Embedding of a homothete in a convex compactum: an algorithm and its convergence

Cover Page

Cite item

Full Text

Abstract

The problem of covering of a given convex compact set by a homothetic image of another convex compact set with a given homothety center is considered, the coefficient of homothety is calculated. The problem has an old history and is closely related to questions about the Chebyshev center, problems about translates, and other problems of computational geometry. Polyhedral approximation methods and other approximation methods do not work in a space of already moderate dimension (more than 5 on a PC). We propose an approach based on the application of the gradient projection method, which is much less sensitive to dimension than the approximation methods. We select classes of sets for which we can prove the linear convergence rate of the gradient method, i. e. convergence with the rate of a geometric progression with a positive ratio strictly less than 1. These sets must be strongly convex and have, in a certain sense, smoothness of the boundary.

About the authors

Maxim V. Balashov

V. A. Trapeznikov Institute of Control Sciences of RAS

Email: balashov73@mail.ru
Doctor of Physics and Mathematics, Leading Researcher 65 Profsoyuznaya St., Moscow 117997, Russian Federation

References

  1. Л. Данцер, Б. Грюнбаум, В. Кли, Теорема Хелли и ее применения, Мир, М., 1968.
  2. M. Althoff, G. Frehse, A. Girard, “Set propagation techniques for reachability analysis”, Annual Review of Control, Robotics, and Autonomous Systems, 4:1 (2021), 369-395.
  3. Б.Т. Поляк, Введение в оптимизацию, Наука, М., 1983.
  4. М.В. Балашов, Е.С. Половинкин, “ -сильно выпуклые подмножества и их порождающие множества”, Матем. сб., 191:1 (2000), 27-64.
  5. P. Cannarsa, H. Frankowska,, “Interior sphere property of attainable sets and time optimal control problems”, ESAIM: Control, Optimisation and Calculus of Variations, 12:2 (2006), 350-370.
  6. J. Bolte, Sh. Sabach, M. Teboulle, “Proximal alternating linearized minimization for nonconvex and nonsmooth problems”, Mathematical Programming, 146:1-2 (2014), 459-494.
  7. M.V. Balashov, A.A. Tremba, “Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds”, Optimization, 71:3 (2022), 711-735.
  8. G.E. Ivanov, V.V. Goncharov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations Research, Engineering, and Cyber Security. V. 113, Springer Optimization and Its Applications, eds. N. Daras, T. Rassias, Springer International Publishing, Cham, Switzerland, 2017, 259-297.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).