On recurrent motions of dynamical systems in a semi-metric space

Cover Page

Cite item

Full Text

Abstract

The present paper is devoted to studying the properties of  recur\-rent
motions of a dynamical system $g^t$ defined in a Hausdorff semi-metric space
$\Gm.$

\noindent Based on the definitions of a minimal set and recurrent motion introduced by G.
Birkhoff at the beginning of the last century, a new sufficient condition for
the recurrence of motions of the system $g^t$ in $\Gm$ is obtained. This
condition establishes a new property of motions, which rigidly connects
arbitrary and recurrent motions. Based on this property, it is shown that
if in the space $\Gm$ positively (negatively) semi-trajectory of some motion is
relative\-ly sequentially compact, then the $\om$-limit ($\al$-limit) set of
this motion is a sequentially compact minimal set.

\noindent As one of the applications of the results obtained, the behavior of motions
of the dynamical system $g^t$ given on a topological manifold $V$ is studied. This
study made it possible to significantly simplify the classical concept of
interrelation of motions on $V$ which was actually stated by G. Birkhoff in
1922 and has not changed since then.

About the authors

Sergei M. Dzyuba

Tver State Technical University

Author for correspondence.
Email: sdzyuba@mail.ru
ORCID iD: 0000-0002-2981-8549

Doctor of Physics and Mathematics, Professor of the Information Systems Department

Russian Federation, 22 Afanasiya Nikitina nab., Tver 170026, Russian Federation

References

  1. V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian).
  2. G.D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian).
  3. A.P. Afanas’ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:13 (2021), 5–14 (In Russian).
  4. A.P. Afanas’ev, S.M. Dzyuba, “On the interrelation of motions of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian).
  5. S.M. Dzyuba, “On the interrelation of motions of dynamical systems on compact manifolds”, Lobachevskii J. Math., 44:7 (2023), 2630–2637.
  6. A.P. Afanas’ev, S.M. Dzyuba, “The interrelation of motions of dynamical systems in a metric space”, Lobachevskii J. Math., 43:12 (2022), 3414–3419.
  7. L.S. Pontryagin, Topological Groups, URSS Publ., Moscow, 2009 (In Russian).
  8. L. Schwartz, Analisys. V. II, Mir Publ., Moscow, 1972 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).