Fullerene-containing material received by low-temperature cracking from rubber-containing wastes

Cover Page

Cite item

Full Text

Abstract

The processing of rubber-containing products has an interest from an ecological point of view. In addition, it has been shown that the method of low-temperature catalytic cracking makes it possible to obtain fullerene-containing material from rubber-containing wastes, which opens up prospects for improving of the production of fullerenes. Such carbon material was obtained using the technology developed in 2009-2011. Using X-ray diffraction analysis, it was found that it contains about 3 % C60 fullerene. This substance is characterized by high porosity and good sorption properties, for the study of which it was activated by the hydrothermal method. Especially good sorbent showed itself in the case of absorption of iron nitrate. The powder of the fullerene-containing material was compressed at the pressures from 20 to 50 atm. The resistivities of the resulting material, depending on the compression pressure, are 3-10 Om×cm. After studying of the current-voltage characteristics of the pressed substance, it was found out that its resistivity first increases (at pressures of 20-40 atm), and then decreases. Changes in specific conductivity, along with high sorption capacity, suggest the possibility of using of the carbon material in sensors and sensory devices. The activation energies were 0.06-0.15 eV for the uncompressed substance and 0.02-0.04 eV for the compressed at the pressure of 40 atm.

About the authors

Alexey Ivanovich Shevchenko

V.I. Vernadsky Crimean Federal University

Email: shevshenkoai@cfuv.ru
Assistant of Radiophysics and Electronics Department of Physics and Technology Institute Simferopol, Republic of Crimea, Russian Federation

Konstantin Vasilyevich Rabotyagov

V.I. Vernadsky Crimean Federal University

Email: rabotyagov@simfi.net
Candidate of Chemistry, Associate Professor of General and Physical Chemistry Department of Taurida Academy Simferopol, Republic of Crimea, Russian Federation

Elena Mikhaylovna Maksimova

V.I. Vernadsky Crimean Federal University

Email: lenamax112@rambler.ru
Candidate of Physics and Mathematics, Associate Professor, Associate Professor of Theoretical Physics and Solid State Physics Department of Physics and Technology Institute Simferopol, Republic of Crimea, Russian Federation

Igor Anatolyevich Naukhatskiy

V.I. Vernadsky Crimean Federal University

Email: nauhatsky@gmail.com
Head of X-ray Crystallography Laboratory of Physics and Technology Institute Simferopol, Republic of Crimea, Russian Federation

Lali Alexeyevna Batiashvili

V.I. Vernadsky Crimean Federal University

Email: laliko2208@gmail.com
Student of Physics and Technology Institute Simferopol, Republic of Crimea, Russian Federation

References

  1. Работягов К.В., Сай Е.В., Максимова Е.М., Наухацкий И.А., Карпенко Н.И., Шевченко А.И., Мазинов А.С. Исследование структуры и физико-химических свойств пористых углеродных материалов, полученных низкотемпературным крекингом // Ученые записки Крымского федерального университета имени В.И. Вернадского. Серия «Биология, химия». 2015. Т. 1 (67). № 3. С. 125-131.
  2. Vella E., Li H., Grégoire P., Tuladhar S.M., Vezie M.S., Few S., Bazán C.M., Nelson J., Silva-Acuña C., Bittner E.R. Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells // Scientific Reports. 2016. V. 6. doi: 10.1038/srep29437.
  3. Ma J., Guo Q., Gao H.-L., Qin X. Synthesis of C60/graphene composite as electrode in supercapacitors // Fullerenes, Nanotubes and Carbon Nanostructures. 2015. V. 23. № 6. P. 477-482.
  4. Muñoz J., Gallego M., Valcárcel M. Solid-phase extraction-gas chromatography-mass spectrometry using a fullerene sorbent for the determination of inorganic mercury(II), methylmercury(I) and ethylmercury(I) in surface waters at sub-ng/ml levels // Journal of Chromatography A. 2004. V. 1055. № 1-2. P. 185-190.
  5. Alekseeva O.V., Bagrovskaya N.A., Noskov A.V. Sorption of heavy metal ions by fullerene and polystyrene/fullerene film compositions // Protection of Metals and Physical Chemistry of Surfaces. 2015. V. 52. № 3. P. 443-447.
  6. Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., Smalley R.E. C60: Buckminsterfullerene // Nature. 1985. V. 318. P. 162-163.
  7. Chilingarov N.S., Troyanov S.I. Unstable isomer of C90 fullerene isolated as chloro derivatives, C90(1)Cl10/12 // Chemistry - An Asian Journal. 2016. V. 11. № 13. P. 1896-1899.
  8. Dunk P.W., Niwa H., Shinohara H., Marshall A.G., Kroto H.W. Large fullerenes in mass spectra // Molecular Physics. 2015. V. 113. № 15-16. P. 2359-2361.
  9. Hetzel R., Manning T., Lovingood D., Strouse G., Phillips D. Production of fullerenes by microwave synthesis // Fullerenes, Nanotubes and Carbon Nanostructures. 2012. V. 20. № 2. P. 99-108.
  10. Chen Y., Zhang H., Zhu Y., Yu D., Tang Z., He Y., Wu C., Wang J. A new method of fullerene production: pyrolysis of acetylene in high-frequency thermal plasma // Materials Science and Engineering: B. 2002. V. 95. № 1. P. 29-32.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).