Effect of the solvent nature on the biological activity of gold-containing systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Gold nanoparticles were prepared by metal-vapor synthesis using isopropanol, acetone or toluene as dispersion media. The electronic states of the metal and the nature of the sorbed layer on the surface of the nanoparticles were studied. The analysis of photoelectron spectra of the obtained nanoparticles showed that regardless of the synthesis conditions, gold in all samples is in the Au0, Au+ and Au3+ states and a carbon-containing shell is present on all types of metal particles. The study of anticancer activity of nanoparticles in vitro with human cell lines showed the dependence of biological activity on their interaction time of samples obtained in toluene dispersion medium. The metabolic activity of gold nanoparticles obtained in isopropanol or acetone medium decreased in the earliest period of testing.

全文:

受限制的访问

作者简介

A. Voronova

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
俄罗斯联邦, 119334 Moscow

A. Naumkin

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: alexandervasilkov@yandex.ru
俄罗斯联邦, 119334 Moscow

A. Pereyaslavtsev

Dukhov Automatics Research Institute

Email: alexandervasilkov@yandex.ru
俄罗斯联邦, 127030 Moscow

T. Batsalova

Paisii Hilendarski University of Plovdiv

Email: alexandervasilkov@yandex.ru

Faculty of Biology

保加利亚, 4000 Plovdiv

B. Dzhambazov

Paisii Hilendarski University of Plovdiv

Email: alexandervasilkov@yandex.ru

Faculty of Biology

保加利亚, 4000 Plovdiv

A. Vasil’kov

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alexandervasilkov@yandex.ru
俄罗斯联邦, 119334 Moscow

参考

  1. Mioc A., Mioc M., Ghiulai R., Voicu M., Racoviceanu R., Trandafirescu C., Dehelean C., Coricovac D., Soica C. // Curr. Med. Chem. 2019. V. 26. № 35. P. 6493–6513. https://doi .org/10.2174/0929867326666190506123721
  2. Riley R.S., Day E.S. // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017. V. 9. № 4. P. e1449. https://doi .org/10.1002/wnan.1449
  3. Penders J., Stolzoff M., Hickey D.J., Andersson M., Webster T.J. // Int. J. Nanomedicine. 2017. V. 12. P. 2457–2468. https://doi .org/10.2147/IJN.S124442
  4. Zhang J., Mou L., Jiang X. // Chem. Sci. 2020. V. 11. № 4. P. 923–936. https://doi .org/10.1039/C9SC06497D
  5. Vigderman L., Zubarev E.R. // Adv. Drug Deliv. Rev. 2013. V. 65. № 5. P. 663–676. https://doi .org/10.1016/j.addr.2012.05.004
  6. Siddique S., Chow J.C.L. // Appl. Sci. 2020. V. 10. № 11. P. 3824–3844. https://doi .org/10.3390/app10113824
  7. Voronova A.A., Naumkin A.V., Vasil’kov A.Yu. // INEOS OPEN. 2022. V. 5. № 3. P. 79–84. https://doi .org/10.32931/io2215a
  8. Wang P., Wang X., Wang L., Hou X., Liu W., Chen C. // Sci. Technol. Adv. Mater. 2015. V. 16. № 3. P. 034610. https://doi .org/10.1088/1468-6996/16/3/034610
  9. Srijampa S., Buddhisa S., Ngernpimai S., Leelayuwat C., Proungvitaya S., Chompoosor A., Tippayawat P. // Bioconjugate Chem. 2020. V. 31. № 4. P. 1133–1143. https://doi .org/10.1021/acs.bioconjchem.9b00847
  10. Schaeublin N.M., Braydich-Stolle L.K., Schrand A.M., Miller J.M., Hutchison J., Schlager J.J., Hussain, S.M. // Nanoscale. 2011. V. 3. № 2. P. 410–420. https://doi .org/10.1039/C0NR00478B
  11. Zhang R., Kiessling F., Lammers T., Pallares R.M. // Drug Deliv. Transl. Res. 2023. V. 13. № 2. P. 378–385. https://doi .org/10.1007/s13346-022-01232-4
  12. Vasil’kov A., Tseomashko N., Tretyakova A., Abidova A., Butenko I., Pereyaslavtsev A., Arkharova N., Volkov V., Shtykova E. // Coatings. 2023. V. 13. № 8. P. 1315. https://doi .org/10.3390/coatings13081315
  13. Rubina M.S., Pigaleva M.A., Butenko I.E., Budnikov A.V., Naumkin A.V., Gromovykh T.I., Lutsenko S.V., Vasil’kov A.Yu. // Dokl. Phys. Chem. 2019. V. 488. P. 146–150. https://doi .org/10.1134/S0012501619100026
  14. Vasil’kov A., Migulin D., Naumkin A., Volkov I., Butenko I., Golub A., Sadykova V., Muzafarov A. // Pharmaceutics. 2023. V. 15. № 3. P. 809. https://doi .org/10.3390/pharmaceutics15030809
  15. Vasil’kov A., Voronova A., Batsalova T., Moten D., Naumkin A., Shtykova E., Volkov V., Teneva I., Dzhambazov B. // Materials. 2023. V. 16. № 8. P. 3238. https://doi .org/10.3390/ma16083238
  16. Davis S.C., Klabunde K.J. // J. Am. Chem. Soc. 1978. V. 100. № 18. P. 5973–5974. https://doi .org/10.1021/Ja00486A076
  17. Davis S.C., Severson S.J., Klabunde K.J. //J. Am. Chem. Soc. 1981. V. 103. № 11. P 3024–3029. https://doi .org/10.1021/Ja00401A019.
  18. Beamson G., Briggs D. High resolution XPS of Organic Polymers. Chichester, Wiley, 1992. 295 p.
  19. Casaletto M.P., Longo A., Martorana A., Prestianni A., Venezia A.M. // Surf. Interface Anal. 2006. V. 38. № 4. P. 215–218. https://doi .org/10.1002/sia.2180
  20. Pireaux J.J., Chtaïb M., Delrue J.P., Thiry P.A., Liehr M., Caudano R. // Surf. Sci. 1984. V. 1. № 141. P. 211–220. https://doi .org/10.1016/0039-6028(84)90206-1
  21. Pireaux J.J., Liehr M., Thiry P.A., Delrue J.P., Caudano R. // Surf. Sci. 1984. V. 1. № 141. P. 221–232. https://doi .org/10.1016/0039-6028(84)90207-3
  22. Peters S., Peredkov S., Neeb M., Eberhardt W., Al-Hada M. // Surf. Sci. 2013. V. 608. P. 129–134. https://doi .org/10.1016/j.susc.2012.09.024
  23. Koslowski B., Boyen H.G., Wilderotter C., Kästle G., Ziemann P., Wahrenberg R., Oelhafen P. // Surf. Sci. 2001. V. 475. №1–3. P. 1–10. https://doi .org/10.1016/S0039-6028(00)00986-9
  24. Tsai H., Hu E., Perng K., Chen M., Wu J.C., Chang Y.S. // Surf. Sci. 2003. V. 537. № 1–3. P. L447–L450. https://doi .org/10.1016/S0039-6028(03)00640-X
  25. Xiong P., Huang X., Ye N., Lu Q., Zhang G., Peng S., Wang H., Liu Y. // Adv. Sci. 2022. V. 9. № 16. P. 2106049. https://doi .org/10.1002/advs.202106049
  26. Repetto G., Del Peso A., Zurita J.L. // Nat. Protoc. 2008. V. 3. № 7. P. 1125–1131. https://doi .org/10.1038/nprot.2008.75

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Micrographs of the AuIs sample: high-resolution TEM (a), high-resolution electronic diffraction pattern (b) and SEM (c).

下载 (411KB)
3. Fig. 2. SEM image of the morphology of AuAc (a) nanoparticles and their elemental representations: C(b), O(c) and Au (d).

下载 (1MB)
4. Fig. 3. Energy dispersive X-ray spectrum of the AiAs sample: C, 56.6 at. %; Oh, 43.3 at. %; Au, 0.1 at. %.

下载 (113KB)
5. Fig. 4. Photoelectron spectra C 1s of AuIs (a), AuAc (b), AuTol (c) and Au 4f samples of all studied samples (d).

下载 (750KB)
6. Fig. 5. Evaluation of the cytotoxicity of gold nanoparticles in vitro depending on the incubation time. Inhibition of cellular metabolic activity determined by the MTT test with cells A549 (a), FL (c), HeLa (e) and HT-29 (g). The results of the NK test for cells A549 (b), FL (d), HeLa (e) and HT-29 (h). Cells were cultured in a medium containing 200 micrograms ml–1 AuIs, AuAc or AuTol for 24, 48, 72, 96 and 120 hours. All samples were analyzed three times.

下载 (854KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##