Balance Model of COVID-19 Epidemic Based on Percentage Growth Rate

Cover Page

Cite item

Full Text

Abstract

The paper examines the possibility of using an alternative approach to predicting statistical indicators of a new COVID-19 virus type epidemic. A systematic review of models for predicting epidemics of new infections in foreign and Russian literature is presented. The accuracy of the SIR model for the spring 2020 wave of COVID-19 epidemic forecast in Russia is analyzed. As an alternative to modeling the epidemic spread using the SIR model, a new CIR discrete stochastic model is proposed based on the balance of the epidemic indicators at the current and past time points. The new model describes the dynamics of the total number of cases (C), the total number of recoveries and deaths (R), and the number of active cases (I). The system parameters are the percentage increase in the C(t) value and the characteristic of the dynamic balance of the epidemiological process, first introduced in this paper. The principle of the dynamic balance of epidemiological process assumes that any process has the property of similarity between the value of the total number of cases in the past and the value of the total number of recoveries and deaths at present. To calculate the values of the dynamic balance characteristic, an integer linear programming problem is used. In general, the dynamic characteristic of the epidemiological process is not constant. An epidemiological process the dynamic characteristic of which is not constant is called non-stationary. To construct mid-term forecasts of indicators of the epidemiological process at intervals of stationarity of the epidemiological process, a special algorithm has been developed. The question of using this algorithm on the intervals of stationarity and non-stationarity is being examined. Examples of the CIR model application for making forecasts of the considered indicators for the epidemic in Russia in May-June 2020 are given.

About the authors

V. V Zakharov

Saint Petersburg State University

Email: v.zaharov@spbu.ru
University pr. 35

Y. E Balykina

Saint Petersburg State University

Email: j.balykina@spbu.ru
University pr. 35

References

  1. Foppa I.M. A historical introduction to mathematical modeling of infectious diseases. Academic Press. 2017.
  2. Shinde G.R., Kalamkar, A.B., Mahalle P.N., et al. Forecasting Models for Coronavirus (COVID-19): A Survey of the State-of-the-Art. SN Computer Science. 2020. vol. 1.
  3. Moftakhar L., Seif M., Safe M.S. Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models. Iran Journal of Public Health. vol. 49. pp. 92–100.
  4. Chaudhry R.M. et al. Coronavirus disease 2019 (COVID-19): forecast of an emerging urgency in Pakistan. Cureus. 2020. vol. 12. no 5.
  5. Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (covid-19): Arima based time-series analysis to forecast near future. arXiv:2004.07859.
  6. Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A. 1927. vol. 115. no. 772. pp. 700–721.
  7. Anderson R.M., May R.M. Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press. 1991. pp. 757
  8. Dil S., Dil N., Maken Z.H. COVID-19 trends and forecast in the eastern mediterranean region with a particular focus on Pakistan. Cureus. 2020. vol. 12. no 6.
  9. Johns Hopkins Coronavirus Resource Center. Available at: https://coronavirus.jhu.edu/data (accessed: 20.04.2021)
  10. Liao Z., Lan P., Liao Z. et al. TW-SIR: time-window based SIR for COVID-19 forecasts. Sci Rep. 2020. vol. 10.
  11. Rǎdulescu A., Williams C., Cavanagh K. Management strategies in a SEIR-type model of COVID 19 community spread. Sci Rep. 2020. vol. 10.
  12. Fanelli D., Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals. 2020. vol. 134.
  13. Miller A., et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv 2020.03.24.20042937.
  14. Cheng Z., et al. Icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland. Swiss Medical Weekly. 2020. vol. 150.
  15. Rodrigues H.S. Application of SIR epidemiological model: new trends. International Journal of Applied Mathematics and Informatics. 2016. vol. 10. pp. 92–97.
  16. Iwami S., Takeuchi Y., Liu X. Avian–human influenza epidemic model. Mathematical biosciences. 2007. vol. 207. no. 1. pp. 1–25.
  17. Teles P. Predicting the evolution of SARS-COVID-2 in Portugal using an adapted SIR model previously used in South Korea for the MERS outbreak. medRxiv 2020.03.18.20038612.
  18. Maier B.F., Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020. vol. 368. no. 6492. pp. 742–746.
  19. Chinazzi M., Davis J.T., et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020. vol. 368. no. 6489. pp. 395–400.
  20. Tang B., Wang X., Li Q., Bragazzi N.L., Tang S., Xiao Y., et al. Estimation of the transmission risk of 2019-nCov and its implication for public health interventions. Journal of Clinical Medicine. 2020. vol. 9. no. 2.
  21. Tian H., Liu Y., Li Y. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science. 2020. vol. 368. no. 6491. pp. 638–642.
  22. López L., Rodó X. A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics. Results in Physics. 2021. vol. 21.
  23. Feng S., Feng Z., Ling C., Chang C., Feng Z. Prediction of the COVID-19 epidemic trends based on SEIR and AI models. PLoS ONE. 2021. vol. 16. no. 1.
  24. Криворотько О.И., Кабанихин С.И., Зятьков Н.Ю., Приходько А.Ю., Прохошин Н.М., Шишленин М.А. Математическое моделирование и прогнозирование COVID-19 в Москве и Новосибирской области. URL: https://arxiv.org/abs/2006.12619v1 (дата обращения: 30.04.2021).
  25. Матвеев А.В. Математическое моделирование оценки эффективности мер против распространения эпидемии COVID-19. Национальная безопасность и стратегическое планирование. 2020. № 1. С. 23–39.
  26. Anastassopoulou С., Russo L., Tsakris A., Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS One. 2020. vol. 15. no. 3.
  27. Mandal S., Bhatnagar T., Arinaminpathy N. Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India A mathematical model-based approach. Indian Council of Medical Research. 2020. vol. 151. pp. 190–199.
  28. Choi S., Ki M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiology and Health. 2020. vol. 42.
  29. Tolles J., Luong T. Modeling Epidemics with Compartmental Models. JAMA. 2020. vol. 323. no. 24. pp. 2515–2516.
  30. Fudolig M., Howard R. The local stability of a modified multi-strain SIR model for emerging viral strains. PLoS ONE. 2020. vol. 15. no. 12.
  31. Adam D. Special report: The simulations driving the world’s response to COVID-19. Nature. 2020. vol. 580. pp. 316–318.
  32. Wieczorek M., Siłka J., Woźniak M. Neural network powered COVID-19 spread forecasting model. Chaos, Solitons & Fractals. 2020. vol. 140.
  33. Кондратьев М.А. Методы прогнозирования и модели распространения заболеваний. Компьютерные исследования и моделирование. 2013. Т. 5. № 5. С. 863–882.
  34. Zakharov V., Balykina Y., Petrosian O., Gao H. CBRR Model for Predicting the Dynamics of the COVID-19 Epidemic in Real Time. Mathematics. 2020. vol. 8. no. 10.
  35. Захаров В.В., Балыкина Ю.Е. Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. № 3. С. 249–259.
  36. Dairi A., Harrou F., Zeroual A., Hittawe M.M., Sun Y. Comparative study of machine learning methods for COVID-19 transmission forecasting. Journal of Biomedical Informatics. 2021. vol. 18.
  37. Mizumoto K., Chowell G. Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship. Infectious Disease Modelling. 2020. vol. 5. pp. 264–270.
  38. Zhang S., et al. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int J Infect Dis. 2020. vol. 93. pp. 201–204.
  39. Jung S., et al. Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med. 2020. vol. 9. no. 2.
  40. Cooper I., Mondal A., Antonopoulos C. G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons and Fractals. 2020. vol. 139.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».