Forecasting Development of COVID-19 Epidemic in European Union Using Entropy-Randomized Approach
- Авторлар: Popkov Y.S1, Dubnov Y.A1, Popkov A.Y.1
-
Мекемелер:
- Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
- Шығарылым: Том 20, № 5 (2021)
- Беттер: 1010-1033
- Бөлім: Mathematical modeling and applied mathematics
- URL: https://journals.rcsi.science/2713-3192/article/view/266263
- DOI: https://doi.org/10.15622/20.5.1
- ID: 266263
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Y. Popkov
Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Email: popkov@isa.ru
Vavilov Str. 44/2
Y. Dubnov
Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Email: yury.dubnov@phystech.edu
Vavilov Str. 44/2
A. Popkov
Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Email: apopkov@isa.ru
Vavilova Str. 44/2
Әдебиет тізімі
- van den Driessche P. Mathematical Epidemiology / ed. by Brauer F., van den Driessche P., Wu J. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. vol. 1945. Lecture Notes in Mathematics. pp. 147–157.
- Kumar J., Hembram K.P.S.S. Epidemiological study of novel coronavirus (COVID-19). ArXiv. 2020. URL: http://arxiv.org/abs/2003.11376 (accessed 02.09.2021).
- Yang W., Zhang D., Peng L., Zhuge C., and Hong L. Rational evaluation of various epidemic models based on the COVID-19 data of China. ArXiv. 2020. URL: http://arxiv.org/abs/2003.05666 (accessed 02.09.2021).
- Tátrai D., Várallyay Z. COVID-19 epidemic outcome predictions based on logistic fitting and estimation of its reliability. ArXiv. 2020. URL: http://arxiv.org/abs/2003.14160 (accessed 02.09.2021).
- Morais A.F. Logistic approximations used to describe new outbreaks in the 2020 COVID-19 pandemic. ArXiv. 2020. URL: http://arxiv.org/abs/2003.11149 (accessed 02.09.2021).
- Shen C.Y. Logistic growth modelling of COVID-19 proliferation in China and its international implications. International Journal of Infectious Diseases. 2020. vol. 96. pp. 582–589. URL: https://doi.org/10.1016/j.ijid.2020.04.085 (accessed 02.09.2021).
- Wang P., Zheng X., Li J., Zhu B. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons & Fractals. 2020. vol. 139. pp. 110058. URL: https://doi.org/10.1016/j.chaos.2020.110058 (accessed 02.09.2021).
- Chen D.-G., Chen X., Chen J.K. Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model. Global Health Research and Policy. 2020. vol. 5. no. 1. 25 p.
- Попков Ю.С., Попков А.Ю., Дубнов Ю.А. Рандомизированное машинное обучение при ограниченных наборах данных: от эмпирической вероятности к энтропийной рандомизации. М.: ЛЕНАНД, 2019.
- Больцман Л. О связи между вторым началом механической теории теплоты и теорией вероятностей в теоремахо тепловом равновесии. Больцман Л.Э. Избранные труды. Под ред. Шлак Л.С. М.: Наука, 1984.
- Jaynes E.T. Information theory and statistical mechanics. Physical review. 1957. vol. 106. no. 4. pp. 620–630.
- Jaynes E.T. Probability theory: the logic of science. Cambridge university press. 2003.
- Shannon C.E. Communication theory of secrecy systems. Bell Labs Technical Journal. 1949. vol. 28. no. 4. pp. 656–715.
- Verhulst P.-F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 1838. vol. 10. pp. 113–126.
- Singer H.M. The COVID-19 pandemic: growth patterns, power law scaling, and saturation. Physical Biology. 2020. vol. 17. no. 5. pp. 055001.
- Popkov Yu.S., Dubnov Yu.A., Popkov A.Yu. Randomized machine learning: Statement, solution, applications. Intelligent Systems (IS), 2016 IEEE 8th International Conference on IEEE. 2016. pp. 27–39.
- Popkov Y.S., Dubnov Y.A., Popkov A.Y. Introduction to the Theory of Randomized Machine Learning. Learning Systems: From Theory to Practice / ed. by Sgurev V., Piuri V., Jotsov V. Cham: Springer International Publishing, 2018. pp. 199–220.
- Popkov Y.S., Dubnov Y.A., Popkov A.Y. New method of randomized forecasting using entropy-robust estimation: Application to the World population prediction. Mathematics. 2016. vol. 4. no. 1. pp. 1–16.
- Popkov Y.S., Volkovich Z., Dubnov Y.A., Avros R., Ravve E. Entropy 2-Soft Classification of Objects. Entropy. 2017. vol. 19. no. 4. P. 178.
- Dubnov Y.A. Entropy-Based Estimation in Classification Problems. Automation and Remote Control. 2019. vol. 80, pp. 502–512.
- Popkov Y.S., Popkov A.Y., Dubnov Y.A., Solomatine D. Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models. Mathematics. 2020. No. 8. pp. 1119.
- Popkov A.Y. Randomized machine learning of nonlinear models with application to the prediction of the development of epidemic process. Automation and Remote Control. 2021.
- Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases. 2020. vol. 20. no. 5. pp. 533–534.
- COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. URL: https://github.com/CSSEGISandData/COVID-19 (accessed 02.09.2021).
- Golan A., Judge G., Miller D. Maximum Entropy Econometrics: Robust Estimation with Limited Data. New York : John Wiley & Sons. 1996.
- Golan A. Information and entropy econometrics. A review and synthesis. Foundations and trends in Econometrics. 2008. vol. 2. no. 1-2. pp. 1–145.
- Nocedal J., Wright S. Numerical optimization. Springer Science & Business Media. 2006.
- Nash S.G. Newton-type minimization via the Lanczos method. SIAM Journal on Numerical Analysis. 1984. vol.21. no. 4. pp. 770–788.
Қосымша файлдар
