ON POSITIVITY OF THE GREEN FUNCTION FOR POISSON PROBLEM FOR A LINEAR FUNCTIONAL DIFFERENTIAL EQUATION
- Authors: Labovskiy S.M.1
-
Affiliations:
- Plekhanov Russian University of Economics
- Issue: Vol 22, No 6 (2017)
- Pages: 1229-1234
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/362874
- DOI: https://doi.org/10.20310/1810-0198-2017-22-6-1229-1234
- ID: 362874
Cite item
Full Text
Abstract
For the Poisson problem -∆u+p x u- Ωu s r x, ds=ρf, u | Γ( Ω )=0 equivalence of positivity of the Green function and other classical properties is showed. Here Ω is an open set in R n , and Γ( Ω ) is the boundary of the Ω . For almost all x∈ Ω , r(x, ∙) is a measure satisfying certain symmetry condition. In particular this equation involves integral differential equation and the equation -∆u+p x u(x)- i=1 m p i x u h i x =ρf, where h i : Ω→Ω is a measurable mapping.
About the authors
Sergei Mikhailovich Labovskiy
Plekhanov Russian University of Economics
Email: labovski@gmail.com
Candidate of Physics and Mathematics, Associate Professor of the Higher Mathematics Department 36, Stremyanny lane, Moscow, Russian Federation, 117997
References
Labovskiy S., Getimane M. Poisson problem for a linear functional differential equation // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 1. С. 76-81. Adams R.A., Fournier J. Sobolev Spaces // Elsevier, 2003.
Supplementary files

