Inner product and Gegenbauer polynomials in Sobolev space
- Authors: Boudref M.A.1
-
Affiliations:
- University of Bouira
- Issue: Vol 27, No 138 (2022)
- Pages: 150-163
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/295010
- DOI: https://doi.org/10.20310/2686-9667-2022-27-138-150-163
- ID: 295010
Cite item
Full Text
Abstract
Keywords
About the authors
Mohamed Ahmed Boudref
University of Bouira
Email: m.boudref@univ-bouira.dz
PhD of Mathematics, Director of the LIMPAF Mathematics and Computer Science Laboratory, Lecturer of the High Mathematics Department 10000 Drissi Yahia Bouira St., Bouira, Algeria
References
- R.M. Gadzhimirzaev, “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. Anal. Issues Anal., 8(26):1 (2019), 32-46.
- I.I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier-Legendre sums”, Sb. Math., 191:5 (2000), 759-777.
- I. Sharapudinov, Mixed Series of Orthogonal Polynomials, Daghestan Sientific Centre Press, Makhachkala, 2004.
- I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes ”, Sb. Math., 197:3 (2006), 433-452.
- I.I. Sharapudinov, “Sobolev orthogonal systems of functions associated with an orthogonal system”, Izv. Math., 82:1 (2018), 212-244.
- I.I. Sharapudinov, T.I. Sharapudinov, “Polynomials orthogonal in the Sobolev sens, generated by Chebychev polynomials orthogonal on a mesh”, Russian Math. (Iz. VUZ), 61:8 (2017), 59-70.
- M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, USA, 1964.
- G. Szegiö, Orthogonal Plynomials. V. 23, American Mathematical Society, Providence, Rhode Island, 1975.
- A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkhauser Veriag Basel, Springer Basel AG., 1988.
Supplementary files
