Properties of one higher order matrix-differential operator
- Authors: Uskov V.I.1
-
Affiliations:
- Voronezh State University of Forestry and Technologies after named G.F. Morozov
- Issue: Vol 27, No 138 (2022)
- Pages: 175-182
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/295012
- DOI: https://doi.org/10.20310/2686-9667-2022-27-138-175-182
- ID: 295012
Cite item
Full Text
Abstract
The article considers a linear matrix-differential operator of the n n-th order of the form An . For it and for the operator A -1 n , an analytical expression is derived, for which an operator analog of the Newton binomial is obtained. A lemma on the solution of a linear equation is given. It is used in the study of the abstract Cauchy problem for an algebro-differential equation in a Banach space with the cube of the operator A at the highest derivative. The operator A has the property of having 0 as a normal eigenvalue. Conditions for the existence and uniqueness of the solution are determined; the solution is found, for which the method of cascade splitting of the equation and conditions into the corresponding equations and conditions in subspaces of lower dimensions is used. As an application, the results obtained for n=3 are used in solving a mixed problem for a fourth-order partial differential equation. These equations include the generalized shallow water wave equation and the generalized Liouville equation.
About the authors
Vladimir I. Uskov
Voronezh State University of Forestry and Technologies after named G.F. Morozov
Email: vum1@yandex.ru
Candidate of Physics and Mathematics, Senior Lecturer of the Mathematics Department 8 Timiryazeva St., Voronezh 394613, Russian Federation
References
- S.P. Zubova, E.V. Raetskaya, V.I. Uskov, “Degeneracy property of a matrix-differential operator and applications”, Journal of Mathematical Sciences, 255:5 (2021), 640-652.
- A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman&Hall / CRC Press, Boca Raton-London-New York, 2004.
- Т.Д. Асылбеков, М.К. Чамашев, “Коэффициентная обратная задача для линейного уравнения в частных производных четвертого порядка”, Известия Томского политехнического университета, 317:2 (2010), 22-25.
- N.H. Ibragimov, “A new Conversation laws theorem”, Journal of Mathematical Analysis, 333:1(2007), 311-328.
- И.В. Рахмелевич, “О решениях многомерного дифференциального уравнения произвольного порядка со смешанной старшей частной производной и степенными нелинейностями”, Владикавсказский математический журнал, 18:4 (2016), 41-49.
- Я.А. Афанасова, “Мультиномиальное тождество и его приложения”, Классические и прикладные аспекты преемственной математической подготовки в ВУЗе: исторический и современный взгляд молодых ученых и соискателей высшего образования, Материалы Всеукраинской научно-практической конференции (Харьков, 2021), Тезисы докладов, 2021, 194-197.
- В.И. Усков, “Решение задачи для системы уравнений в частных производных третьего порядка”, Вестник российских университетов. Математика, 26:133 (2021), 68-76.
Supplementary files

