Modeling of combinatorial problems with the help of continuous logic

Cover Page

Cite item

Full Text

Abstract

In this paper we formulated the class of combinatorial tasks, which equivalent to problem of determining the relative position of slot sequences. We propose examples of this class of problems related to the field of synthesis of reliable devices by redundancy, organization management of customer service in trading systems, drafting proper timetable of dissertation council. We give precise mathematical formulation of problem, consisting of the analysis part (determining the actual position of interval sequences) and synthesis (finding location conditions for interval sequences at which their relative positions form a desired order). The mathematical model of dynamic finite automaton without memory as a logical -pole is introduced. The main task for this automaton is to find the output dynamic process by known input processes and implemented logical (Boolean) function. Detailed description of continuous logic as mathematical means that allow find the output dynamic process in automata is given. Examples of such a finding are presented. It is shown that the dynamic finite automaton without memory is adequate mathematical model to solve the combinatorial problem. At the same time the original combinatorial problem reduces to finding the output process in the automata model, based on the specified input processes and implemented logic function. An 6-step algorithm for solving the problem, as well as two examples of combinatorial problems that are solved by this algorithm are proposed. Both examples are solved in analytical form. We release the estimation of computational complexity which implies that the complexity of the proposed approach is growing as a power function of the dimension of the problem. So the approach is applicable to the solution of problems of high dimensionality. The advantage of the approach else in the ability to formally seek algorithms for solving problems and analyze probable solutions by finding the necessary and sufficient conditions for existence of such solutions.

About the authors

Vitaliy Ilich Levin

Penza State Technological Academy

Email: levin@pgta.ru
Doctor of Technics, Professor, Science Advisor of Rector, Honored Worker of Science of Russian Federation Penza, Russian Federation

References

  1. Левин В.И. Введение в динамическую теорию конечных автоматов. Рига: Зинатне, 1975.
  2. Bochmann D., Roginskij V.N., Levin V.I. Dinamische Processe in Automaten. Berlin: Technik, 1977.
  3. Левин В.И. Динамика логических устройств и систем. М.: Энергия, 1980.
  4. Левин В.И. Теория динамических автоматов. Пенза: Изд-во Пензен. гос. ун-та, 1995.
  5. Левин В.И. Бесконечнозначная логика в задачах кибернетики. М.: Радио и связь, 1982.
  6. Левин В.И. Структурно-логические методы исследования сложных систем. М.: Наука, 1987.
  7. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир, 1976.
  8. Кандрашина Е.Ю., Литвинцева Л.В., Поспелов Д.А. Пространство и время в системах искусственного интеллекта. М.: Наука, 1988.
  9. Кандрашина Е.Ю., Литвинцева Л.В., Поспелов Д.А. Представление знаний о пространстве и времени в системах искусственного интеллекта. М.: Наука, 1989.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).