BICOMPACT SCHEMES FOR COMPRESSIBLE NAVIER–STOKES EQUATIONS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time, bicompact schemes are generalized to non-stationary Navier–Stokes equations for a compressible heat-conducting fluid. The proposed schemes have an approximation of the fourth order in space and the second order in time, are absolutely stable (in the frozen-coefficients sense), conservative, and efficient. One of the new schemes is tested on several two-dimensional problems. It is shown that when the mesh is refined, the scheme converges with an increased third order. A comparison is made with the WENO5-MR scheme. The superiority of the chosen bicompact scheme in resolving vortices and shock waves, as well as their interaction, is demonstrated.

Sobre autores

M. Bragin

Keldysh Institute of Applied Mathematics Russian Academy of Sciences

Autor responsável pela correspondência
Email: michael@bragin.cc
Russia, Moscow

Bibliografia

  1. Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015, 350 с.
  2. De La Llave Plata M., Couaillier V., Pape M.-C. // Comput. Fluids. 2018. V. 176. P. 320–337.
  3. Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. // Comput. Fluids. 2013. V. 88. P. 165–179.
  4. Головизнин В.М., Четверушкин Б.Н. // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 20–29.
  5. Рогов Б.В., Михайловская М.Н. // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
  6. Михайловская М.Н., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 4. С. 672–695.
  7. Rogov B.V. // Appl. Numer. Math. 2019. V. 139. P. 136–155.
  8. Брагин М.Д., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1759–1778.
  9. Bragin M.D. // Appl. Numer. Math. 2022. V. 174. P. 112–126.
  10. Брагин М.Д. // Матем. моделирование. 2022. Т. 34. № 6. С. 3–21.
  11. Douglas J., Dupont T.F. // Numerical Solution of Partial Differential Equations II / ed. by B. Hubbard. Academic Press, 1971. P. 133–214.
  12. Duchemin L., Eggers J. // J. Comput. Phys. 2014. V. 263. P. 37–52.
  13. Wang H., Zhang Q., Wang S., Shu C.-W. // Sci. China Math. 2020. V. 63. P. 183–204.
  14. Shu C.-W. // Advanced Numerical Approximation of Nonlinear Hyperbolic Equations / ed. by A. Quarteroni, V. 1697 of Lecture Notes in Mathematics. Springer, 1998. P. 325–432.
  15. Daru V., Tenaud C. // Comput. Fluids. 2001. V. 30. P. 89–113.
  16. Bragin M.D., Rogov B.V. // Appl. Numer. Math. 2020. V. 151. P. 229–245.
  17. Wang Z., Zhu J., Tian L., Zhao N. // J. Comput. Phys. 2021. V. 429. P. 110006.
  18. Sjögreen B., Yee H.C. // J. Comput. Phys. 2003. V. 185. P. 1–26.
  19. Yee H.C., Sandham N.D., Djomehri M.J. // J. Comput. Phys. 1999. V. 150. P. 199–238.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (82KB)
3.

Baixar (119KB)
4.

Baixar (111KB)

Declaração de direitos autorais © М.Д. Брагин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies