@69BE@

или

u(x) 0 x H(t)u(t)dt+f(x) 1/α x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgsMiJoaadmaabaWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaamisaiaaiIcacaWG0bGaaGykaiaadw hacaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshacqGHRaWkcaWG MbGaaGikaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaaca aIXaGaaG4laiabeg7aHbaakiaaywW7cqGHaiIicaWG4bGaaGOpaiaa icdacaaISaaaaa@5823@  (14)

или

H(t)u(t)+ f (t)H(t) 0 t H(s)u(s)ds+f(t) 1/α + f (t),t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG0bGaaGykaiaadwhacaaIOaGaamiDaiaaiMcacqGHRaWkceWG MbGbauaacaaIOaGaamiDaiaaiMcacqGHKjYOcaWGibGaaGikaiaads hacaaIPaWaamWaaeaadaWdXbqabSqaaiaaicdaaeaacaWG0baaniab gUIiYdGccaWGibGaaGikaiaadohacaaIPaGaamyDaiaaiIcacaWGZb GaaGykaiaayIW7caWGKbGaam4CaiabgUcaRiaadAgacaaIOaGaamiD aiaaiMcaaiaawUfacaGLDbaadaahaaWcbeqaaiaaigdacaaIVaGaeq ySdegaaOGaey4kaSIabmOzayaafaGaaGikaiaadshacaaIPaGaaGil aiaaywW7cqGHaiIicaWG0bGaaGOpaiaaicdacaaISaaaaa@678A@

откуда

0 t H(s)u(s)ds+f(t) 1/α H(t)u(t)+ f (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGibGaaGik aiaadohacaaIPaGaamyDaiaaiIcacaWGZbGaaGykaiaayIW7caWGKb Gaam4CaiabgUcaRiaadAgacaaIOaGaamiDaiaaiMcaaiaawUfacaGL DbaadaahaaWcbeqaaiabgkHiTiaaigdacaaIVaGaeqySdegaaOWaam WaaeaacaWGibGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG0bGa aGykaiabgUcaRiqadAgagaqbaiaaiIcacaWG0bGaaGykaaGaay5wai aaw2faaiabgsMiJcaa@5CC2@

H(t)+ f (t) 0 t H(s)u(s)ds+f(t) 1/α =H(t)+I(t),t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam isaiaaiIcacaWG0bGaaGykaiabgUcaRiqadAgagaqbaiaaiIcacaWG 0bGaaGykamaadmaabaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcq GHRiI8aOGaamisaiaaiIcacaWGZbGaaGykaiaadwhacaaIOaGaam4C aiaaiMcacaaMi8UaamizaiaadohacqGHRaWkcaWGMbGaaGikaiaads hacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaGa aG4laiabeg7aHbaakiaai2dacaWGibGaaGikaiaadshacaaIPaGaey 4kaSIaamysaiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaeyiaIiIa amiDaiaai6dacaaIWaGaaGilaaaa@65BD@  (15)

где

I(t) f (t) 0 t H(s)u(s)ds+f(t) 1/α . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiI cacaWG0bGaaGykaiabggMi6kqadAgagaqbaiaaiIcacaWG0bGaaGyk amaadmaabaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aO GaamisaiaaiIcacaWGZbGaaGykaiaadwhacaaIOaGaam4CaiaaiMca caaMi8UaamizaiaadohacqGHRaWkcaWGMbGaaGikaiaadshacaaIPa aacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaGaaG4laiab eg7aHbaakiaai6caaaa@5763@

Докажем, что

0 x I(t)dt α α1 f (α1)/α (x)для любого x>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiabgsMiJoaalaaabaGaeqySdegaba GaeqySdeMaeyOeI0IaaGymaaaacaWGMbWaaWbaaSqabeaacaaIOaGa eqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeqySdegaaOGaaGikai aadIhacaaIPaGaaGzbVlaabsdbcaqG7qGaae4teiaabccacaqG7qGa aeOteiaabgdbcaqG+qGaae4meiaab6dbcaqGGaGaaeiEaiaab6daca qGWaGaaGOlaaaa@5ED1@  (16)

В силу условия (5) возможны только три случая: либо f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcaaaa@3CED@ , либо существует такое число x 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3962@ , что f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0, x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIDbaaaa@3D9D@  и f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@ , либо f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при всех x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ .

Если f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcaaaa@3CED@ , то неравенство (16) очевидно и обращается в тождество, так как при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  выполняются соотношения H(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AA4@ , u(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AD1@  и f (x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiaadIhacaaIPaGaeyyyIORaaGimaaaa@3BCF@ .

Если же существует такое x 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3962@ , что f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0, x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIDbaaaa@3D9D@  и f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@ , то

0 x I(t)dt=0при любом x[0 ,x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiaai2dacaaIWaGaaGzbVlaab+dbca qGarGaaeioeiaabccacaqG7qGaaeOteiaabgdbcaqG+qGaaeipeiaa bccacaqG4bGaeyicI4Saae4waiaabcdacaqGSaGaaeiEamaaBaaale aacaqGWaaabeaakiaab2faaaa@5278@

и, значит, неравенство (16) выполняется при x[0, x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIDbaaaa@3D9D@ , обращаясь в тождество, а при x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@ , с учетом того, что f( x 0 )=f(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGMbGa aGikaiaaicdacaaIPaGaaGypaiaaicdaaaa@3F82@  и что функция f (α1)/α (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiab eg7aHbaakiaaiIcacaWG4bGaaGykaaaa@407B@  не убывает, имеем

0 x I(t)dt= x 0 x I(t)dt x 0 x f (t) f 1/α (t)dt= α α1 x 0 x [ f (α1)/α (t) ] dt α α1 f (α1)/α (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiaai2dadaWdXbqabSqaaiaadIhada WgaaqaaiaaicdaaeqaaaqaaiaadIhaa0Gaey4kIipakiaadMeacaaI OaGaamiDaiaaiMcacaaMi8UaamizaiaadshacqGHKjYOdaWdXbqabS qaaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhaa0Gaey4kIipa kiqadAgagaqbaiaaiIcacaWG0bGaaGykaiaadAgadaahaaWcbeqaai abgkHiTiaaigdacaaIVaGaeqySdegaaOGaaGikaiaadshacaaIPaGa aGjcVlaadsgacaWG0bGaaGypamaalaaabaGaeqySdegabaGaeqySde MaeyOeI0IaaGymaaaadaWdXbqabSqaaiaadIhadaWgaaqaaiaaicda aeqaaaqaaiaadIhaa0Gaey4kIipakiaaiUfacaWGMbWaaWbaaSqabe aacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeqySdega aOGaaGikaiaadshacaaIPaGabGyxayaafaGaaGjcVlaadsgacaWG0b GaeyizIm6aaSaaaeaacqaHXoqyaeaacqaHXoqycqGHsislcaaIXaaa aiaadAgadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaG ykaiaai+cacqaHXoqyaaGccaaIOaGaamiEaiaaiMcaaaa@8EBA@

в силу [1, теорема 17.8], т.е. неравенство (16) выполняется и при любом x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@

Если, наконец, f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при всех x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ , то аналогично получаем

0 x I(t)dt 0 x f (t) f 1/α (t)dt= α α1 0 x [ f (α1)/α (t) ] dt α α1 f (α1)/α (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiabgsMiJoaapehabeWcbaGaaGimaa qaaiaadIhaa0Gaey4kIipakiqadAgagaqbaiaaiIcacaWG0bGaaGyk aiaadAgadaahaaWcbeqaaiabgkHiTiaaigdacaaIVaGaeqySdegaaO GaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG0bGaaGypamaalaaa baGaeqySdegabaGaeqySdeMaeyOeI0IaaGymaaaadaWdXbqabSqaai aaicdaaeaacaWG4baaniabgUIiYdGccaaIBbGaamOzamaaCaaaleqa baGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiabeg7aHb aakiaaiIcacaWG0bGaaGykaiqai2fagaqbaiaayIW7caWGKbGaamiD aiabgsMiJoaalaaabaGaeqySdegabaGaeqySdeMaeyOeI0IaaGymaa aacaWGMbWaaWbaaSqabeaacaaIOaGaeqySdeMaeyOeI0IaaGymaiaa iMcacaaIVaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGOlaaaa@8087@

Итак, неравенство (16) доказано во всех трёх случаях.

Интегрируя неравенство (15) в пределах от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36AD@  до x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , с учётом неравенства (16) имеем

0 x H(s)u(s)ds+f(x) (α1)/α α1 α 0 x H(t)dt+ α α1 f (α1)/α (x) x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadohacaaIPaGaamyDaiaaiIcacaWGZbGaaGykaiaayIW7caWGKb Gaam4CaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaaiaawUfacaGL DbaadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykai aai+cacqaHXoqyaaGccqGHKjYOdaWcaaqaaiabeg7aHjabgkHiTiaa igdaaeaacqaHXoqyaaWaamWaaeaadaWdXbqabSqaaiaaicdaaeaaca WG4baaniabgUIiYdGccaWGibGaaGikaiaadshacaaIPaGaaGjcVlaa dsgacaWG0bGaey4kaSYaaSaaaeaacqaHXoqyaeaacqaHXoqycqGHsi slcaaIXaaaaiaadAgadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsisl caaIXaGaaGykaiaai+cacqaHXoqyaaGccaaIOaGaamiEaiaaiMcaai aawUfacaGLDbaacaaMf8UaeyiaIiIaamiEaiaai6dacaaIWaGaaGil aaaa@7AC6@

откуда

0 x H(t)u(t)dt+f(x) 1/α α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1 x>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaaiaawUfacaGL DbaadaahaaWcbeqaaiaaigdacaaIVaGaeqySdegaaOGaeyizIm6aam WaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaWa a8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaaiI cacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiabgUcaRiaadAgadaah aaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaiaai+cacq aHXoqyaaGccaaIOaGaamiEaiaaiMcaaiaawUfacaGLDbaadaahaaWc beqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHiTiaaigdaaaGcca aMf8UaeyiaIiIaamiEaiaai6dacaaIWaGaaGOlaaaa@7788@  (17)

Итак, второе неравенство из (11) непосредственно вытекает из неравенств (14) и (17).

Из леммы 3 следует, что решения интегрального уравнения (6) естественно разыскивать в классе

P={u(x):uC[0,),F(x)u(x)G(x)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaI7bGaamyDaiaaiIcacaWG4bGaaGykaiaaiQdacaaMe8UaamyD aiabgIGiolaadoeacaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaG ilaiaaysW7caWGgbGaaGikaiaadIhacaaIPaGaeyizImQaamyDaiaa iIcacaWG4bGaaGykaiabgsMiJkaadEeacaaIOaGaamiEaiaaiMcaca aI9bGaaGilaaaa@5721@

где

F(x) α1 α H(0)x 1/(α1) ,G(x) α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabggMi6oaadmaabaWaaSaaaeaacqaHXoqycqGH sislcaaIXaaabaGaeqySdegaaiaayIW7caWGibGaaGikaiaaicdaca aIPaGaeyyXICTaamiEaaGaay5waiaaw2faamaaCaaaleqabaGaaGym aiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaaISa GaaGzbVlaadEeacaaIOaGaamiEaiaaiMcacqGHHjIUdaWadaqaamaa laaabaGaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacqGHflY1da WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadshacaaIPaGaaGjcVlaadsgacaWG0bGaey4kaSIaamOzamaaCa aaleqabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiab eg7aHbaakiaaiIcacaWG4bGaaGykaaGaay5waiaaw2faamaaCaaale qabaGaaGymaiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMca aaGccaaISaaaaa@7D99@  (18)

а функции H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@ , f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  удовлетворяют условиям (7) и (5), соответственно.

В силу леммы 2, утверждения леммы 3 справедливы и для задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (6).

Пример 1 При α=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaikdaaaa@3915@ , h(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AC3@ , k(x)=3x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaaIZaGaamiEaaaa@3BC6@ , f(x)= x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai2dacaWG4bWaaWbaaSqabeaacaaIYaaaaaaa @3BED@  задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (6) и уравнение (6) имеют одно и то же решение u(x)=2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai2dacaaIYaGaamiEaaaa@3BCF@ , при этом априорные оценки (11) принимают вид: 1,5x2x2,5x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI1aGaamiEaiabgsMiJkaaikdacaWG4bGaeyizImQaaGOmaiaa iYcacaaI1aGaamiEaaaa@4171@ .

3. Теоремы существования и единственности

Рассмотрим нелинейный интегральный оператор свертки T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ :

(Tu)(x)= 0 x H(xt)u(t)dt+f(x) 1/α ,x>0,α>1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiaai2dadaqadaqaamaa pehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOa GaamiEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGyk aiaayIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiM caaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaeqySdega aOGaaGilaiaaywW7caWG4bGaaGOpaiaaicdacaaISaGaaGzbVlabeg 7aHjaai6dacaaIXaGaaGOlaaaa@6042@

Теорема 1 Пусть выполнены условия (5) и (7). Тогда класс P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@36C8@  инваpиантен относительно нелинейного опеpатоpа T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , т.е. T:PP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiQ dacaWGqbGaeyOKH4Qaamiuaaaa@3B27@ .

Доказательство. Пусть uP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giolaadcfaaaa@3946@ . Нужно доказать, что тогда и TuP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw hacqGHiiIZcaWGqbaaaa@3A1F@ , т.е. TuC[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw hacqGHiiIZcaWGdbGaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa @3E8B@  и F(x)(Tu)(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabgsMiJkaaiIcacaWGubGaamyDaiaaiMcacaaI OaGaamiEaiaaiMcacqGHKjYOcaWGhbGaaGikaiaadIhacaaIPaaaaa@4552@ .

1.     Так как H,u,fC[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiY cacaWG1bGaaGilaiaadAgacqGHiiIZcaWGdbGaaG4waiaaicdacaaI SaGaeyOhIuQaaGykaaaa@40D6@  и α>1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaigdaaaa@3915@ , то очевидно, что TuC[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw hacqGHiiIZcaWGdbGaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa @3E8B@ .

2.     Покажем, что (Tu)(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgwMiZkaadAeacaaI OaGaamiEaiaaiMcaaaa@4080@ . Так как u(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgwMiZkaadAeacaaIOaGaamiEaiaaiMcaaaa@3E42@ , то

[(Tu)(x)] α 0 x H(xt)u(t)dt 0 x H(xt)F(t)dtH(0) 0 x F(t)dt=[F(x )] α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaiI cacaWGubGaamyDaiaaiMcacaaIOaGaamiEaiaaiMcacaaIDbWaaWba aSqabeaacqaHXoqyaaGccqGHLjYSdaWdXbqabSqaaiaaicdaaeaaca WG4baaniabgUIiYdGccaWGibGaaGikaiaadIhacqGHsislcaWG0bGa aGykaiaadwhacaaIOaGaamiDaiaaiMcacaaMi8Uaamizaiaadshacq GHLjYSdaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWG ibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadAeacaaIOaGaam iDaiaaiMcacaaMi8UaamizaiaadshacqGHLjYScaWGibGaaGikaiaa icdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aO GaamOraiaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaai2da caaIBbGaamOraiaaiIcacaWG4bGaaGykaiaai2fadaahaaWcbeqaai abeg7aHbaakiaaiYcaaaa@7A67@

т.е. (Tu)(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgwMiZkaadAeacaaI OaGaamiEaiaaiMcaaaa@4080@ .

3.     Покажем, наконец, что (Tu)(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgsMiJkaadEeacaaI OaGaamiEaiaaiMcaaaa@4070@ . Так как u(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgsMiJkaadEeacaaIOaGaamiEaiaaiMcaaaa@3E32@  и функции H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@ , G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3921@  не убывают на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то в силу неpавенства Чебышева (10) получаем

[(Tu)(x)] α = 0 x H(xt)u(t)dt+f(x) 0 x H(xt)G(t)dt+f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaiI cacaWGubGaamyDaiaaiMcacaaIOaGaamiEaiaaiMcacaaIDbWaaWba aSqabeaacqaHXoqyaaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGaam iEaaqdcqGHRiI8aOGaamisaiaaiIcacaWG4bGaeyOeI0IaamiDaiaa iMcacaaMi8UaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaam iDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacqGHKjYOdaWdXbqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGikaiaadI hacqGHsislcaWG0bGaaGykaiaayIW7caWGhbGaaGikaiaadshacaaI PaGaaGjcVlaadsgacaWG0bGaey4kaSIaamOzaiaaiIcacaWG4bGaaG ykaiabgsMiJcaa@6EC8@

0 x H(t)G(t)dt+ 0 x f (t)dt= 0 x G(t) H(t)+ f (t) G(t) dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aa8 qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaaiIca caWG0bGaaGykaiaayIW7caWGhbGaaGikaiaadshacaaIPaGaaGjcVl aadsgacaWG0bGaey4kaSYaa8qCaeqaleaacaaIWaaabaGaamiEaaqd cqGHRiI8aOGabmOzayaafaGaaGikaiaadshacaaIPaGaamizaiaads hacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGa am4raiaaiIcacaWG0bGaaGykamaadmaabaGaamisaiaaiIcacaWG0b GaaGykaiabgUcaRmaalaaabaGabmOzayaafaGaaGikaiaadshacaaI PaaabaGaam4raiaaiIcacaWG0bGaaGykaaaaaiaawUfacaGLDbaaca WGKbGaamiDaiabgsMiJcaa@69B1@

α1 α 1/(α1) 0 x 0 t H(s)ds+ α α1 f (α1)/α (t) 1/(α1) H(t)+ f 1/α (t) f (t) dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aae WaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXo qycqGHsislcaaIXaGaaGykaaaakmaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakmaadmaabaWaa8qCaeqaleaacaaIWaaabaGaam iDaaqdcqGHRiI8aOGaamisaiaaiIcacaWGZbGaaGykaiaayIW7caWG KbGaam4CaiabgUcaRmaalaaabaGaeqySdegabaGaeqySdeMaeyOeI0 IaaGymaaaacaWGMbWaaWbaaSqabeaacaaIOaGaeqySdeMaeyOeI0Ia aGymaiaaiMcacaaIVaGaeqySdegaaOGaaGikaiaadshacaaIPaaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqy cqGHsislcaaIXaGaaGykaaaakmaadmaabaGaamisaiaaiIcacaWG0b GaaGykaiabgUcaRiaadAgadaahaaWcbeqaaiabgkHiTiaaigdacaaI VaGaeqySdegaaOGaaGikaiaadshacaaIPaGabmOzayaafaGaaGikai aadshacaaIPaaacaGLBbGaayzxaaGaamizaiaadshacaaI9aaaaa@7F8E@

= α1 α 1/(α1) α1 α 0 x H(t)dt+ α α1 f (α1)/α (x) α/(α1) = G(x) α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaWaaSaaaeaacqaHXoqycqGHsislcaaIXaaabaGaeqySdegaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqySde MaeyOeI0IaaGymaiaaiMcaaaGcdaWcaaqaaiabeg7aHjabgkHiTiaa igdaaeaacqaHXoqyaaWaamWaaeaadaWdXbqabSqaaiaaicdaaeaaca WG4baaniabgUIiYdGccaWGibGaaGikaiaadshacaaIPaGaaGjcVlaa dsgacaWG0bGaey4kaSYaaSaaaeaacqaHXoqyaeaacqaHXoqycqGHsi slcaaIXaaaaiaadAgadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsisl caaIXaGaaGykaiaai+cacqaHXoqyaaGccaaIOaGaamiEaiaaiMcaai aawUfacaGLDbaadaahaaWcbeqaaiabeg7aHjaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccaaI9aWaamWaaeaacaWGhbGaaG ikaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaacqaHXoqy aaGccaaISaaaaa@754F@

т.е. (Tu)(x) G ( x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgsMiJkaadEeadaWg aaWcbaGaaGikaaqabaGccaWG4bGaaGykaaaa@40A6@ , что и тpебовалось доказать.

Исследование интегрального уравнения (6) будет основано на методе весовых метрик, и для его применения нам нужно будет построить полное метрическое пространство. Введем в связи с этим следующий класс функций:

P b ={u(x):uC[0,b],F(x)u(x)G(x)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaakiaai2dacaaI7bGaamyDaiaaiIcacaWG4bGa aGykaiaaiQdacaaMe8UaamyDaiabgIGiolaadoeacaaIBbGaaGimai aaiYcacaWGIbGaaGyxaiaaiYcacaaMe8UaamOraiaaiIcacaWG4bGa aGykaiabgsMiJkaadwhacaaIOaGaamiEaiaaiMcacqGHKjYOcaWGhb GaaGikaiaadIhacaaIPaGaaGyFaiaaiYcaaaa@57E8@

где функции F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaaaa@3920@  и G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3921@  определены в (18), а b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  произвольное число.

В силу вольтерровости оператора T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  из теоремы 1 непосредственно вытекает следующее утверждение.

Следствие 1 Если выполнены условия (5) и (7), то класс P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  инвариантен относительно интегрального оператора T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ .

Далее будем предполагать, что неоднородность f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  наряду с условием (5) удовлетворяет дополнительному условию:

C= sup 0<xb f (α1)/α (x) x <. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dadaGfqbqabSqaaiaaicdacaaI8aGaamiEaiabgsMiJkaadkgaaeqa keaaciGGZbGaaiyDaiaacchaaaWaaSaaaeaacaWGMbWaaWbaaSqabe aacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeqySdega aOGaaGikaiaadIhacaaIPaaabaGaamiEaaaacaaI8aGaeyOhIuQaaG Olaaaa@4E89@  (19)

Заметим, что функция f(x)= x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai2dacaWG4bWaaWbaaSqabeaacaaIYaaaaaaa @3BED@ , рассмотренная в примере 1, в котором α=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaikdaaaa@3915@ , удовлетворяет условию (19) и при этом C=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacaaIXaaaaa@383D@ .

Введем во множестве функций P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  расстояние по формуле

ρ b ( u 1 , u 2 )= sup 0<xb | u 1 (x) u 2 (x)| x 1/(α1) e βx ,β>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9a WaaybuaeqaleaacaaIWaGaaGipaiaadIhacqGHKjYOcaWGIbaabeGc baGaci4CaiaacwhacaGGWbaaamaalaaabaGaaGiFaiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiMcacqGHsislcaWG1bWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaaGiFaaqaai aadIhadaahaaWcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHi TiaaigdacaaIPaaaaOGaamyzamaaCaaaleqabaGaeqOSdiMaamiEaa aaaaGccaaISaGaaGzbVlabek7aIjaai6dacaaIWaGaaGOlaaaa@64E2@  (20)

Поскольку e βx 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeqOSdiMaamiEaaaakiabgwMiZkaaigdaaaa@3C33@  и | u 1 (x) u 2 (x)|G(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiMcacqGHsisl caWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaaG iFaiabgsMiJkaadEeacaaIOaGaamiEaiaaiMcacqGHsislcaWGgbGa aGikaiaadIhacaaIPaaaaa@4A84@  для любых u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@ , то с учетом неравенства

k(x)= 0 x H(t)dtH(x)xx(0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWG4baa niabgUIiYdGccaWGibGaaGikaiaadshacaaIPaGaamizaiaadshacq GHKjYOcaWGibGaaGikaiaadIhacaaIPaGaeyyXICTaamiEaiaaywW7 cqGHaiIicaWG4bGaeyicI4SaaGikaiaaicdacaaISaGaamOyaiaai2 faaaa@543E@

получим:

| u 1 (x) u 2 (x)| x 1/(α1) e βx G(x)F(x) x 1/(α1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEai aaiMcacaaI8baabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaI OaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabe aacqaHYoGycaWG4baaaaaakiabgsMiJoaalaaabaGaam4raiaaiIca caWG4bGaaGykaiabgkHiTiaadAeacaaIOaGaamiEaiaaiMcaaeaaca WG4bWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsisl caaIXaGaaGykaaaaaaGccqGHKjYOaaa@5EC0@

α1 α H(b)+ f (α1)/α (x) x 1/(α1) α1 α H(0) 1/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aam WaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaGa eyyXICTaamisaiaaiIcacaWGIbGaaGykaiabgUcaRmaalaaabaGaam OzamaaCaaaleqabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGa aG4laiabeg7aHbaakiaaiIcacaWG4bGaaGykaaqaaiaadIhaaaaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqy cqGHsislcaaIXaGaaGykaaaakiabgkHiTmaadmaabaWaaSaaaeaacq aHXoqycqGHsislcaaIXaaabaGaeqySdegaaiabgwSixlaadIeacaaI OaGaaGimaiaaiMcaaiaawUfacaGLDbaadaahaaWcbeqaaiaaigdaca aIVaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaaaaOGaaGOlaaaa @6ADB@

Следовательно, в силу условия (19), для всех u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@  

ρ b ( u 1 , u 2 ) α1 α H(b)+C 1/(α1) α1 α H(0) 1/(α1) <, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacqGHKj YOdaWadaqaamaalaaabaGaeqySdeMaeyOeI0IaaGymaaqaaiabeg7a HbaacqGHflY1caWGibGaaGikaiaadkgacaaIPaGaey4kaSIaam4qaa Gaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccqGHsisldaWadaqaamaalaaaba GaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacqGHflY1caWGibGa aGikaiaaicdacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIXa GaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaaaakiaaiYda cqGHEisPcaaISaaaaa@6B12@

т.е. pасстояние ρ b ( u 1 , u 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcaaaa@3EC2@  опpеделено коppектно.

Лемма 4 Множество P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  с метpикой ρ b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaaaa@38C6@  обpазует полное метрическое пространство.

Доказательство. Выполнимость аксиом метpики очевидна. Докажем полноту метpического пpостpанства P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Пусть { u n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A22@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  произвольная фундаментальная последовательность из P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Тогда для любого ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@391C@  найдется такое N=N(ε)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaWGobGaaGikaiabew7aLjaaiMcacaaI+aGaaGimaaaa@3CEE@ , что при всех m,nN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaaiY cacaWGUbGaeyyzImRaamOtaaaa@3B27@  выполняется неpавенство ρ b ( u m , u n )<ε, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaamyBaaqa baGccaaISaGaamyDamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI8a GaeqyTduMaaGilaaaa@4253@  т.е.

| u m (x) u n (x)| x 1/(α1) e βx <εm,nN,qx(0,b]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDamaaBaaaleaacaWGTbaabeaakiaaiIcacaWG4bGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcacaaI8baabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaI OaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabe aacqaHYoGycaWG4baaaaaakiaaiYdacqaH1oqzcaaMf8UaeyiaIiIa amyBaiaaiYcacaWGUbGaeyyzImRaamOtaiaaiYcacaWGXbGaaGzbVl abgcGiIiaadIhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGIbGaaGyx aiaai6caaaa@624A@  (21)

Так как x 1/(α1) e βx b 1/(α1) e βb M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGymaiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaa iMcaaaGccqGHflY1caWGLbWaaWbaaSqabeaacqaHYoGycaWG4baaaO GaeyizImQaamOyamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccqGHflY1caWGLbWaaWbaaSqabe aacqaHYoGycaWGIbaaaOGaeyyyIORaamytaaaa@54D1@ , то

| u m (x) u n (x)| x 1/(α1) e βx 1 M | u m (x) u n (x)|. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDamaaBaaaleaacaWGTbaabeaakiaaiIcacaWG4bGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcacaaI8baabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaI OaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabe aacqaHYoGycaWG4baaaaaakiabgwMiZoaalaaabaGaaGymaaqaaiaa d2eaaaGaeyyXICTaaGiFaiaadwhadaWgaaWcbaGaamyBaaqabaGcca aIOaGaamiEaiaaiMcacqGHsislcaWG1bWaaSbaaSqaaiaad6gaaeqa aOGaaGikaiaadIhacaaIPaGaaGiFaiaai6caaaa@5F7F@

Поэтому из (21), имеем

| u m (x) u n (x)|Mε,m,nN,x[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hadaWgaaWcbaGaamyBaaqabaGccaaIOaGaamiEaiaaiMcacqGHsisl caWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaG iFaiabgsMiJkaad2eacqGHflY1cqaH1oqzcaaISaGaaGzbVlabgcGi Iiaad2gacaaISaGaamOBaiabgwMiZkaad6eacaaISaGaaGzbVlabgc GiIiaadIhacqGHiiIZcaaIBbGaaGimaiaaiYcacaWGIbGaaGyxaaaa @5A6D@

(здесь учли, что u m (0)= u n (0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGTbaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaWG1bWa aSbaaSqaaiaad6gaaeqaaOGaaGikaiaaicdacaaIPaGaaGypaiaaic daaaa@40BE@ , поскольку F(0)=G(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaaIWaGaaGykaiaai2dacaWGhbGaaGikaiaaicdacaaIPaGaaGyp aiaaicdaaaa@3E10@  ), т.е. { u n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A22@  является фундаментальной последовательностью в C[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiU facaaIWaGaaGilaiaadkgacaaIDbaaaa@3ADE@ . В силу полноты метрического пространства C[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiU facaaIWaGaaGilaiaadkgacaaIDbaaaa@3ADE@  существует такая функция uC[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadoeacaaIBbGaaGimaiaaiYcacaWGIbGaaGyxaaaa@3D5C@ , что

lim n u n (x)=u(x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGUbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaca aI9aGaamyDaiaaiIcacaWG4bGaaGykaiaai6caaaa@46F8@  (22)

Покажем, что u P b . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadcfadaWgaaWcbaGaamOyaaqabaGccaaIUaaaaa@3B1B@  Так как { u n } P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9bGaeyicI4SaamiuamaaBaaa leaacaWGIbaabeaaaaa@3D8E@ , то для любых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@  и x[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadkgacaaIDbaaaa@3C97@  имеем

F(x) α1 α H(0)x 1/(α1) u n (x) α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1) G(x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabggMi6oaadmaabaWaaSaaaeaacqaHXoqycqGH sislcaaIXaaabaGaeqySdegaaiaadIeacaaIOaGaaGimaiaaiMcaca aMi8UaamiEaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+ca caaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccqGHKjYOcaWG1b WaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaeyizIm6a amWaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaa Waa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaa iIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiabgUcaRiaadAgada ahaaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaiaai+ca cqaHXoqyaaGccaaIOaGaamiEaiaaiMcaaiaawUfacaGLDbaadaahaa WcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHiTiaaigdacaaI PaaaaOGaeyyyIORaam4raiaaiIcacaWG4bGaaGykaiaai6caaaa@7EB2@

Переходя в последнем неравенстве к пределу при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk ziUkabg6HiLcaa@3A44@ , с учетом равенства (22) получаем F(x)u(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabgsMiJkaadwhacaaIOaGaamiEaiaaiMcacqGH KjYOcaWGhbGaaGikaiaadIhacaaIPaaaaa@4314@ , т.е. u P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadcfadaWgaaWcbaGaamOyaaqabaaaaa@3A59@ .

Осталось доказать сходимость последовательности { u n (x)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaI9baa aa@3C84@  к u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  по метрике ρ b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaaaa@38C6@ . Переходя в неравенстве (21) к пределу при m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A43@ , имеем

|u(x) u n (x)| x 1/(α1) e βx <εnN,x(0,b], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDaiaaiIcacaWG4bGaaGykaiabgkHiTiaadwhadaWgaaWc baGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaI8baabaGaamiEam aaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGym aiaaiMcaaaGccaWGLbWaaWbaaSqabeaacqaHYoGycaWG4baaaaaaki aaiYdacqaH1oqzcaaMf8UaeyiaIiIaamOBaiabgwMiZkaad6eacaaI SaGaaGzbVlaadIhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGIbGaaG yxaiaaiYcaaaa@5DB2@

т.е. ρ b ( u n ,u)<ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaamOBaaqa baGccaaISaGaamyDaiaaiMcacaaI8aGaeqyTdugaaa@4075@  для любого nN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaad6eaaaa@397F@ , что и требовалось.

Итак, выше мы доказали, что если во множестве функций P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  ввести метpику (20), то класс P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  пpевpащается полное метрическое пространство. Кpоме того, мы показали (см. следствие 1), что нелинейный опеpатоp свеpтки T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  действует из P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ .

Выберем теперь достаточно малое число c(0,b) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgI GiolaaiIcacaaIWaGaaGilaiaadkgacaaIPaaaaa@3C1B@  такое, что выполняется неравенство

H(c)<αH(0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWGJbGaaGykaiaaiYdacqaHXoqycqGHflY1caWGibGaaGikaiaa icdacaaIPaGaaGOlaaaa@4160@  (23)

Очевидно, что такое число c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  всегда существует, так как H(0)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaaIWaGaaGykaiaai6dacaaIWaaaaa@3A61@ , H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  непрерывна и α>1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaigdaaaa@3915@ . Положим

β= 1 H(0) sup cxb H(x)H(0) x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG ypamaalaaabaGaaGymaaqaaiaadIeacaaIOaGaaGimaiaaiMcaaaWa aybuaeqaleaacaWGJbGaeyizImQaamiEaiabgsMiJkaadkgaaeqake aaciGGZbGaaiyDaiaacchaaaWaaSaaaeaacaWGibGaaGikaiaadIha caaIPaGaeyOeI0IaamisaiaaiIcacaaIWaGaaGykaaqaaiaadIhaaa GaaGOlaaaa@4E7F@  (24)

Справедлива следующая лемма (ср. [8]).

Лемма 5 Пусть ядро H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  удовлетворяет условию (7). Тогда для любого x[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadkgacaaIDbaaaa@3C97@  справедливо неравенство

H(x) e βx H(c), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiabgwSixlaadwgadaahaaWcbeqaaiabgkHiTiab ek7aIjaadIhaaaGccqGHKjYOcaWGibGaaGikaiaadogacaaIPaGaaG ilaaaa@459D@  (25)

где числа c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  и β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3794@  определяются из условия (23) и формулы (24) соответственно.

Доказательство. Рассмотрим отдельно два случая.

1. Пусть 0xc MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadIhacqGHKjYOcaWGJbaaaa@3BFC@ . Учитывая, что H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  не убывает и β>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG Opaiaaicdaaaa@3916@ , имеем H(x) e βx H(x)H(c) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiabek7aIjaa dIhaaaGccqGHKjYOcaWGibGaaGikaiaadIhacaaIPaGaeyizImQaam isaiaaiIcacaWGJbGaaGykaaaa@4781@ , что и требовалось.

2. В случае cxb MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgs MiJkaadIhacqGHKjYOcaWGIbaaaa@3C29@  имеем

H(x)=H(0)+H(0)x 1 H(0) H(x)H(0) x H(0)[1+xβ]H(0) e βx . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGibGaaGikaiaaicdacaaIPaGaey4k aSIaamisaiaaiIcacaaIWaGaaGykaiabgwSixlaadIhacqGHflY1da WcaaqaaiaaigdaaeaacaWGibGaaGikaiaaicdacaaIPaaaaiabgwSi xpaalaaabaGaamisaiaaiIcacaWG4bGaaGykaiabgkHiTiaadIeaca aIOaGaaGimaiaaiMcaaeaacaWG4baaaiabgsMiJkaadIeacaaIOaGa aGimaiaaiMcacqGHflY1caaIBbGaaGymaiabgUcaRiaadIhacqGHfl Y1cqaHYoGycaaIDbGaeyizImQaamisaiaaiIcacaaIWaGaaGykaiab gwSixlaadwgadaahaaWcbeqaaiabek7aIjaayIW7caWG4baaaOGaaG Olaaaa@7079@

Следовательно, H(x)H(0) e βx H(c) e βx , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiabgsMiJkaadIeacaaIOaGaaGimaiaaiMcacaWG LbWaaWbaaSqabeaacqaHYoGycaWG4baaaOGaeyizImQaamisaiaaiI cacaWGJbGaaGykaiaadwgadaahaaWcbeqaaiabek7aIjaadIhaaaGc caaISaaaaa@4AC6@  откуда получаем, что H(x) e βx H(c) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiabek7aIjaa dIhaaaGccqGHKjYOcaWGibGaaGikaiaadogacaaIPaaaaa@429D@  и для любого x[c,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaWGJbGaaGilaiaadkgacaaIDbaaaa@3CC5@ .

Теорема 2 Пусть выполнены условия (5), (7) и (19). Тогда оператор T: P b P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiQ dacaWGqbWaaSbaaSqaaiaadkgaaeqaaOGaeyOKH4QaamiuamaaBaaa leaacaWGIbaabeaaaaa@3D57@  является сжимающим, при этом неравенство

ρ b (T u 2 ,T u 1 ) H(c) αH(0) ρ b ( u 2 , u 1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadsfacaWG1bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaadsfacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGykaiabgsMiJoaalaaabaGaamisaiaaiIcacaWGJbGaaGykaaqa aiabeg7aHjabgwSixlaadIeacaaIOaGaaGimaiaaiMcaaaGaeqyWdi 3aaSbaaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGOm aaqabaGccaaISaGaamyDamaaBaaaleaacaaIXaaabeaakiaaiMcaca aISaaaaa@55AD@  (26)

выполняется для всех u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@ , где число c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  определяется из условия (23).

Доказательство. Тот факт, что оператор T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  действует из P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ , вытекает из следствия 1. Докажем неравенство (26), т.е. факт, что оператор T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , в силу неравенства (23), является сжимающим. Пусть u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@  и x(0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiaadkgacaaIDbaaaa@3C64@ . По теореме Лагранжа, для любых z 1 , z 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaaikdaaeqa aOGaaGOpaiaaicdaaaa@3C0C@  имеем

z 1 1/α z 2 1/α = 1 α Θ 1/α1 ( z 1 z 2 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa aaleaacaaIXaaabaGaaGymaiaai+cacqaHXoqyaaGccqGHsislcaWG 6bWaa0baaSqaaiaaikdaaeaacaaIXaGaaG4laiabeg7aHbaakiaai2 dadaWcaaqaaiaaigdaaeaacqaHXoqyaaGaeuiMde1aaWbaaSqabeaa caaIXaGaaG4laiabeg7aHjabgkHiTiaaigdaaaGccaaIOaGaamOEam aaBaaaleaacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOm aaqabaGccaaIPaGaaGilaaaa@516C@

где Θ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdefaaa@376A@  лежит между z 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaaaaa@37D9@  и z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIYaaabeaaaaa@37DA@ . Поэтому, если z 1 z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaadQhadaWgaaWcbaGaaGimaaqa baaaaa@3B8E@  и z 2 z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIYaaabeaakiabgwMiZkaadQhadaWgaaWcbaGaaGimaaqa baaaaa@3B8F@ , где z 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIWaaabeaakiabgwMiZkaaicdaaaa@3A62@ , то Θ> z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG OpaiaadQhadaWgaaWcbaGaaGimaaqabaaaaa@3A17@  и, значит,

z 1 1/α z 2 1/α 1 α | z 1 z 2 | { z 0 } (α1)/α . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca WG6bWaa0baaSqaaiaaigdaaeaacaaIXaGaaG4laiabeg7aHbaakiab gkHiTiaadQhadaqhaaWcbaGaaGOmaaqaaiaaigdacaaIVaGaeqySde gaaaGccaGLhWUaayjcSdGaeyizIm6aaSaaaeaacaaIXaaabaGaeqyS degaaiabgwSixpaalaaabaGaaGiFaiaadQhadaWgaaWcbaGaaGymaa qabaGccqGHsislcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGiFaaqa aiaaiUhacaWG6bWaaSbaaSqaaiaaicdaaeqaaOGaaGyFamaaCaaale qabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiabeg7a HbaaaaGccaaIUaaaaa@5D4C@

Используя это неравенство и неравенства

(T u 1 )(x)F(x),(T u 2 )(x)F(x)x(0,b], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiIcacaWG4bGa aGykaiabgwMiZkaadAeacaaIOaGaamiEaiaaiMcacaaISaGaaGzbVl aaiIcacaWGubGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI OaGaamiEaiaaiMcacqGHLjYScaWGgbGaaGikaiaadIhacaaIPaGaaG zbVlabgcGiIiaadIhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGIbGa aGyxaiaaiYcaaaa@58B9@

имеем

(T u 2 )(x)(T u 1 )(x) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aIOaGaamivaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGik aiaadIhacaaIPaGaeyOeI0IaaGikaiaadsfacaWG1bWaaSbaaSqaai aaigdaaeqaaOGaaGykaiaaiIcacaWG4bGaaGykaaGaay5bSlaawIa7 aiaai2daaaa@47E0@

= 0 x H(xt) u 2 (t)dt+f(x) 1/α 0 x H(xt) u 1 (t)dt+f(x) 1/α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaem aabaWaaeWaaeaadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIi YdGccaWGibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadwhada WgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaMi8Uaamiz aiaadshacqGHRaWkcaWGMbGaaGikaiaadIhacaaIPaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIXaGaaG4laiabeg7aHbaakiabgkHiTmaa bmaabaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaam isaiaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcacaWG1bWaaSbaaSqa aiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG0b Gaey4kaSIaamOzaiaaiIcacaWG4bGaaGykaaGaayjkaiaawMcaamaa CaaaleqabaGaaGymaiaai+cacqaHXoqyaaaakiaawEa7caGLiWoacq GHKjYOaaa@707B@

1 α 1 [ F α (x)] (α1)/α 0 x H(xt) u 2 (t)dt 0 x H(xt) u 1 (t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaaIXaaabaGaeqySdegaaiabgwSixpaalaaabaGaaGymaaqa amaacmaabaGaaG4waiaadAeadaahaaWcbeqaaiabeg7aHbaakiaaiI cacaWG4bGaaGykaiaai2faaiaawUhacaGL9baadaahaaWcbeqaaiaa iIcacqaHXoqycqGHsislcaaIXaGaaGykaiaai+cacqaHXoqyaaaaaO WaaqWaaeaadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGc caWGibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadwhadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaMi8Uaamizaiaa dshacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYd GccaWGibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaMi8Uaamizai aadshaaiaawEa7caGLiWoacqGHKjYOaaa@751F@

1 α 1 α1 α H(0)x 0 x H(xt)| u 2 (t) u 1 (t)|dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaaIXaaabaGaeqySdegaaiabgwSixpaalaaabaGaaGymaaqa amaalaaabaGaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacqGHfl Y1caWGibGaaGikaiaaicdacaaIPaGaeyyXICTaamiEaaaadaWdXbqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGikaiaadI hacqGHsislcaWG0bGaaGykaiabgwSixlaaiYhacaWG1bWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0IaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYhacaaMi8Ua amizaiaadshacaaIUaaaaa@65DB@

Итак,

|(T u 2 )(x)(T u 1 )(x)| 1 (α1)H(0)x 0 x H(xt)| u 2 (t) u 1 (t)|dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiI cacaWGubGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIOaGa amiEaiaaiMcacqGHsislcaaIOaGaamivaiaadwhadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGikaiaadIhacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykai aadIeacaaIOaGaaGimaiaaiMcacqGHflY1caWG4baaamaapehabeWc baGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaamiEai abgkHiTiaadshacaaIPaGaeyyXICTaaGiFaiaadwhadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiDaiaaiMcacqGHsislcaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGiFaiaayIW7caWG KbGaamiDaiaai6caaaa@6EA3@  (27)

Так как

| u 2 (x) u 1 (x)|= x 1/(α1) e βx | u 2 (x) u 1 (x)| x 1/(α1) e βx x 1/(α1) e βx ρ b ( u 2 , u 1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacqGHsisl caWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGaaG iFaiaai2dacaWG4bWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaH XoqycqGHsislcaaIXaGaaGykaaaakiaadwgadaahaaWcbeqaaiabek 7aIjaadIhaaaGcdaWcaaqaaiaaiYhacaWG1bWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadIhacaaIPaGaeyOeI0IaamyDamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG4bGaaGykaiaaiYhaaeaacaWG4bWaaWba aSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGaaG ykaaaakiaadwgadaahaaWcbeqaaiabek7aIjaadIhaaaaaaOGaeyiz ImQaamiEamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqySdeMaey OeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabeaacqaHYoGycaWG 4baaaOGaeyyXICTaeqyWdi3aaSbaaSqaaiaadkgaaeqaaOGaaGikai aadwhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyDamaaBaaaleaa caaIXaaabeaakiaaiMcacaaISaaaaa@7CAF@

то из (27), с учетом леммы 2, получим

(T u 2 )(x)(T u 1 )(x) 1 (α1)H(0)x ρ b ( u 2 , u 1 ) 0 x H(xt) t 1/(α1) e βt dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aIOaGaamivaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGik aiaadIhacaaIPaGaeyOeI0IaaGikaiaadsfacaWG1bWaaSbaaSqaai aaigdaaeqaaOGaaGykaiaaiIcacaWG4bGaaGykaaGaay5bSlaawIa7 aiabgsMiJoaalaaabaGaaGymaaqaaiaaiIcacqaHXoqycqGHsislca aIXaGaaGykaiaadIeacaaIOaGaaGimaiaaiMcacqGHflY1caWG4baa aiabgwSixlabeg8aYnaaBaaaleaacaWGIbaabeaakiaaiIcacaWG1b WaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadwhadaWgaaWcbaGaaGym aaqabaGccaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRi I8aOGaamisaiaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcacaWG0bWa aWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXa GaaGykaaaakiaadwgadaahaaWcbeqaaiabek7aIjaadshaaaGccaaM i8UaamizaiaadshacaaI9aaaaa@7816@

= 1 (α1)H(0)x ρ b ( u 2 , u 1 ) e βx 0 x H(xt) e β(xt) t 1/(α1) dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaiaa yIW7caWGibGaaGikaiaaicdacaaIPaGaeyyXICTaamiEaaaacqGHfl Y1cqaHbpGCdaWgaaWcbaGaamOyaaqabaGccaaIOaGaamyDamaaBaaa leaacaaIYaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGykaiaadwgadaahaaWcbeqaaiabek7aIjaadIhaaaGcdaWdXbqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGikaiaadI hacqGHsislcaWG0bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiab ek7aIjaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcaaaGccaWG0bWaaW baaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGa aGykaaaakiaayIW7caWGKbGaamiDaiabgsMiJcaa@707C@

H(c) (α1)H(0)x e βx ρ b ( u 2 , u 1 ) α1 α x α/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaWGibGaaGikaiaadogacaaIPaaabaGaaGikaiabeg7aHjab gkHiTiaaigdacaaIPaGaeyyXICTaamisaiaaiIcacaaIWaGaaGykai abgwSixlaadIhaaaGaeyyXICTaamyzamaaCaaaleqabaGaeqOSdiMa amiEaaaakiabgwSixlabeg8aYnaaBaaaleaacaWGIbaabeaakiaaiI cacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadwhadaWgaaWc baGaaGymaaqabaGccaaIPaGaeyyXIC9aaSaaaeaacqaHXoqycqGHsi slcaaIXaaabaGaeqySdegaaiabgwSixlaadIhadaahaaWcbeqaaiab eg7aHjaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGcca aIUaaaaa@6B97@

Следовательно,

(T u 2 )(x)(T u 1 )(x) x 1/(α1) e βx H(c) αH(0) ρ b ( u 2 , u 1 )x(0,b], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada abdaqaaiaaiIcacaWGubGaamyDamaaBaaaleaacaaIYaaabeaakiaa iMcacaaIOaGaamiEaiaaiMcacqGHsislcaaIOaGaamivaiaadwhada WgaaWcbaGaaGymaaqabaGccaaIPaGaaGikaiaadIhacaaIPaaacaGL hWUaayjcSdaabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaIOa GaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccqGHflY1caWGLbWaaWba aSqabeaacqaHYoGycaWG4baaaaaakiabgsMiJoaalaaabaGaamisai aaiIcacaWGJbGaaGykaaqaaiabeg7aHjabgwSixlaadIeacaaIOaGa aGimaiaaiMcaaaGaeyyXICTaeqyWdi3aaSbaaSqaaiaadkgaaeqaaO GaaGikaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyDamaa BaaaleaacaaIXaaabeaakiaaiMcacaaMf8UaeyiaIiIaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiaadkgacaaIDbGaaGilaaaa@74D8@

что pавносильно неpавенству (26). Поскольку, в силу неравенства (23), коэффицент в неравенстве (26) удовлетворяет условию H(c)/ αH(0) <1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWGJbGaaGykaiaai+cadaWadaqaaiabeg7aHjaayIW7caWGibGa aGikaiaaicdacaaIPaaacaGLBbGaayzxaaGaaGipaiaaigdaaaa@4355@ , то оператор T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  является сжимающим.

Теорема 3 Если выполнены условия (5), (7) и (19), то интегральное уравнение (6) имеет в Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  (и в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  ) единственное решение. Это решение может быть найдено методом последовательных приближений, которые сходятся к нему по метрике (20) при любом b< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacqGHEisPaaa@3911@ .

Доказательство. Запишем уравнение (6) в операторном виде: u=Tu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWGubGaamyDaaaa@3987@ . Из леммы 1 и теоремы 2 следует, что выполнены все требования принципа сжимающих отображений, из которого непосредственно вытекает, что уравнение (6) имеет единственное решение в пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  и это решение может быть найдено методом последовательных приближений, которые сходятся к нему по метрике (20) при любом b< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacqGHEisPaaa@3911@ .

Осталось показать, что уравнение (6) имеет единственное решение во всем классе Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  (ср. [2]). Положим P = b>0 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaOGaaGypamaatafabeWcbaGaamOyaiaai6da caaIWaaabeqdcqWIQisvaOGaamiuamaaBaaaleaacaWGIbaabeaaaa a@3F46@ , т.е. P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaaaa@3865@  есть множество функций, определенных на полуоси [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , сужения которых на отрезок [0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamOyaiaai2faaaa@3A16@  принадлежат P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Так как уравнение (6) имеет единственное решение в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  и коэффициент сжатия в (26) не зависит от b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DA@ , то уравнение (6) имеет единственное решение u * (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3A3A@  в P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaaaa@3865@ . Поскольку всякое решение уравнения (6) из Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  удовлетворяет оценкам (11), то это решение u * (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3A3A@  будет единственным решением уравнения (6) и в Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@ .

Таким образом, на основании теоремы ??, используя связь между решениями уравнения (6) и задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (6), установленную в лемме 2, мы можем сформулировать основной результат.

Теорема 4 Если выполнены условия (3), (4), (5) и (19), то начальная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (2) имеет в Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  (и в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  ) единственное решение u * (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3A3A@ . Это решение удовлетворяет неравенствам (11), и его можно найти в полном метрическом пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  методом последовательных приближений по формуле u n =T u n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaai2dacaWGubGaamyDamaaBaaaleaacaWG UbGaeyOeI0IaaGymaaqabaaaaa@3D77@ , n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@4316@ , со сходимостью по метpике

ρ b ( u 1 , u 2 )= sup 0<xb | u 1 (x) u 2 (x)| x 1/(α1) e βx ,гдеβ= 1 H(0) sup cxb H(x)H(0) x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9a WaaybuaeqaleaacaaIWaGaaGipaiaadIhacqGHKjYOcaWGIbaabeGc baGaci4CaiaacwhacaGGWbaaamaalaaabaGaaGiFaiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiMcacqGHsislcaWG1bWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaaGiFaaqaai aadIhadaahaaWcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHi TiaaigdacaaIPaaaaOGaeyyXICTaamyzamaaCaaaleqabaGaeqOSdi MaamiEaaaaaaGccaaISaGaaGzbVlaabodbcaqG0qGaaeyneiaaywW7 cqaHYoGycaaI9aWaaSaaaeaacaaIXaaabaGaamisaiaaiIcacaaIWa GaaGykaaaacqGHflY1daGfqbqabSqaaiaadogacqGHKjYOcaWG4bGa eyizImQaamOyaaqabOqaaiGacohacaGG1bGaaiiCaaaadaWcaaqaai aadIeacaaIOaGaamiEaiaaiMcacqGHsislcaWGibGaaGikaiaaicda caaIPaaabaGaamiEaaaacaaISaaaaa@81E4@

а число c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  определяется из условия (23). При этом справедлива следующая оценка погрешности:

ρ b ( u n , u * ) q n 1q ρ b (T u 0 , u 0 ),n, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaamOBaaqa baGccaaISaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMcacqGHKj YOdaWcaaqaaiaadghadaahaaWcbeqaaiaad6gaaaaakeaacaaIXaGa eyOeI0IaamyCaaaacqGHflY1cqaHbpGCdaWgaaWcbaGaamOyaaqaba GccaaIOaGaamivaiaadwhadaWgaaWcbaGaaGimaaqabaGccaaISaGa amyDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaISaGaaGzbVlaad6 gacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=vriojaaiYcaaaa@6182@

где q=H(c)/ αH(0) <1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dacaWGibGaaGikaiaadogacaaIPaGaaG4lamaabmaabaGaeqySdeMa eyyXICTaamisaiaaiIcacaaIWaGaaGykaaGaayjkaiaawMcaaiaaiY dacaaIXaaaaa@4562@ , а u 0 (x) P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGykaiabgIGiolaadcfa daWgaaWcbaGaamOyaaqabaaaaa@3DAB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  начальное приближение (произвольная функция).

Пример 2 Начальная задача

u α (x)=p 0 x (xt) u (t)dt,α>1,p>0,x[0,),u(0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypaiaadcha daWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaaGjcVlqadwhagaqbaiaaiIcacaWG 0bGaaGykaiaayIW7caWGKbGaamiDaiaaiYcacaaMf8UaeqySdeMaaG OpaiaaigdacaaISaGaaGjbVlaadchacaaI+aGaaGimaiaaiYcacaaM e8UaamiEaiabgIGiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcaca aISaGaaGzbVlaaywW7caWG1bGaaGikaiaaicdacaaIPaGaaGypaiaa icdacaaISaaaaa@6A3B@

 имеет в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  единственное pешение

u(x)= α1 α px 1/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai2dadaqadaqaamaalaaabaGaeqySdeMaeyOe I0IaaGymaaqaaiabeg7aHbaacqGHflY1caWGWbGaeyyXICTaamiEaa GaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccaaIUaaaaa@4E2A@

В данном случае ядро k(x)=px MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaWGWbGaeyyXICTaamiEaaaa@3E48@ , p>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai6 dacaaIWaaaaa@386A@ , удовлетворяет всем требованиям условия (4).

Пример 2 показывет, что нелинейные однородные уравнения вольтерровского типа, в отличие от линейных уравнений, кроме тривиального решения могут иметь и не тривиальные решения.

В тех случаях, когда условия теоремы 4 не выполняются, интегро-дифференциальное уравнение (1) при f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  может либо не иметь нетривиальных решений, либо иметь континуум нетривиальных решений. Например, если α=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaigdaaaa@3914@ , h(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AC3@  и k(x)=x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaWG4baaaa@3B09@ , то уравнение (1) при f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  не имеет в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  решений, а если α=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaigdaaaa@3914@ , h(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AC3@  и k(x)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaaIXaaaaa@3AC7@ , то уравнение (1) при f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  имеет в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  континуум решений u(x)=A x q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai2dacaWGbbGaeyyXICTaamiEamaaCaaaleqa baGaamyCaaaaaaa@3F46@ , где A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  и q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36E9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  любые положительные числа.

В заключение отметим, что, следуя работе [12], можно рассмотреть также вопрос о численном решении начальной задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2).

 

Работа выполнена в рамках государственного задания Минобрнауки РФ (проект FEGS-2020-0001).

×

About the authors

S. N. Askhabov

Чеченский государственный педагогический университет; Чеченский государственный университет имени А. А. Кадырова

Author for correspondence.
Email: askhabov@yandex.ru
Russian Federation, Грозный; Грозный

References

  1. Асхабов С. Н. Нелинейные уравнения типа свертки. – М.: Физматлит, 2009.
  2. Асхабов С. Н. Интегро-дифференциальное уравнение типа свёртки со степенной нелинейностью и неоднородностью в линейной части// Диффер. уравн. – 2020. – 56, № 6. – 786–795.
  3. Асхабов С. Н. Система интегро-дифференциальных уравнений типа свёртки со степенной нелинейностью// Сиб. ж. индустр. мат. – 2021. – 24, № 3. – 5–18.
  4. Красносельский М. А. Положительные решения операторных уравнений. – М.: Физматгиз, 1962.
  5. Эдвардс Р. Функциональный анализ. – М.: Мир, 1969.
  6. Brunner H. Volterra Integral Equations: An Introduction to Theory and Applications. – Cambridge: Cambridge Univ. Press, 2017.
  7. Keller J. J. Propagation of simple nonlinear waves in gas filled tubes with friction// Z. Angew. Math. Phys. – 1981. – 32, № 2. – P. 170–181.
  8. Okrasinski W. On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation// Ann. Polon. Math. – 1979. – 36, № 1. – P. 61–72.
  9. Okrasinski W. On a non-linear convolution equation occurring in the theory of water percolation// Ann. Polon. Math. – 1980. – 37, № 3. – P. 223–229.
  10. Okrasinski W. Nonlinear Volterra equations and physical applications// Extracta Math. – 1989. – 4, № 2, P. 51–74.
  11. Schneider W. R. The general solution of a nonlinear integral equation of the convolution type// Z. Angew. Math. Phys. – 1982. – 33, № 1. – P. 140–142.
  12. Vabishchevich P. N. Numerical solution of the Cauchy problem for Volterra integro-differential equations with difference kernels// Appl. Numer. Math. – 2022. – 174, № 4. – P. 177–190.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Askhabov S.N.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».