Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider variational inequalities with invertible operators   in divergence form and constraint set a.e. in  where  is a nonempty bounded open set in  , , and  are measurable functions. Under the assumptions that the operators  G-converge to an invertible operator ,  , and there exist functions  such that  a.e. in  and  we establish the weak convergence in  of the solutions  of the specified variational inequalities to the solution  of a similar variational inequality with the operator  and the constraint set  The fundamental difference between the considered case and the previously studied case, where  is that, in general, the functionals  do not converge to  even weakly in  and the energy integrals  do not converge to .

About the authors

A. A. Kovalevsky

Krasovskii Institute of Mathematics and Mechanics UB RAS; Ural Federal University

Author for correspondence.
Email: alexkvl71@mail.ru
Russian Federation, Yekaterinburg; Yekaterinburg

References

  1. Spagnolo S. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche // Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3). 1968. Vol. 22. No. 4. P. 571–597.
  2. Жиков В.В., Козлов С.М., Олейник О.А., Ха Тьен Нгоан. Усреднение и G-сходимость дифференциальных операторов // УМН. 1979. Т. 34. № 5 (209). С. 65–133.
  3. Панков А.А. Об усреднении и G-сходимости нелинейных эллиптических операторов дивергентного вида // Докл. АН СССР. 1984. Т. 278. № 1. С. 37–41.
  4. Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. V. 422. Dordrecht: Kluwer Academic Publishers, 1997.
  5. Ковалевский А.А. G-сходимость и усреднение нелинейных эллиптических операторов дивергентного вида с переменной областью определения // Изв. РАН. Сер. матем. 1994. Т. 58. № 3. С. 3–35.
  6. Murat F. Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe p.p. dans . Publ. Laboratoire d’Analyse Numérique, No. 76013. Univ. Paris VI, 1976.
  7. Kovalevsky A.A. Convergence of solutions of nonlinear elliptic variational inequalities with measurable bilateral constraints // Results Math. 2023. Vol. 78. No. 4. Paper No. 145. 22 p. https://doi.org/10.1007/s00025-023-01921-7
  8. Dal Maso G., Defranceschi A. Convergence of unilateral problems for monotone operators // J. Anal. Math. 1989. Vol. 53. No 1. P. 269–289. https://doi.org/10.1007/BF02793418
  9. Boccardo L., Murat F. Homogenization of nonlinear unilateral problems / In: G. Dal Maso, G.F. Dell’Antonio (eds). Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equ. Appl. Vol. 5. Boston: Birkhäuser, 1991. P. 81–105.
  10. Kovalevsky A.A. Nonlinear variational inequalities with variable regular bilateral constraints in variable domains // Nonlinear Differ. Equ. Appl. 2022. Vol. 29. No. 6. Paper No. 70. 24 p. https://doi.org/10.1007/s00030-022-00797-w
  11. Evans L.C. Partial Differential Equations. Graduate Studies in Mathematics. Vol. 19. Providence, Rhode Island: American Mathematical Society, 1998.
  12. Lions J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, Gauthier-Villars, 1969.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».