Perovskite-like limited solid solution in the BaO–Y2O3–CuO–MoO3 system
- 作者: Smirnova M.N.1, Kopeva M.A.1, Nipan G.D.1, Nikiforova G.E.1, Yapryntsev A.D.1, Archipenko A.A.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- 期: 卷 515, 编号 1 (2024)
- 页面: 30-35
- 栏目: CHEMISTRY
- URL: https://journals.rcsi.science/2686-9535/article/view/259116
- DOI: https://doi.org/10.31857/S2686953524020032
- EDN: https://elibrary.ru/zsajrl
- ID: 259116
如何引用文章
详细
A new phase Ba2(Y,Cu,Mo)2O6 with the cubic perovskite structure Fm-3m has been obtained in the BaO–CuO–Y2O3–MoO3 quasiquaternary system, and the possibility of coexistence of two limited solid solutions with cubic structures Fm-3m and F-43m has been established. The samples were synthesized by gel combustion followed by calcination at 1000°C and cooling in the inertial thermal regime. The studies were carried out by X-ray phase analysis, X-ray fluorescence spectrometry, infrared spectroscopy, and diffuse reflectance spectroscopy.
全文:

作者简介
M. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, 119991, Moscow
M. Kopeva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, 119991, Moscow
G. Nipan
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, 119991, Moscow
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, 119991, Moscow
A. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, 119991, Moscow
A. Archipenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, 119991, Moscow
参考
- Gupta S. Introduction of ferroelectric and related materials. In: Ferroelectric materials for energy harvesting and storage. Elsevier, 2021. pp. 1–41. https://doi.org/10.1016/B978-0-08-102802-5.00001-7
- Кузьминов Ю.С., Осико В.В., Прохоров А.М. // Квантовая электроника. 1980. Т. 7. № 8. С. 1621–1653.
- Леманов В.В., Смирнова Е.П., Зайцева Н.П. // Физика тв. тела. 2009. Т. 51. № 8. С. 1590–1595.
- Bokhimi X., Garcia-Ruiz A. // Mater. Res. Soc. Symp. Proc. 1989. V. 169. P. 233–236. https://doi.org/10.1557/PROC-169-233
- Kitahama K., Hori Y., Kawai K., Kawai S. // Jap. J. Appl. Phys. 1991. V. 30. № 5A. P. L809–L812. https://doi.org/10.1143/JJAP.30.L809
- Garcia-Ruiz A., Bokhimi X., Portilla M. // J. Mater. Res. 1992. V. 7. № 1. P. 24–28. https://doi.org/10.1557/JMR.1992.0024
- Bryntse I. // Acta Chem. Scand. 1990. V. 44. P. 855–856. https://doi.org/10.3891/acta.chem.scand.44-0855
- Bokhimi X., Morales A., Garcia-Ruiz A. // Powder Diffraction. 1996. V. 11. № 1. P. 42–44. https://doi.org/10.1017/S0885715600008903
- Bremer M., Langbein H. // Eur. J. Solid State Inorg. Chem. 1996. V. 33. № 11. P. 1173–1183. https://doi.org/10.1016/S1293-2558(00)80085-0
- Кольцова Т.Н. // Неорган. материалы. 2004. Т. 40. № 6. С. 751–755.
- Gu L.-N., Li R.-K., Chen Z.-Y., Zhang J.-W. // Chinese J. Low. Temp. Phys. 2000. V. 22. № 1. P. 77–80. https://doi.org/10.3969/j.issn.1000-3258.2000.01.015
- Казенас Е.К., Цветков Ю.В. // Испарение оксидов. М: Наука, 1997. 543 с.
- Thomas P.S., Guerbois J.-P., Russell G.F., Briscoe B.J. // J. Therm. Anal. Calorim. 2001. V. 64. № 2. P. 501–508. https://doi.org/10.1023/A:1011578514047
- Sreedhar B., Satya Vani Ch., Keerthi Devi D., Basaveswara Rao M.V., Rambabu C. // Amer. J. Mater. Sci. 2012. V. 2. № 1. P. 5–13. https://doi.org/10.5923/j.materials.20120201.02
- Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. // Mater. Sci. Eng. C. 2008. V. 28. № 4. P. 539–548. http://.doi.org/10.1016/j.msec.2007.10.088
- Smirnova M.N., Nikiforova G.E., Goeva L.V., Simonenko N.P. // Ceram. Intern. 2019. V. 45. № 4. P. 4509–4513. https://doi.org/10.1016/j.ceramint.2018.11.133
- Lei F., Yan B. // J. Solid State Chem. 2008. V. 181. № 4. P. 855–862. https://doi.org /10.1016/j.jssc.2008.01.033
- Gowtham B., Ponnuswamy V., Pradeesh G., Chandrasekaren J., Aradhana D. // J. Mater. Sci. Mater. Electron. 2018. V. 29. № 8. P. 6835–6843. https://doi.org/10.1007/s10854-018-8670-7
- Yang P., Li C., Wang W., Quan Z., Gai S., Lin J. // J. Solid State Chem. 2009. V. 182. № 9. P. 2510–2520. https://doi.org /10.1016/j.jssc.2009.07.009
- Фомичев В.В., Полозникова М.Э., Кондратов О.И. // Успехи химии. 1992. Т. 61. № 9. С. 1601–1622. https://doi.org/10.1070/RC1992v061n09ABEH001004
- Buvaneswari G., Aswathy V., Rajakumari R. // Dyes Pigments. 2015. V. 123. P. 413–419. https://doi.org/10.1016/j.dyepig.2015.08.024
- Paulus E.F., Miehe G., Fuess H., Yehia I., Löchner U. // J. Solid State Chem. 1991. V. 90. № 1. P. 17–26. https://doi.org/10.1016/0022-4596(91)90166-F
补充文件
