Balance Model of COVID-19 Epidemic Based on Percentage Growth Rate
- Authors: Zakharov V.V1, Balykina Y.E1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 20, No 5 (2021)
- Pages: 1034-1065
- Section: Mathematical modeling and applied mathematics
- URL: https://journals.rcsi.science/2713-3192/article/view/266264
- DOI: https://doi.org/10.15622/20.5.2
- ID: 266264
Cite item
Full Text
Abstract
Keywords
About the authors
V. V Zakharov
Saint Petersburg State University
Email: v.zaharov@spbu.ru
University pr. 35
Y. E Balykina
Saint Petersburg State University
Email: j.balykina@spbu.ru
University pr. 35
References
- Foppa I.M. A historical introduction to mathematical modeling of infectious diseases. Academic Press. 2017.
- Shinde G.R., Kalamkar, A.B., Mahalle P.N., et al. Forecasting Models for Coronavirus (COVID-19): A Survey of the State-of-the-Art. SN Computer Science. 2020. vol. 1.
- Moftakhar L., Seif M., Safe M.S. Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models. Iran Journal of Public Health. vol. 49. pp. 92–100.
- Chaudhry R.M. et al. Coronavirus disease 2019 (COVID-19): forecast of an emerging urgency in Pakistan. Cureus. 2020. vol. 12. no 5.
- Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (covid-19): Arima based time-series analysis to forecast near future. arXiv:2004.07859.
- Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A. 1927. vol. 115. no. 772. pp. 700–721.
- Anderson R.M., May R.M. Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press. 1991. pp. 757
- Dil S., Dil N., Maken Z.H. COVID-19 trends and forecast in the eastern mediterranean region with a particular focus on Pakistan. Cureus. 2020. vol. 12. no 6.
- Johns Hopkins Coronavirus Resource Center. Available at: https://coronavirus.jhu.edu/data (accessed: 20.04.2021)
- Liao Z., Lan P., Liao Z. et al. TW-SIR: time-window based SIR for COVID-19 forecasts. Sci Rep. 2020. vol. 10.
- Rǎdulescu A., Williams C., Cavanagh K. Management strategies in a SEIR-type model of COVID 19 community spread. Sci Rep. 2020. vol. 10.
- Fanelli D., Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals. 2020. vol. 134.
- Miller A., et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv 2020.03.24.20042937.
- Cheng Z., et al. Icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland. Swiss Medical Weekly. 2020. vol. 150.
- Rodrigues H.S. Application of SIR epidemiological model: new trends. International Journal of Applied Mathematics and Informatics. 2016. vol. 10. pp. 92–97.
- Iwami S., Takeuchi Y., Liu X. Avian–human influenza epidemic model. Mathematical biosciences. 2007. vol. 207. no. 1. pp. 1–25.
- Teles P. Predicting the evolution of SARS-COVID-2 in Portugal using an adapted SIR model previously used in South Korea for the MERS outbreak. medRxiv 2020.03.18.20038612.
- Maier B.F., Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020. vol. 368. no. 6492. pp. 742–746.
- Chinazzi M., Davis J.T., et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020. vol. 368. no. 6489. pp. 395–400.
- Tang B., Wang X., Li Q., Bragazzi N.L., Tang S., Xiao Y., et al. Estimation of the transmission risk of 2019-nCov and its implication for public health interventions. Journal of Clinical Medicine. 2020. vol. 9. no. 2.
- Tian H., Liu Y., Li Y. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science. 2020. vol. 368. no. 6491. pp. 638–642.
- López L., Rodó X. A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics. Results in Physics. 2021. vol. 21.
- Feng S., Feng Z., Ling C., Chang C., Feng Z. Prediction of the COVID-19 epidemic trends based on SEIR and AI models. PLoS ONE. 2021. vol. 16. no. 1.
- Криворотько О.И., Кабанихин С.И., Зятьков Н.Ю., Приходько А.Ю., Прохошин Н.М., Шишленин М.А. Математическое моделирование и прогнозирование COVID-19 в Москве и Новосибирской области. URL: https://arxiv.org/abs/2006.12619v1 (дата обращения: 30.04.2021).
- Матвеев А.В. Математическое моделирование оценки эффективности мер против распространения эпидемии COVID-19. Национальная безопасность и стратегическое планирование. 2020. № 1. С. 23–39.
- Anastassopoulou С., Russo L., Tsakris A., Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS One. 2020. vol. 15. no. 3.
- Mandal S., Bhatnagar T., Arinaminpathy N. Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India A mathematical model-based approach. Indian Council of Medical Research. 2020. vol. 151. pp. 190–199.
- Choi S., Ki M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiology and Health. 2020. vol. 42.
- Tolles J., Luong T. Modeling Epidemics with Compartmental Models. JAMA. 2020. vol. 323. no. 24. pp. 2515–2516.
- Fudolig M., Howard R. The local stability of a modified multi-strain SIR model for emerging viral strains. PLoS ONE. 2020. vol. 15. no. 12.
- Adam D. Special report: The simulations driving the world’s response to COVID-19. Nature. 2020. vol. 580. pp. 316–318.
- Wieczorek M., Siłka J., Woźniak M. Neural network powered COVID-19 spread forecasting model. Chaos, Solitons & Fractals. 2020. vol. 140.
- Кондратьев М.А. Методы прогнозирования и модели распространения заболеваний. Компьютерные исследования и моделирование. 2013. Т. 5. № 5. С. 863–882.
- Zakharov V., Balykina Y., Petrosian O., Gao H. CBRR Model for Predicting the Dynamics of the COVID-19 Epidemic in Real Time. Mathematics. 2020. vol. 8. no. 10.
- Захаров В.В., Балыкина Ю.Е. Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. № 3. С. 249–259.
- Dairi A., Harrou F., Zeroual A., Hittawe M.M., Sun Y. Comparative study of machine learning methods for COVID-19 transmission forecasting. Journal of Biomedical Informatics. 2021. vol. 18.
- Mizumoto K., Chowell G. Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship. Infectious Disease Modelling. 2020. vol. 5. pp. 264–270.
- Zhang S., et al. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int J Infect Dis. 2020. vol. 93. pp. 201–204.
- Jung S., et al. Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med. 2020. vol. 9. no. 2.
- Cooper I., Mondal A., Antonopoulos C. G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons and Fractals. 2020. vol. 139.
Supplementary files
