Approach for the COVID-19 Epidemic Source Localization in Russia Based on Mathematical Modeling
- Authors: Osipov V.Y.1, Kuleshov S.V1, Zaytseva A.A1, Aksenov A.Y.1
-
Affiliations:
- SPC RAS
- Issue: Vol 20, No 5 (2021)
- Pages: 1066-1090
- Section: Mathematical modeling and applied mathematics
- URL: https://journals.rcsi.science/2713-3192/article/view/266265
- DOI: https://doi.org/10.15622/20.5.3
- ID: 266265
Cite item
Full Text
Abstract
About the authors
V. Yu Osipov
SPC RAS
Email: osipov_vasiliy@mail.ru
14 line 39
S. V Kuleshov
SPC RAS
Email: kuleshov@iias.spb.su
14th line 39
A. A Zaytseva
SPC RAS
Email: cher@iias.spb.su
14 Line 39
A. Yu Aksenov
SPC RAS
Email: a_aksenov@iias.spb.su
14 line 39
References
- Covid-19. URL: https://ru.wikipedia.org/wiki/Covid-19 (дата обращения: 07.06.2021).
- Так где же возник Covid-19? URL: https://news-front.info/2021/05/03/tak-gde-zhe-voznik-covid-19 (дата обращения: 07.06.2021).
- NIH study offers new evidence of early SARS-CoV-2 infections in U.S. URL: https://www.nih.gov/news-events/news-releases/nih-study-offers-new-evidence-early-sars-cov-2-infections-us (дата обращения: 07.06.2021).
- Свой путь: весь год мир наблюдал за стратегией Швеции по борьбе с коронавирусом. URL: https://tjournal.ru/analysis/249657-svoy-put-ves-god-mir-nablyudal-za-strategiey-shvecii-po-borbe-s-koronavirusom-chto-iz-etogo-vyshlo (дата обращения: 07.06.2021).
- Sweden tells citizens to wear masks on public transport as it struggles with COVID-19 resurgence URL: https://www.euronews.com/2020/12/18/sweden-tells-citizens-to-wear-masks-on-public-transport-as-it-struggles-with-covid-19-resu (дата обращения: 07.06.2021).
- Sweden set to begin easing coronavirus restrictions. URL: https://www.ft.com/content/c64b7e37-f00b-4e74-acf8-49c039c57698 (дата обращения: 07.06.2021).
- World Health Organization. URL: https://www.who.int/ (дата обращения: 16.08.2021).
- Криворотько О.И., Кабанихин С.И., Зятьков Н.Ю. Математическая модель распространения коронавируса COVID-19 в Российской Федерации. URL: https://www.nsu.ru/n/mathematics-mechanics-department/documents/ Криворотько - Математическая модель распространения COVID-19 в РФ.pdf (дата обращения: 07.06.2021).
- Medrek M., Pastuszak Z. Numerical simulation of the novel coronavirus spreading. Expert Systems with Applications. 2021. 166. 114109.
- Katris C. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. Expert Systems with Applications. 2021. vol. 166. 114077.
- Nadella P., Swaminathan A., Subramanian S.V. Forecasting efforts from prior epidemics and COVID-19 predictions. Eur J Epidemiol. 2020. vol. 35. pp. 727–729.
- Levashkin S.P., Zakharova O.I., Kuleshov S.V., Zaytseva A.A. Adaptive-compartmental model of coronavirus epidemic and its optimization by the methods of artificial intelligence. Journal of Physics: Conference Series. 2021. vol. 1864.
- SEIR and SEIRS models. URL: https://docs.idmod.org/projects/emod-environmental/en/latest/model-seir.html (дата обращения: 07.06.2021).
- Bjørnstad O.N. Epidemics, Use R. Springer Nature Switzerland AG. 2018. 312 p.
- Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1927. vol. 115(772). pp. 700–721.
- Бароян О.В., Рвачев Л.А. Математика и эпидемиология // М.: Знание. 1977. 64 c.
- Десятков Б.М., Бородулин А.И., Котлярова С.С., Лаптева Н.А., Марченко М.Ю., Шабанов А.Н. Математическое моделирование эпидемических процессов и оценка их статистических характеристик // Химическая и биологическая безопасность. 2009. № 1–3. C. 43–45 URL: http://www.cbsafety.ru/rus/saf43_2009_st_2.pdf (дата обращения: 16.08.2021).
- Xu H., Gonzalez M. J., Guo L., et al. Knowledge, Awareness, and Attitudes Towards COVID-19 Pandemic Among Different Populations in Central China: A Cross-Sectional Survey. Journal of Medical Internet Research. 2020.
- Wuqiong L., Wee P.T., Mei L. Identifying Infection Sources and Regions in Large Networks. 2021. URL: https://arxiv.org/pdf/1204.0354.pdf (дата обращения: 07.06.2021).
- Valdano E. et al. Analytical computation of the epidemic threshold on temporal networks. Physical Review X. 2015. vol. 5. no. 2. 021005.
- Morris S.E., Freiesleben de Blasio B., Viboud C., Wesolowski A., Bjørnstad O.N., Grenfell B.T. Analysis of multi-level spatial data reveals strong synchrony in seasonal influenza epidemics across Norway, Sweden, and Denmark. PLoS ONE. 2018. № 13(5).
- Holko A., Medrek M., Pastuszak Z., Phusavat K. Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Systems With Applications. 2016. vol. 48. pp. 1–8.
- Ahmed E., Agiza H.N. On modeling epidemics including latency, incubation and variable susceptibility. Physica A: Statistical Mechanics and its Applications. 1998. vol. 253. no. 1–4. pp. 347–352.
- Newbold P., Granger C.W.J. Experience with forecasting time series and combination of forecasts. Journal of the Royal Statistical Society. 1974. no. 137(2). pp. 131–165.
- Fanelli D., Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals. 2020. 134. Article 109761.
- Anastassopoulou C., Russo L., Tsakris A., Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE. 2020. № 15(3). e0230405.
- Wu J.T., Leung K., Leung G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet. 2020. vol. 395 (10225). pp. 689-697.
- Li Q., Guan X., Wu P., Wang X., Zhou L., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine. 2020. URL: https://valiasr.zums.ac.ir/files/i_management/files/nejmoa2001316_(1).pdf (дата обращения: 16.08.2021).
- Hu Z., Qiyang G., Shudi L., Li J., & Momiao X. Artificial Intelligence Forecasting of Covid-19 in China. arXiv preprint. 2020. arXiv:2002.07112. URL: https://arxiv.org/abs/2002.07112 (дата обращения: 16.08.2021)
- Macdonald JC., Browne C., Gulbudak H. Modelling COVID-19 outbreaks in USA with distinct testing, lockdown speed and fatigue rates. Royal Society Open Science. 2021. vol. 8(8):210227.
- Sarkar K, Khajanchi S, Nieto J. Modeling and forecasting the COVID-19 pandemic in India. Chaos Solitons Fractals. 2020. vol. 139. 110049.
- da Silva R.G, Ribeiro M.H.D.M., Mariani V.C., Coelho L.D.S. Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables. Chaos Solitons Fractals. 2020. vol. 139. 110027.
- Sharma N., Kumar A., Kumar A. Spatial Network based model forecasting transmission and control of COVID-19.
- Кольцова Э.М., Куркина Е.С., Васецкий А.М. Математическое моделирование распространения эпидемии коронавируса Covid-19 в ряде европейских, азиатских стран, Израиле и России // Проблемы экономики и юридической практики. 2020. Т. XVI. № 2. С. 154–165.
- Обеснюк В.Ф. Динамика локальной эпидемической вспышки COVID-19 через призму компартмент-моделирования // Анализ риска здоровью. 2020. № 2. С. 83–91.
- Kumar A. Modeling geographical spread of COVID-19 in India using network-based approach. URL: https://www.medrxiv.org/content/10.1101/2020.04.23.20076489v1 (дата обращения: 16.08.2021).
- Haslag P.H., Weagley D. From L.A. to Boise: How Migration Has Changed During the COVID-19 Pandemic (March 26, 2021). URL: https://ssrn.com/abstract=3808326 or http://dx.doi.org/10.2139/ssrn.3808326 (дата обращения: 07.06.2021).
- Das D. Regional disparities of growth and internal migrant workers in informal sectors in the age of COVID-19.
- Kojaku S., Hebert-Dufresne L., Mones E. et al. The effectiveness of backward contact tracing in networks. Nat. Phys. 2021. vol. 17. pp. 652–658.
- Klinkenberg D., Fraser C., Heesterbeek H. The effectiveness of contact tracing in emerging epidemics. PloS one. 2006. vol. 1. no. 1. pp. e12.
- Müller J., Kretzschmar M., Dietz K. Contact tracing in stochastic and deterministic epidemic models. Mathematical biosciences. 2000. vol. 164. no. 1. pp. 39–64.
- Ball F. G., Knock E. S., O'Neill P.D. Threshold behaviour of emerging epidemics featuring contact tracingю Advances in Applied Probability. 2011. vol. 43. no. 4. pp. 1048–1065.
- Browne C., Gulbudak H., Webb G. Modeling contact tracing in outbreaks with application to Ebola. Journal of theoretical biology. 2015. vol. 384. pp. 33–49.
- Okolie A., Müller J. Exact and approximate formulas for contact tracing on random trees. Mathematical biosciences. 2020. vol. 321. pp. 108320.
- Bianconi G. et al. Message-passing approach to epidemic tracing and mitigation with apps. Physical Review Research. 2021. vol. 3. no. 1. pp. L012014.
- Endo A. Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Leclerc QJ, et al. Implication of backward contact tracing in the presence of over dispersed transmission in COVID-19 outbreaks. Welcome Open Res. 2021. vol. 5:239. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610176/ (дата обращения: 07.06.2021).
- Coronavirus. URL: https://coronavirus-monitor.info (дата обращения: 07.06.2021).
Supplementary files
