Том 20, № 5 (2021)

Обложка

Весь выпуск

Математическое моделирование и прикладная математика

Прогнозирование развития эпидемии COVID-19 в странах Европейского союза с использованием энтропийно-рандомизированного подхода

Попков Ю.С., Дубнов Ю.А., Попков А.Ю.

Аннотация

Работа посвящена прогнозированию развития эпидемии COVID-19 с помощью нового метода рандомизированного машинного обучения. Основу метода составляет идея оценивания распределений вероятностей параметров модели по реальным данным вместе с распределением вероятностей измерительных шумов. Энтропийно-оптимальные распределения соответствуют состоянию максимальной неопределенности, что позволяет использовать получаемые в итоге прогнозы, как прогнозы наиболее ``негативного'' сценария исследуемого процесса. Полученные оценки параметров и шумов, которые представляют собой распределения вероятностей, необходимо генерировать, получая таким образом ансамбль траекторий, который требуется анализировать статистическими методами. Для целей такого анализа проводится вычисление средней и медианной по ансамблю траектории, а также траектории, соответствующей средним по распределению значениям параметров модели. Предлагаемый подход используется для прогнозирования общего количества инфицированных с помощью трехпараметрической логистической модели роста. Проведенный эксперимент основан на реальных данных о распространении COVID-19 в нескольких странах Европейского союза. Основной целью эксперимента является демонстрация энтропийно-рандомизированного подхода для прогнозирования эпидемического процесса на основе реальных данных вблизи пика. Существенная неопределенность, содержащаяся в доступных реальных данных моделируется аддитивным шумом в пределах 30%, который используется как на этапе обучения модели, так и при прогнозировании. Для настройки гиперпараметров модели используется схема их настройки по тестовой выборке с последующим переобучением. Показано, что при одинаковых наборах данных, предлагаемый подход позволяет более эффективно прогнозировать развитие эпидемии по сравнению со стандартным подходом, основанным на методе наименьших квадратов.
Информатика и автоматизация. 2021;20(5):1010-1033
pages 1010-1033 views

Балансовая модель эпидемии COVID-19 на основе процентного прироста

Захаров В.В., Балыкина Ю.Е.

Аннотация

В статье изучается возможность использования альтернативного подхода к прогнозированию статистических показателей эпидемии вируса нового типа. Представлен систематический обзор моделей прогнозирования эпидемий новых инфекций в зарубежной и российской научной литературе. Анализируется точность модели SIR при прогнозировании весенней волны эпидемии COVID-19 в России. В качестве альтернативного подхода к моделированию эпидемии предлагается использование вместо традиционной модели SIR новой дискретной стохастической модели распространения эпидемии CIR, основанной на балансе показателей эпидемии в текущий и прошлые моменты времени. Новая модель описывает динамику общего количества заболевших (С), общего количества выздоровевших и умерших (R) и числа активных случаев (I). Параметрами системы являются процентный прирост величины C(t) и характеристика динамического баланса эпидемиологического процесса, впервые введенная в этой статье. Сформулирован принцип динамического баланса эпидемиологического процесса, предполагающий наличие у любого процесса свойства близости значений общего количества заболевших в прошлые периоды и значений общего количества выздоровевших и умерших в текущий момент времени. Для вычисления значений характеристики динамического баланса используется задача целочисленного программирования. Продемонстрировано, что в общем случае динамическая характеристика эпидемиологического процесса не является постоянной величиной. Эпидемиологический процесс, динамическая характеристика которого не является постоянной величиной, называется нестационарным. Для построения среднесрочных прогнозов показателей эпидемиологического процесса на промежутках стационарности эпидемиологического процесса разработан специальный алгоритм. Исследован вопрос об использовании этого алгоритма на промежутках стационарности и нестационарности. Приведены примеры применения модели CIR для построения прогнозов рассматриваемых показателей эпидемии в России в мае-июне 2020 года.
Информатика и автоматизация. 2021;20(5):1034-1065
pages 1034-1065 views

Подход к локализации источника эпидемии COVID-19 в России на основе математического моделирования

Осипов В.Ю., Кулешов С.В., Зайцева А.А., Аксенов А.Ю.

Аннотация

В статье описаны результаты обработки статистических данных из открытых источников по развитию эпидемии COVID-19 и выполненного исследования по определению места и времени начала ее в России. В интересах предлагаемого исследования дан обзор существующих моделей процессов развития эпидемии и методов решения прямых и обратных задач его анализа. Предложена модель развития эпидемии COVID-19 в сети из девяти городов России: Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Краснодар, Екатеринбург, Новосибирск, Хабаровск, Владивосток. Города выбраны как по географическому положению, так и по количеству населения в них. Модель состоит из двадцати семи дифференциальных уравнений. Разработан алгоритм обратного анализа модели эпидемии. В качестве исходных данных для решения задачи выступали сведения по численности населения городов, интенсивности переходов процесса из одних состояний в другие, а также данные по инфицированности населения на заданные моменты времени. В статье также приводятся результаты детального анализа подходов решения к моделированию развития эпидемий по видам моделей (базовая модель SEIR, модель SIRD, адаптивная поведенческая модель, модифицированные SEIR-модели), и по странам (в Польше, во Франции, Испании, Греции и других), а также обзор прикладных задач, которые можно решить, используя моделирование распространения эпидемий. Рассматриваются дополнительные параметры среды, которые влияют на моделирование распространения эпидемий и могут учитываться для повышения точности результатов. По результатам моделирования установлены наиболее вероятные города-источники начала эпидемии в России, а также момент ее начала. Достоверность полученных оценок во многом определяется достоверностью использованных статистических данных по развитию COVID-19, находящихся в открытом доступе.
Информатика и автоматизация. 2021;20(5):1066-1090
pages 1066-1090 views

Искусственный интеллект, инженерия данных и знаний

Использование нечетких коалиционных игр при принятии социально ориентированных решений при госпитализации в условиях пандемии

Смирнов А.В., Молл Е.Г., Тесля Н.Н.

Аннотация

Проблемы организации медицинской помощи в условиях пандемии COVID-19, связанные с неопределенностью и ограниченностью различных ресурсов, привели к необходимости совершенствования систем принятия решений при госпитализации пациентов. С помощью ситуационного управления можно улучшить процесс принятия решений, чтобы он лучше соответствовал текущей ситуации. При этом важным становится учет влияния психологических факторов на решения, принимаемые при госпитализации. В статье предлагается использование коалиционных игр для ситуационного управления при госпитализации больных. Игроками и участниками коалиции являются госпитали, бригады скорой помощи, пациенты и центры компьютерной томографии. Цель игры - сформировать коалицию участников, обеспечивающую максимальную выгоду по времени и стоимости госпитализации в момент принятия решения. Рассмотрены общая схема госпитализации, основные источники информации о ситуации, постановка и формализация проблемы. Проведен эксперимент, в котором проверялось формирование коалиции во время госпитализации на основе данных, полученных при анализе динамики пандемии COVID-19. В связи с малым объемом данных и отсутствием апробированных моделей развития ситуации при проведении расчета часть параметров была оценена с использованием эвристических моделей развития ситуации, основанных на анализе информации из открытых источников информации. Результат эксперимента содержит набор коалиций, обеспечивающих максимальную выгоду, при указанных ограничениях. При этом время расчета коалиционной игры позволяет использовать предложенную модель поддержки принятия решений при госпитализации в диспетчерской службе станций скорой помощи.
Информатика и автоматизация. 2021;20(5):1091-1116
pages 1091-1116 views

Аналитический обзор аудиовизуальных систем для определения средств индивидуальной защиты на лице человека

Двойникова А.А., Маркитантов М.В., Рюмина Е.В., Рюмин Д.А., Карпов А.А.

Аннотация

Начиная с 2019 года все страны мира столкнулись со стремительным распространением пандемии, вызванной коронавирусной инфекцией COVID-19, борьба с которой продолжается мировым сообществом и по настоящее время. Несмотря на очевидную эффективность средств индивидуальной защиты органов дыхания от заражения коронавирусной инфекцией, многие люди пренебрегают использованием защитных масок для лица в общественных местах. Поэтому для контроля и своевременного выявления нарушителей общественных правил здравоохранения необходимо применять современные информационные технологии, которые будут детектировать защитные маски на лицах людей по видео- и аудиоинформации. В статье приведен аналитический обзор существующих и разрабатываемых интеллектуальных информационных технологий бимодального анализа голосовых и лицевых характеристик человека в маске. Существует много исследований на тему обнаружения масок по видеоизображениям, также в открытом доступе можно найти значительное количество корпусов, содержащих изображения лиц как без масок, так и в масках, полученных различными способами. Исследований и разработок, направленных на детектирование средств индивидуальной защиты органов дыхания по акустическим характеристикам речи человека пока достаточно мало, так как это направление начало развиваться только в период пандемии, вызванной коронавирусной инфекцией COVID-19. Существующие системы позволяют предотвратить распространение коронавирусной инфекции с помощью распознавания наличия/отсутствия масок на лице, также данные системы помогают в дистанционном диагностировании COVID-19 с помощью обнаружения первых симптомов вирусной инфекции по акустическим характеристикам. Однако, на сегодняшний день существует ряд нерешенных проблем в области автоматического диагностирования симптомов COVID-19 и наличия/отсутствия масок на лицах людей. В первую очередь это низкая точность обнаружения масок и коронавирусной инфекции, что не позволяет осуществлять автоматическую диагностику без присутствия экспертов (медицинского персонала). Многие системы не способны работать в режиме реального времени, из-за чего невозможно производить контроль и мониторинг ношения защитных масок в общественных местах. Также большинство существующих систем невозможно встроить в смартфон, чтобы пользователи могли в любом месте произвести диагностирование наличия коронавирусной инфекции. Еще одной основной проблемой является сбор данных пациентов, зараженных COVID-19, так как многие люди не согласны распространять конфиденциальную информацию.
Информатика и автоматизация. 2021;20(5):1117-1154
pages 1117-1154 views

Информационные технологии цифровой адаптационной медицины

Богомолов A.В.

Аннотация

В статье дана комплексная характеристика информационных технологий цифровой адаптационной медицины. Акцент сделан на применимость к разработке специализированных автоматизированных комплексов, программных моделей и систем изучения адаптационных возможностей человека к условиям внешней среды. Сформулированы требования к информационным технологиям повышения этих возможностей. Отражены особенности информационных технологий применительно к проведению прикладных системных исследований обеспечения жизнедеятельности, сохранения профессионального здоровья и продления долголетия человека. Охарактеризованы шесть базовых концепций адаптационной медицины с акцентом на особенности математического обеспечения обработки информации, определены приоритеты совершенствования информационных технологий, применяемых в этих концепциях. Рассмотрены информационные технологии, применяемые в задачах обеспечения профессиональной работоспособности человека с акцентом на необходимость применения адекватных методов диагностики состояния человека на всех этапах профессиональной деятельности и необходимости разработки технологий цифровых двойников, адекватно моделирующих адаптационные процессы и реакции организма в реальных условиях. Дана характеристика информационных технологий персонифицированного мониторинга рисков здоровью, позволяющих объективизировать воздействия физических факторов условий деятельности и реализовать индивидуальное и коллективное информирование персонала об опасности окружающей среды. Показана насущная необходимость стандартизации методов обработки информации при разработке информационных технологий цифровой адаптационной медицины в интересах обеспечения физиологической адекватности и математической корректности подходов к получению и обработке информации о состоянии человека. Сделаны выводы о том, что приоритеты совершенствования информационных технологий цифровой адаптационной медицины связаны с внедрением достижений четвёртой промышленной революции, в том числе, концепции социокиберфизических систем.
Информатика и автоматизация. 2021;20(5):1155-1182
pages 1155-1182 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».