NEW CASES OF INTEGRABLE CONSERVATIVE AND DISSIPATIVE SYSTEMS OF ANY ODD ORDER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New cases of integrable dynamical systems of any odd order homogeneous in terms of variables are presented, in which a system on a tangent bundle to a even-dimensional manifold can be distinguished. In this case, the force field (shift generator in the system) is divided into an internal (conservative) and an external one, which has a dissipation of a different sign. The external field is introduced using some unimodular transformation and generalizes the previously considered fields. Complete sets of both first integrals and invariant differential forms are given.

About the authors

M. V Shamolin

Lomonosov Moscow State University

Email: shamolin.maxim@yandex.ru
Moscow, Russia

References

  1. Poincare H. Calcul des probabilites. Paris: Gauthier-Villars, 1912.
  2. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // Доклады АН СССР. 1953. Т. 93.№ 5. 763-766.
  3. Козлов В.В. Тензорные инварианты и интегрирование дифференциальных уравнений // Успехи матем. наук. 2019. Т. 74. № 1(445). 117-148.
  4. Шамолин М.В. Об интегрируемости в трансцендентных функциях // Успехи матем. наук. 1998. Т. 53. № 3. 209-210.
  5. Шамолин М.В. Полный список первых интегралов уравнений движения многомерного твердого тела в неконсервативном поле при наличии линейного демпфирования // Доклады РАН. 2015. Т. 464. № 6. 688-692.
  6. Шамолин М.В. Инварианты однородных динамических систем седьмого порядка с диссипацией // Доклады РАН. Математика, информатика, процессы управления. 2024. Т. 516. № 1. 65-74.
  7. Шамолин М.В. Полный список первых интегралов динамических уравнений движения многомерного твердого тела в неконсервативном поле // Доклады РАН. 2015. Т. 461. № 5. 533-536.
  8. Шамолин М.В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования // Доклады РАН. 2014. Т. 457. № 5. 542-545.
  9. Шамолин М.В. Инварианты систем с малым числом степеней свободы, обладающих диссипацией // Вестник МГУ. Сер. 1. Математика, механика. 2024. № 2. 3-15.
  10. Клейн Ф. Неевклидова геометрия. Пер. с нем. Изд. 4, испр., обновл. М.: URSS, 2017.
  11. Вейль Г. Симметрия. М.: URSS, 2007.
  12. Козлов В.В. Интегрируемость и неинтегриру-емость в гамильтоновой механике // Успехи матем. наук. 1983. Т. 38. № 1. 3-67.
  13. Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фундам. и прикл. матем. 2010. Т. 16. № 4. 3-229.
  14. Шамолин М.В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле // Доклады РАН. 2009. Т. 425. № 3. 338-342.
  15. Шамолин М.В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования // Доклады РАН. 2011. Т. 440. № 2. 187-190.
  16. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
  17. Polyanin A.D., & Zaitsev V.F. (2017). Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315117638
  18. Шабат Б.В. Введение в комплексный анализ. М.: Наука, 1987.
  19. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.
  20. Тамура И. Топология слоений. М.: Мир, 1979.
  21. Шамолин М.В. Динамические системы с переменной диссипацией: подходы, методы, приложения // Фундам. и прикл. матем. 2008. Т. 14.№ 3. 3-237.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».