Существование и устойчивость периодических решений уравнения нейронного поля
- Авторы: Колодина К.1, Кострыкин В.2, Олейник А.3
-
Учреждения:
- Норвежский университет естественных наук
- Университет Майнца
- Бергенский университет
- Выпуск: Том 26, № 135 (2021)
- Страницы: 271-295
- Раздел: Статьи
- URL: https://journals.rcsi.science/2686-9667/article/view/294995
- DOI: https://doi.org/10.20310/2686-9667-2021-26-135-271-295
- ID: 294995
Цитировать
Полный текст
Аннотация
Об авторах
Карина Колодина
Норвежский университет естественных наук
Email: karina.a.kolodina@gmail.com
кандидат физико-математических наук 5003, Норвегия, г. Ос ПО 5003, №-1432
Вадим Кострыкин
Университет Майнцадоктор физико-математических наук, профессор 55099, Германия, г. Майнц, ул. Штаудингера, 9
Анна Олейник
Бергенский университет
Email: anna.oleynik@uib.no
кандидат физико-математических наук, доцент Департамента Математик 7803, Норвегия, г. Берген ПО 7803, №-5020
Список литературы
- Shun-ichi Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biological Cybernetics, 27:2 (1977), 77-87.
- S. Coombes, “Waves, bumps, and patterns in neural field theories”, Biological Cybernetics, 93:2 (2005), 91-108.
- B. Ermentrout, “Neural networks as spatio-temporal pattern-forming systems”, Reports on Progress in Physics, 61:4 (1998), 353-430.
- S. Coombes, P. Beim Graben, R. Potthast, J. Wright, Neural Fields: Theory and Applications, Springer, 2014.
- R. Potthast, P. Beim Graben, “Existence and properties of solutions for neural field equations”, Mathematical Methods in the Applied Sciences, 33:8 (2010), 935-949.
- B. Ermentrout, “The analysis of synaptically generated traveling waves”, Journal of Computational Neuroscience, 5:2 (1998), 191-208.
- S. Coombes, H. Schmidt, “Neural fields with sigmoidal firing rates: approximate solutions”, Discrete and Continuous Dynamical Systems, 28:4, Trends and Developments in DE/Dynamics (2010), 1369-1379.
- E.P. Krisner, “Periodic solutions of a one dimensional wilson-cowan type model”, Electronic Journal of Differential Equations, 102 (2007), 1-22.
- C.R. Laing, W.C. Troy, B. Gutkin, B. Ermentrout, “Multiple bumps in a neuronal model of working memory”, SIAM Journal on Applied Mathematics, 63:1 (2002), 62-97.
- A. Oleynik, A. Ponosov, V. Kostrykin, A.V. Sobolev, “Spatially localized solutions of the hammerstein equation with sigmoid type of nonlinearity”, Journal of Differential Equations, 261:10 (2016), 5844-5874.
- A.J. Elvin, C.R. Laing, R.I. McLachlan, M.G. Roberts, “Exploiting the hamiltonian structure of a neural field model”, Physica D: Nonlinear Phenomena, 239:9 (2010), 537-546.
- L.P. Sil’Nikov, “A case of the existence of a denumerable set of periodic motions”, Sov. Math. Dokl., 6 (1965), 163-166.
- L.P. Sil’Nikov, “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type”, Mathematics of the USSR-Sbornik, 10:1 (1970), 91.
- P. Glendinning, C. Sparrow, “Local and global behavior near homoclinic orbits”, Journal of Statistical Physics, 35:5 (1984), 645-696.
- R.L. Devaney, “Homoclinic orbits in hamiltonian systems”, Journal of Differential Equations, 21:2 (1976), 431-438.
- Paul C. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2011), 033001.
- J. Wyller, P. Blomquist, G. T. Einevoll, “Turing instability and pattern formation in a twopopulation neuronal network model”, Physica D: Nonlinear Phenomena, 225:1 (2007), 75-93.
- E.P. Krisner, “The link between integral equations and higher order odes”, Journal of Mathematical Analysis and Applications, 291:1 (2004), 165-179.
- S. Coombes, M.R. Owen, “Evans functions for integral neural field equations with heaviside firing rate function”, SIAM Journal on Applied Dynamical Systems, 3:4 (2004), 574-600.
- P. Blomquist, J. Wyller, G.T. Einevoll, “Localized activity patterns in two-population neuronal networks”, Physica D: Nonlinear Phenomena, 206:3 (2005), 180-212.
- A. Oleynik, J. Wyller, T. Tetzlaff, G.T. Einevoll, “Stability of bumps in a two-population neuralfield model with quasi-power temporal kernels”, Nonlinear Analysis: Real World applications, 12:6 (2011), 3073-3094.
- E. Burlakov, A. Ponosov, J. Wyller, “Stationary solutions of continuous and discontinuous neural field equations”, Journal of Mathematical Analysis and Applications, 444:1 (2016), 47-68.
- A. Oleynik, V. Kostrykin, A. Sobolev, “Lyapunov Stability of Bumps in of One-Population Neural Field Equation”, Work in Progress, 2015.
- A. Oleynik, A. Ponosov, J. Wyller, “On the properties of nonlinear nonlocal operators arising in neural field models”, Journal of Mathematical Analysis and Applications, 398:1 (2013), 335-351.
- I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators. V. 63, Birkhäuser, Basel-Boston-Berlin, 2013.
- A. Frazho, W. Bhosri, An Operator Perspective on Signals and Systems. V. 204: Operator Theory: Advances and Applications, Birkhäuser, Basel-Boston-Berlin, 2010, 429 pp.
- C.V.M. van der Mee, S. Seatzu, G. Rodriguez, “Spectral factorization of bi-infinite multi-index block Toeplitz matrices”, Linear Algebra and its Applications, 343 (2002), 355-380.
- L. Reichel, L.N. Trefethen, “Eigenvalues and pseudo-eigenvalues of Toeplitz matrices”, Linear Algebra and its Applications, 162 (1992), 153-185.
- R. Denk, M. Möller, C. Tretter, “The Spectrum of the Multiplication Operator Associated with a Family of Operators in a Banach Space”, Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems. V. 162: Operator Theory: Advances and Applications, Birkhäuser, Basel-Boston-Berlin, 2005, 103-116.
- O. Toeplitz, “Zur theorie der quadratischen und bilinearen formen vonunendlichvielen veränderlichen”, Mathematische Annalen, 70:3 (1911), 351-376.
- M. Lindner, “Fredholmness and index of operators in the wiener algebra are independednt on the underlying space”, Operators and Matrices, 2:2 (2008), 297-306.
- M. Seidel, “Fredholm theory for band-dominated and related operators: a survey”, Linear Algebra and its Applications, 445 (2014), 373-394.
- V. Kostrykin, A. Oleynik, “On the existence of unstable bumps in neural networks”, Integral Equations and Operator Theory, 75:4 (2013), 445-458.
Дополнительные файлы
