MODAL LOGICS WITH THE INTERSECTION MODALITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We give a simple proof of a recently obtained in [12] result on the completeness of modal logics with the modality that corresponds to the intersection of accessibility relations in a Kripke model. In epistemic logic, this is the so-called distributed knowledge operator. We prove completeness for the logics in the modal languages of two types: one has the modalities □1,...,□n for the relations R1,...,Rn that satisfy a unimodal logic L, and the modality □n+1 for the intersection Rn+1=R1 ∩...∩ Rn; the other language has the modalities □i (i ∈ Σ) for the relations Ri that satisfy the logic L, and, for every nonempty subset of indices I ⊆ Σ, the modality □I for the intersection ∩i∈I Ri. While in [12] the completeness is proved only for the logics over K, KD, KT, K4, S4, and S5, here we give a "uniform" construction that enables us to obtain completeness for the logics with intersection over the 15 so-called "traditional" modal logics KΛ, for Λ ⊆ {D, T, B, 4, 5}. The proof method is based on unravelling of a frame and then taking the Horn closure of the resulting frame.

About the authors

E. E Zolin

Lomonosov Moscow State University

Email: vshehtman@gmail.com
Moscow, Russia

References

  1. Chagrov A., Zakharyaschev M. Modal Logic. Clarendon Press, 1997. (Oxford logic guides). ISBN 9780198537793.
  2. Gabbay D., Shehtman V., Skvortsov D. Quantification in nonclassical logic, volume 1. Elsevier, 2009. ISBN 9780444520128.
  3. Goldblatt R. Logics of Time and Computation. Center for the Study of Language, Information, 1987. (CSLI lecture notes). ISBN 9780937073124.
  4. Goranko V., Passy S. Using the Universal Modality: Gains and Questions // Journal of Logic and Computation. 1992. V2, N.4. P. 5—30.
  5. Handbook of Epistemic Logic / ed. by H. van Ditmarsch [et al.]. College Publications, 2015. ISBN 978-1-84890-158-2.
  6. Kikot S., Shapirovsky I., Zolin E. Modal Logics with Transitive Closure: Completeness, Decidability, Filtration In Advances in Modal Logic, v.13, p. 369—388, College Publications, 2020.
  7. Kozen D., Parikh R. An elementary proof of the completeness of PDL // Theoretical Computer Science. 1981. V 14, N. 1. P. 113-118.
  8. Modal Logic / Stanford Encyclopedia of Philosophy. 2018. URL: https://plato.stanford.edu/entries/logic-modal/.
  9. Segerberg K. A completeness theorem in the modal logic of programs // Banach Center Publications. 1982. V. 9, N. 1. P. 31-46.
  10. Segerberg K. A Model Existence Theorem in Infinitary Propositional Modal Logic // Journal of Philosophical Logic. 1994. V. 23, N. 4. P. 337-367.
  11. Sundholm G. A Completeness Proof for an Infinitary Tense-Logic // Theoria. 1977. V. 43, N. 1. P. 47-51.
  12. Wang J.N., Agotnes T. Simpler completeness proofs for modal logics with intersection. ArXiv:2004.02120 [cs.LO].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».