Homogeneous spaces yielding solutions of the k[S] -hierarchy and its strict version

Cover Page

Cite item

Full Text

Abstract

The k[S] -hierarchy and its strict version are two deformations of the commutative algebra k[S] , k=R or C ; in the N×N -matrices, where S is the matrix of the shift operator. In this paper we show first of all that both deformations correspond to conjugating k[S] with elements from an appropriate group. The dressing matrix of the deformation is unique in the case of the k[S] -hierarchy and it is determined up to a multiple of the identity in the strict case. This uniqueness enables one to prove directly the equivalence of the Lax form of the k[S] -hierarchy with a set of Sato-Wilson equations. The analogue of the Sato-Wilson equations for the strict k[S] -hierarchy always implies the Lax equations of this hierarchy. Both systems are equivalent if the setting one works in, is Cauchy solvable in dimension one. Finally we present a Banach Lie group G( S 2 ) , two subgroups P + (H) and U + (H) of G( S 2 ) , with U + (H)⊂ P + (H) , such that one can construct from the homogeneous spaces G S 2 / P + (H) resp. G( S 2 )/ U + (H) solutions of respectively the k[S] -hierarchy and its strict version.

About the authors

Gerard F. Helminck

Korteweg-de Vries Institute, University of Amsterdam

Email: g.f.helminck@uva.nl
Professor P.O. Box 94248, Amsterdam, 1090 GE, The Netherlands

Jeffrey A. Weenink

Bernoulli Institute, University of Groningen

Email: j.a.weenink@rug.nl
Post-Graduate Student 9 Nijenborgh, Groningen, 9747 AG, The Netherlands

References

  1. G.F. Helminck, J.A. Weenink, “Integrable hierarchies in the -matrices related to powers of the shift matrix”, Journal of Geometry and Physics, 148 (2020), 103560.
  2. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Proceedings RIMS symposium on nonlinear integrable systems, World Scientific Publishers, ed. M. Jimbo, T. Miwa, 1983, 41-119.
  3. G.F. Helminck, J.W. van de Leur, “Darboux Transformations for the KP Hierarchy in the Segal-Wilson Setting”, Canad. J. Math., 53:2 (2001), 278-309.
  4. A. Pressley, G. Segal, Loop Groups, Oxford Mathematical Monographs, Clarendon Press-Oxford, Oxford, 1988, 328 pp.
  5. G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 63 (1985), 1-64.
  6. G.F. Helminck, E.A. Panasenko “Geometric solutions of the strict KP hierarchy”, Theor. Math. Phys., 198:1 (2019), 48-68.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).