Approach for the COVID-19 Epidemic Source Localization in Russia Based on Mathematical Modeling

Cover Page

Cite item

Full Text

Abstract

The paper presents the results of statistical data from open sources on the development of the COVID-19 epidemic processing and a study сarried out to determine the place and time of its beginning in Russia. An overview of the existing models of the processes of the epidemic development and methods for solving direct and inverse problems of its analysis is given. A model for the development of the COVID-19 epidemic via a transport network of nine Russian cities is proposed: Moscow, St. Petersburg, Nizhny Novgorod, Rostov-on-Don, Krasnodar, Yekaterinburg, Novosibirsk, Khabarovsk and Vladivostok. The cities are selected both by geographic location and by the number of population. The model consists of twenty seven differential equations. An algorithm for reverse analysis of the epidemic model has been developed. The initial data for solving the problem were the data on the population, the intensity of process transitions from one state to another, as well as data on the infection rate of the population at given time moments. The paper also provides the results of a detailed analysis of the solution approaches to modeling the development of epidemics by type of model (basic SEIR model, SIRD model, adaptive behavioral model, modified SEIR models), and by country (in Poland, France, Spain, Greece and others) and an overview of the applications that can be solved using epidemic spread modeling. Additional environmental parameters that affect the modeling of the spread of epidemics and can be taken into account to improve the accuracy of the results are considered. Based on the results of the modeling, the most likely source cities of the epidemic beginning in Russia, as well as the moment of its beginning, have been identified. The reliability of the estimates obtained is largely determined by the reliability of the statistics used on the development of COVID-19 and the available data on transportation network, which are in the public domain.

About the authors

V. Yu Osipov

SPC RAS

Email: osipov_vasiliy@mail.ru
14 line 39

S. V Kuleshov

SPC RAS

Email: kuleshov@iias.spb.su
14th line 39

A. A Zaytseva

SPC RAS

Email: cher@iias.spb.su
14 Line 39

A. Yu Aksenov

SPC RAS

Email: a_aksenov@iias.spb.su
14 line 39

References

  1. Covid-19. URL: https://ru.wikipedia.org/wiki/Covid-19 (дата обращения: 07.06.2021).
  2. Так где же возник Covid-19? URL: https://news-front.info/2021/05/03/tak-gde-zhe-voznik-covid-19 (дата обращения: 07.06.2021).
  3. NIH study offers new evidence of early SARS-CoV-2 infections in U.S. URL: https://www.nih.gov/news-events/news-releases/nih-study-offers-new-evidence-early-sars-cov-2-infections-us (дата обращения: 07.06.2021).
  4. Свой путь: весь год мир наблюдал за стратегией Швеции по борьбе с коронавирусом. URL: https://tjournal.ru/analysis/249657-svoy-put-ves-god-mir-nablyudal-za-strategiey-shvecii-po-borbe-s-koronavirusom-chto-iz-etogo-vyshlo (дата обращения: 07.06.2021).
  5. Sweden tells citizens to wear masks on public transport as it struggles with COVID-19 resurgence URL: https://www.euronews.com/2020/12/18/sweden-tells-citizens-to-wear-masks-on-public-transport-as-it-struggles-with-covid-19-resu (дата обращения: 07.06.2021).
  6. Sweden set to begin easing coronavirus restrictions. URL: https://www.ft.com/content/c64b7e37-f00b-4e74-acf8-49c039c57698 (дата обращения: 07.06.2021).
  7. World Health Organization. URL: https://www.who.int/ (дата обращения: 16.08.2021).
  8. Криворотько О.И., Кабанихин С.И., Зятьков Н.Ю. Математическая модель распространения коронавируса COVID-19 в Российской Федерации. URL: https://www.nsu.ru/n/mathematics-mechanics-department/documents/ Криворотько - Математическая модель распространения COVID-19 в РФ.pdf (дата обращения: 07.06.2021).
  9. Medrek M., Pastuszak Z. Numerical simulation of the novel coronavirus spreading. Expert Systems with Applications. 2021. 166. 114109.
  10. Katris C. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. Expert Systems with Applications. 2021. vol. 166. 114077.
  11. Nadella P., Swaminathan A., Subramanian S.V. Forecasting efforts from prior epidemics and COVID-19 predictions. Eur J Epidemiol. 2020. vol. 35. pp. 727–729.
  12. Levashkin S.P., Zakharova O.I., Kuleshov S.V., Zaytseva A.A. Adaptive-compartmental model of coronavirus epidemic and its optimization by the methods of artificial intelligence. Journal of Physics: Conference Series. 2021. vol. 1864.
  13. SEIR and SEIRS models. URL: https://docs.idmod.org/projects/emod-environmental/en/latest/model-seir.html (дата обращения: 07.06.2021).
  14. Bjørnstad O.N. Epidemics, Use R. Springer Nature Switzerland AG. 2018. 312 p.
  15. Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1927. vol. 115(772). pp. 700–721.
  16. Бароян О.В., Рвачев Л.А. Математика и эпидемиология // М.: Знание. 1977. 64 c.
  17. Десятков Б.М., Бородулин А.И., Котлярова С.С., Лаптева Н.А., Марченко М.Ю., Шабанов А.Н. Математическое моделирование эпидемических процессов и оценка их статистических характеристик // Химическая и биологическая безопасность. 2009. № 1–3. C. 43–45 URL: http://www.cbsafety.ru/rus/saf43_2009_st_2.pdf (дата обращения: 16.08.2021).
  18. Xu H., Gonzalez M. J., Guo L., et al. Knowledge, Awareness, and Attitudes Towards COVID-19 Pandemic Among Different Populations in Central China: A Cross-Sectional Survey. Journal of Medical Internet Research. 2020.
  19. Wuqiong L., Wee P.T., Mei L. Identifying Infection Sources and Regions in Large Networks. 2021. URL: https://arxiv.org/pdf/1204.0354.pdf (дата обращения: 07.06.2021).
  20. Valdano E. et al. Analytical computation of the epidemic threshold on temporal networks. Physical Review X. 2015. vol. 5. no. 2. 021005.
  21. Morris S.E., Freiesleben de Blasio B., Viboud C., Wesolowski A., Bjørnstad O.N., Grenfell B.T. Analysis of multi-level spatial data reveals strong synchrony in seasonal influenza epidemics across Norway, Sweden, and Denmark. PLoS ONE. 2018. № 13(5).
  22. Holko A., Medrek M., Pastuszak Z., Phusavat K. Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Systems With Applications. 2016. vol. 48. pp. 1–8.
  23. Ahmed E., Agiza H.N. On modeling epidemics including latency, incubation and variable susceptibility. Physica A: Statistical Mechanics and its Applications. 1998. vol. 253. no. 1–4. pp. 347–352.
  24. Newbold P., Granger C.W.J. Experience with forecasting time series and combination of forecasts. Journal of the Royal Statistical Society. 1974. no. 137(2). pp. 131–165.
  25. Fanelli D., Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals. 2020. 134. Article 109761.
  26. Anastassopoulou C., Russo L., Tsakris A., Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE. 2020. № 15(3). e0230405.
  27. Wu J.T., Leung K., Leung G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet. 2020. vol. 395 (10225). pp. 689-697.
  28. Li Q., Guan X., Wu P., Wang X., Zhou L., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine. 2020. URL: https://valiasr.zums.ac.ir/files/i_management/files/nejmoa2001316_(1).pdf (дата обращения: 16.08.2021).
  29. Hu Z., Qiyang G., Shudi L., Li J., & Momiao X. Artificial Intelligence Forecasting of Covid-19 in China. arXiv preprint. 2020. arXiv:2002.07112. URL: https://arxiv.org/abs/2002.07112 (дата обращения: 16.08.2021)
  30. Macdonald JC., Browne C., Gulbudak H. Modelling COVID-19 outbreaks in USA with distinct testing, lockdown speed and fatigue rates. Royal Society Open Science. 2021. vol. 8(8):210227.
  31. Sarkar K, Khajanchi S, Nieto J. Modeling and forecasting the COVID-19 pandemic in India. Chaos Solitons Fractals. 2020. vol. 139. 110049.
  32. da Silva R.G, Ribeiro M.H.D.M., Mariani V.C., Coelho L.D.S. Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables. Chaos Solitons Fractals. 2020. vol. 139. 110027.
  33. Sharma N., Kumar A., Kumar A. Spatial Network based model forecasting transmission and control of COVID-19.
  34. Кольцова Э.М., Куркина Е.С., Васецкий А.М. Математическое моделирование распространения эпидемии коронавируса Covid-19 в ряде европейских, азиатских стран, Израиле и России // Проблемы экономики и юридической практики. 2020. Т. XVI. № 2. С. 154–165.
  35. Обеснюк В.Ф. Динамика локальной эпидемической вспышки COVID-19 через призму компартмент-моделирования // Анализ риска здоровью. 2020. № 2. С. 83–91.
  36. Kumar A. Modeling geographical spread of COVID-19 in India using network-based approach. URL: https://www.medrxiv.org/content/10.1101/2020.04.23.20076489v1 (дата обращения: 16.08.2021).
  37. Haslag P.H., Weagley D. From L.A. to Boise: How Migration Has Changed During the COVID-19 Pandemic (March 26, 2021). URL: https://ssrn.com/abstract=3808326 or http://dx.doi.org/10.2139/ssrn.3808326 (дата обращения: 07.06.2021).
  38. Das D. Regional disparities of growth and internal migrant workers in informal sectors in the age of COVID-19.
  39. Kojaku S., Hebert-Dufresne L., Mones E. et al. The effectiveness of backward contact tracing in networks. Nat. Phys. 2021. vol. 17. pp. 652–658.
  40. Klinkenberg D., Fraser C., Heesterbeek H. The effectiveness of contact tracing in emerging epidemics. PloS one. 2006. vol. 1. no. 1. pp. e12.
  41. Müller J., Kretzschmar M., Dietz K. Contact tracing in stochastic and deterministic epidemic models. Mathematical biosciences. 2000. vol. 164. no. 1. pp. 39–64.
  42. Ball F. G., Knock E. S., O'Neill P.D. Threshold behaviour of emerging epidemics featuring contact tracingю Advances in Applied Probability. 2011. vol. 43. no. 4. pp. 1048–1065.
  43. Browne C., Gulbudak H., Webb G. Modeling contact tracing in outbreaks with application to Ebola. Journal of theoretical biology. 2015. vol. 384. pp. 33–49.
  44. Okolie A., Müller J. Exact and approximate formulas for contact tracing on random trees. Mathematical biosciences. 2020. vol. 321. pp. 108320.
  45. Bianconi G. et al. Message-passing approach to epidemic tracing and mitigation with apps. Physical Review Research. 2021. vol. 3. no. 1. pp. L012014.
  46. Endo A. Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Leclerc QJ, et al. Implication of backward contact tracing in the presence of over dispersed transmission in COVID-19 outbreaks. Welcome Open Res. 2021. vol. 5:239. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610176/ (дата обращения: 07.06.2021).
  47. Coronavirus. URL: https://coronavirus-monitor.info (дата обращения: 07.06.2021).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).