Perovskite-like limited solid solution in the BaO–Y2O3–CuO–MoO3 system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new phase Ba2(Y,Cu,Mo)2O6 with the cubic perovskite structure Fm-3m has been obtained in the BaO–CuO–Y2O3–MoO3 quasiquaternary system, and the possibility of coexistence of two limited solid solutions with cubic structures Fm-3m and F-43m has been established. The samples were synthesized by gel combustion followed by calcination at 1000°C and cooling in the inertial thermal regime. The studies were carried out by X-ray phase analysis, X-ray fluorescence spectrometry, infrared spectroscopy, and diffuse reflectance spectroscopy.

Full Text

Restricted Access

About the authors

M. N. Smirnova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

M. A. Kopeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

G. D. Nipan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

A. D. Yapryntsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

A. A. Archipenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

References

  1. Gupta S. Introduction of ferroelectric and related materials. In: Ferroelectric materials for energy harvesting and storage. Elsevier, 2021. pp. 1–41. https://doi.org/10.1016/B978-0-08-102802-5.00001-7
  2. Кузьминов Ю.С., Осико В.В., Прохоров А.М. // Квантовая электроника. 1980. Т. 7. № 8. С. 1621–1653.
  3. Леманов В.В., Смирнова Е.П., Зайцева Н.П. // Физика тв. тела. 2009. Т. 51. № 8. С. 1590–1595.
  4. Bokhimi X., Garcia-Ruiz A. // Mater. Res. Soc. Symp. Proc. 1989. V. 169. P. 233–236. https://doi.org/10.1557/PROC-169-233
  5. Kitahama K., Hori Y., Kawai K., Kawai S. // Jap. J. Appl. Phys. 1991. V. 30. № 5A. P. L809–L812. https://doi.org/10.1143/JJAP.30.L809
  6. Garcia-Ruiz A., Bokhimi X., Portilla M. // J. Mater. Res. 1992. V. 7. № 1. P. 24–28. https://doi.org/10.1557/JMR.1992.0024
  7. Bryntse I. // Acta Chem. Scand. 1990. V. 44. P. 855–856. https://doi.org/10.3891/acta.chem.scand.44-0855
  8. Bokhimi X., Morales A., Garcia-Ruiz A. // Powder Diffraction. 1996. V. 11. № 1. P. 42–44. https://doi.org/10.1017/S0885715600008903
  9. Bremer M., Langbein H. // Eur. J. Solid State Inorg. Chem. 1996. V. 33. № 11. P. 1173–1183. https://doi.org/10.1016/S1293-2558(00)80085-0
  10. Кольцова Т.Н. // Неорган. материалы. 2004. Т. 40. № 6. С. 751–755.
  11. Gu L.-N., Li R.-K., Chen Z.-Y., Zhang J.-W. // Chinese J. Low. Temp. Phys. 2000. V. 22. № 1. P. 77–80. https://doi.org/10.3969/j.issn.1000-3258.2000.01.015
  12. Казенас Е.К., Цветков Ю.В. // Испарение оксидов. М: Наука, 1997. 543 с.
  13. Thomas P.S., Guerbois J.-P., Russell G.F., Briscoe B.J. // J. Therm. Anal. Calorim. 2001. V. 64. № 2. P. 501–508. https://doi.org/10.1023/A:1011578514047
  14. Sreedhar B., Satya Vani Ch., Keerthi Devi D., Basaveswara Rao M.V., Rambabu C. // Amer. J. Mater. Sci. 2012. V. 2. № 1. P. 5–13. https://doi.org/10.5923/j.materials.20120201.02
  15. Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. // Mater. Sci. Eng. C. 2008. V. 28. № 4. P. 539–548. http://.doi.org/10.1016/j.msec.2007.10.088
  16. Smirnova M.N., Nikiforova G.E., Goeva L.V., Simonenko N.P. // Ceram. Intern. 2019. V. 45. № 4. P. 4509–4513. https://doi.org/10.1016/j.ceramint.2018.11.133
  17. Lei F., Yan B. // J. Solid State Chem. 2008. V. 181. № 4. P. 855–862. https://doi.org /10.1016/j.jssc.2008.01.033
  18. Gowtham B., Ponnuswamy V., Pradeesh G., Chandrasekaren J., Aradhana D. // J. Mater. Sci. Mater. Electron. 2018. V. 29. № 8. P. 6835–6843. https://doi.org/10.1007/s10854-018-8670-7
  19. Yang P., Li C., Wang W., Quan Z., Gai S., Lin J. // J. Solid State Chem. 2009. V. 182. № 9. P. 2510–2520. https://doi.org /10.1016/j.jssc.2009.07.009
  20. Фомичев В.В., Полозникова М.Э., Кондратов О.И. // Успехи химии. 1992. Т. 61. № 9. С. 1601–1622. https://doi.org/10.1070/RC1992v061n09ABEH001004
  21. Buvaneswari G., Aswathy V., Rajakumari R. // Dyes Pigments. 2015. V. 123. P. 413–419. https://doi.org/10.1016/j.dyepig.2015.08.024
  22. Paulus E.F., Miehe G., Fuess H., Yehia I., Löchner U. // J. Solid State Chem. 1991. V. 90. № 1. P. 17–26. https://doi.org/10.1016/0022-4596(91)90166-F

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The concentration tetrahedron of the quasi–four–dimensional BaO–Y2O3-CuO-MoO3 system with the studied compositions.

Download (66KB)
3. Fig. 2. X–ray images of samples of the BaO–Y2O3–CuO-MoO3 system: Ba5Y2CuMo2O15 (5212) (1), Ba5Y2Cu2MoO13 (5221) (2), Ba4Y2CuMoO11 (4211) (3), Ba8Y4CuMo3O24 (8413) (4), Ba3YCuMoO8.5 (3111) (5), Ba3YCu2MoO9.5 (3121) (6), Ba4YCuMo2O12.5 (4112) (7), Ba4Y1.8CuMoO10.7 (4(1.8)11) (8).

Download (217KB)
4. Fig. 3. IR spectra of sample 5221 (Ba5Y2Cu2MoO13): gel (spectrum 1); amorphous powder before annealing (spectrum 2), after annealing (spectrum 3).

Download (67KB)
5. Fig. 4. Absorption spectrum of sample 5221 (Ba5Y2Cu2MoO13) in the UV/visible range.

Download (51KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies